Skip to main content

Advertisement

Log in

A Detailed Finite Element Model of Internal Short Circuit and Venting During Thermal Runaway in a 32650 Lithium-Ion Battery

  • Published:
Fire Technology Aims and scope Submit manuscript

Abstract

The frequent accidents of power lithium-ion battery have become the major reason to hinder the development of electric vehicles. In this paper, the thermal runaway process for a 32650 battery is analyzed based on 300°C oven heating experiment in adiabatic rate calorimeter, the rise of temperature, the drop of voltage and the leakage of electrolyte are observed before exploding, which could be used as predictor variables for thermal runaway warning. A large number of smoke releases and diffuses after explosion, which could be utilized as a criterion for determining the explosion. And a lumped chemical reaction kinetics model coupled with three-dimensional heat transfer model is constructed for further discussion. The thermal runaway process of the battery could be accurately calculated by the coupled model. Thermal radiation plays a more important role in heat transfer than heat convection in the process of thermal runaway. The explosion happens when the temperature achieves around 230°C, and the active material mainly starts to decompose at this moment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14

Similar content being viewed by others

Abbreviations

A x :

Reaction frequency factor (s−1)

Cp bat :

Heat capacity of the battery (J kg−1 K−1)

E a ,x :

Reaction activation energy (kJ mol−1)

h :

Heat-transfer coefficient (W m−2 K−1)

H x :

Reaction heat (J kg−1)

I :

Short-circuit current (A)

j :

Dimensionless volume fraction of generated SEI

M bat :

Mass of this battery (kg)

m x :

Reaction order

Q dec :

Total heat generation of all abuse reactions (W m−3)

Q heat :

Heating power (W)

Q isc :

Heat generation during ISC (W)

R x :

Reaction rate of each abuse reaction (s−1)

R g :

Universal gas constant (J mol−1 K−1)

R bat :

Resistance of the battery (Ω)

R isc :

Equivalent ISC resistance (Ω)

S :

Area of battery surface (m2)

t :

Time (s)

T :

Absolute temperature (K)

T amb :

Ambient temperature (K)

T :

Rise of battery temperature (K)

v :

Voltage (V)

W x :

Mass fraction of reacting material (kg m−3)

z x :

Dimensionless volume fraction

ε :

Emissivity

ρ bat :

Density of battery (kg m−3)

σ :

Stefan–Boltzmann constant (W m−2 K−4)

λ bat :

Heat conductivity of battery (W m−1 K−1)

β :

Efficacy coefficient

0:

Initial or equilibrated state

sei :

Solid–electrolyte interface

e :

Electrolyte

pvdf :

Poly (vinylidene fluoride)

ne :

Negative electrode

pe :

Positive electrode

3D:

Three dimensional

ARC:

Adiabatic rate calorimeter

COMSOL:

Inc. Sweden computer-aided engineering software developer

ISC:

Internal short circuit

NE:

Negative electrode

PE:

Positive electrode

PVDF:

Poly (vinylidene fluoride)

SOC:

State of charge

SEI:

Solid–electrolyte interface

VSP2:

Vent sizing package 2

References

  1. Wang Q, Liu W, Yuan X, Tang H, Tang Y, Wang M, Zuo J, Song Z, Sun J (2018) Environmental impact analysis and process optimization of batteries based on life cycle assessment. J Clean Prod 174:1262–1273. https://doi.org/10.1016/j.jclepro.2017.11.059

    Article  Google Scholar 

  2. Feng X, Lu L, Ouyang M, Li J, He X (2016) A 3D thermal runaway propagation model for a large format lithium ion battery module. Energy 115:194–208. https://doi.org/10.1016/j.energy.2016.08.094

    Article  Google Scholar 

  3. Ditch B (2018) The impact of thermal runaway on sprinkler protection recommendations for warehouse storage of cartoned lithium-ion batteries. Fire Technol 54(2):359–377. https://doi.org/10.1007/s10694-017-0687-6

    Article  Google Scholar 

  4. Wang Q, Shao G, Duan Q, Chen M, Li Y, Wu K, Liu B, Peng P, Sun J (2016) The efficiency of heptafluoropropane fire extinguishing agent on suppressing the lithium titanate battery fire. Fire Technol 52(2):387–396. https://doi.org/10.1007/s10694-015-0531-9

    Article  Google Scholar 

  5. Kshetrimayum KS, Yoon Y-G, Gye H-R, Lee C-J (2019) Preventing heat propagation and thermal runaway in electric vehicle battery modules using integrated PCM and micro-channel plate cooling system. Appl Therm Eng 159:113797. https://doi.org/10.1016/j.applthermaleng.2019.113797

    Article  Google Scholar 

  6. Wang Q, Jiang L, Yu Y, Sun J (2019) Progress of enhancing the safety of lithium ion battery from the electrolyte aspect. Nano Energy 55:93–114. https://doi.org/10.1016/j.nanoen.2018.10.035

    Article  Google Scholar 

  7. Panchal S, Mathew M, Fraser R, Fowler M (2018) Electrochemical thermal modeling and experimental measurements of 18650 cylindrical lithium-ion battery during discharge cycle for an EV. Appl Therm Eng 135:123–132. https://doi.org/10.1016/j.applthermaleng.2018.02.046

    Article  Google Scholar 

  8. Panchal S, Dincer I, Agelin-Chaab M, Fraser R, Fowler M (2018) Design and simulation of a lithium-ion battery at large C-rates and varying boundary conditions through heat flux distributions. Measurement 116:382–390. https://doi.org/10.1016/j.measurement.2017.11.038

    Article  Google Scholar 

  9. Guo Z, Hao J, Du Z, Xia Q (2016) Modeling and numerical calculation of three-dimensional non-steady state thermal explosion model of cylindrical battery. Int J Heat Mass Trans 99:452–460. https://doi.org/10.1016/j.ijheatmasstransfer.2016.03.128

    Article  Google Scholar 

  10. Chen M, He Y, De Zhou C, Richard Y, Wang J (2016) Experimental study on the combustion characteristics of primary lithium batteries fire. Fire Technol 52(2):365–385. https://doi.org/10.1007/s10694-014-0450-1

    Article  Google Scholar 

  11. Feng X, Zheng S, Ren D, He X, Wang L, Cui H, Liu X, Jin C, Zhang F, Xu C, Hsu H, Gao S, Chen T, Li Y, Wang T, Wang H, Li M, Ouyang M (2019) Investigating the thermal runaway mechanisms of lithium-ion batteries based on thermal analysis database. Appl Energy 246:53–64. https://doi.org/10.1016/j.apenergy.2019.04.009

    Article  Google Scholar 

  12. Wang Q, Ping P, Zhao X, Chu G, Sun J, Chen C (2012) Thermal runaway caused fire and explosion of lithium ion battery. J Power Sources 208:210–224. https://doi.org/10.1016/j.jpowsour.2012.02.038

    Article  Google Scholar 

  13. Feng X, Zheng S, Ren D, He X, Wang L, Liu X, Li M, Ouyang M (2019) Key characteristics for thermal runaway of li-ion batteries. Energy Procedia 158:4684–4689. https://doi.org/10.1016/j.egypro.2019.01.736

    Article  Google Scholar 

  14. Kitoh K, Nemoto H (1999) 100 Wh Large size Li-ion batteries and safety tests. J Power Sources 81–82:887–890. https://doi.org/10.1016/S0378-7753(99)00125-1

    Article  Google Scholar 

  15. Jhu C-Y, Wang Y-W, Shu C-M, Chang J-C, Wu H-C (2011) Thermal explosion hazards on 18650 lithium ion batteries with a VSP2 adiabatic calorimeter. J Hazard Mater 192(1):99–107. https://doi.org/10.1016/j.jhazmat.2011.04.097

    Article  Google Scholar 

  16. Sun J, Li J, Zhou T, Yang K, Wei S, Tang N, Dang N, Li H, Qiu X, Chen L (2016) Toxicity, a serious concern of thermal runaway from commercial Li-ion battery. Nano Energy 27:313–319. https://doi.org/10.1016/j.nanoen.2016.06.031

    Article  Google Scholar 

  17. Feng X, Sun J, Ouyang M, Wang F, He X, Lu L, Peng H (2015) Characterization of penetration induced thermal runaway propagation process within a large format lithium ion battery module. J Power Sources 275:261–273. https://doi.org/10.1016/j.jpowsour.2014.11.017

    Article  Google Scholar 

  18. Hatchard TD, MacNeil DD, Basu A, Dahn JR (2001) Thermal model of cylindrical and prismatic lithium-ion cells. J Electrochem Soc 148(7):A755–A761. https://doi.org/10.1149/1.1377592

    Article  Google Scholar 

  19. Coman PT, Rayman S, White RE (2016) A lumped model of venting during thermal runaway in a cylindrical lithium cobalt oxide lithium-ion cell. J Power Sources 307:56–62. https://doi.org/10.1016/j.jpowsour.2015.12.088

    Article  Google Scholar 

  20. Guo G, Long B, Cheng B, Zhou S, Xu P, Cao B (2010) Three-dimensional thermal finite element modeling of lithium-ion battery in thermal abuse application. J Power Sources 195(8):2393–2398. https://doi.org/10.1016/j.jpowsour.2009.10.090

    Article  Google Scholar 

  21. Chen M, Sun Q, Li Y, Wu K, Liu B, Peng P, Wang Q (2015) A thermal runaway simulation on a lithium titanate battery and the battery module. Energies 8(1):490–500. https://doi.org/10.3390/en8010490

    Article  Google Scholar 

  22. Peng P, Jiang F (2016) Thermal safety of lithium-ion batteries with various cathode materials: a numerical study. Int J Heat Mass Tran 103:1008–1016. https://doi.org/10.1016/j.ijheatmasstransfer.2016.07.088

    Article  Google Scholar 

  23. Feng X, He X, Ouyang M, Wang L, Lu L, Ren D, Santhanagopalan S (2018) A coupled electrochemical-thermal failure model for predicting the thermal runaway behavior of lithium-ion batteries. J Electrochem Soc 165(16):A3748–A3765. https://doi.org/10.1149/2.0311816jes

    Article  Google Scholar 

  24. Zhao R, Liu J, Gu J (2015) The effects of electrode thickness on the electrochemical and thermal characteristics of lithium ion battery. Appl Energy 139:220–229. https://doi.org/10.1016/j.apenergy.2014.11.051

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Changwei Ji.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, B., Ji, C., Wang, S. et al. A Detailed Finite Element Model of Internal Short Circuit and Venting During Thermal Runaway in a 32650 Lithium-Ion Battery. Fire Technol 56, 2525–2544 (2020). https://doi.org/10.1007/s10694-020-00978-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10694-020-00978-y

Keywords

Navigation