Skip to main content
Log in

C80 Calorimeter Studies of the Thermal Behavior of LiPF 6 Solutions

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

The thermal behavior of several LiPF6 solutions was studied using a C80 calorimeter. It was found that oxygen might react with the solvents and decrease their thermal stability. The dissolution of LiPF6 influences the thermal behavior remarkably with more heat generation and a lower onset temperature. Furthermore, the exothermic peak of LiPF6 based on an electrolyte containing diethyl carbonate (DEC) was found around 185 C, which is 9.5–13.6 C lower than that containing dimethyl carbonate (DMC), which may be due to the relative activity of C2H5— and CH3— in DEC and DMC, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Baba, S. Okada, and J. Yamaki, Thermal Stability of Li x CoO2 Cathode for Lithium Ion Battery, Solid State Ionics 148, 311–316 (2002).

    Article  CAS  Google Scholar 

  2. J. Yamaki, Y. Baba, N. Katayama, H. Takatsuji, M. Egashira, and S. Okada, Thermal Stability of Electrolytes with Li x CoO2 Cathode or Lithiated Carbon Anode, J. Power Sources 119–121, 789–793 (2003).

    Google Scholar 

  3. J. Jiang and J. R. Dahn, Effects of Particle Size and Electrolyte Salt on the Thermal Stability of Li0.5CoO2, Electrochim. Acta 49, 2661–2666 (2004).

    CAS  Google Scholar 

  4. J. Jiang and J. R. Dahn, Effects of Solvents and Salts on the Thermal Stability of LiC6, Electrochim. Acta 49, 4599–4604 (2004).

    CAS  Google Scholar 

  5. G. G. Botte, R. E. White, and Z. Zhang, Thermal Stability of LiPF6–EC:EMC Electrolyte for Lithium Ion Batteries, J. Power Sources 97–98, 570–575 (2001).

    Google Scholar 

  6. T. Kawamura, A. Kimura, M. Egashira, S. Okada, and J. Yamaki, Thermal Stability of Alkyl Carbonate Mixed-solvent Electrolytes for Lithium Ion Cells, J. Power Sourc. 104, 260–264 (2002).

    CAS  Google Scholar 

  7. J. S. Gnanaraj, E. Zinigrad, L. Asraf, H. E. Gottlieb, M. Sprecher, M. Schmidt, W. Geissler, and D. Aurbach, A Detailed Investigation of the Thermal Reactions of LiPF6 Solution in Organic Carbonates using ARC and DSC, J. Electrochem. Soc. 150, A1533–A1537 (2003).

    CAS  Google Scholar 

  8. D. D. MacNeil and J. R. Dahn, Can an Electrolyte for Lithium-ion Batteries be too Stable? J. Electrochem. Soc. 150, A21–A28 (2003).

    Article  CAS  Google Scholar 

  9. H. Maleki, G. Deng, A. Anani, and J. Howard, Thermal Stability Studies of Li-ion Cells and Components, J. Electrochem. Soc. 146, 3224–3229 (1999).

    CAS  Google Scholar 

  10. J. H. Sun, X. Li, K. Hasegawa, and G. Liao, Thermal Hazard Evaluation of Complex Reactive Substance Using Calorimeters and Dewar Vessel, J. Therm. Anal. Cal. 76, 883–893 (2004).

    Article  CAS  Google Scholar 

  11. Q. S. Wang, J. H. Sun, X. L. Yao, and C. H. Chen, 4-Isopropyl Phenyl Diphenyl Phosphate as Flame-retardant Additive for Lithium-ion Battery Electrolyte, Electrochem. Solid-State Lett. 8, A467–A470 (2005).

    CAS  Google Scholar 

  12. J. H. Sun, Y. F. Li, and K. Hasegawa, A Study of Self-accelerating Decomposition Temperature (SADT) Using Reaction Calorimetry, J. Loss Prevent. Process Ind. 14, 331–336 (2001).

    Google Scholar 

  13. B. Ravdel, K. M. Abraham, R. Gitzendanner, J. DiCarlo, B. Lucht, and C. Campion, Thermal Stability of Lithium-ion Battery Electrolytes, J. Power Sources 119–121, 805–810 (2003).

    Google Scholar 

  14. K. Tasaki, K. Kanda, S. Nakamura, and M. Ue, Decomposition of LiPF6 and Stability of PF5 in Li-ion Battery Electrolytes, J. Electrochem. Soc. 150, A1628–A1636 (2003).

    Article  CAS  Google Scholar 

  15. Q. S. Wang, J. H. Sun, X. L. Yao, and C. H. Chen, Thermal Stability of LiPF6/EC + DEC Electrolyte with Charged Electrodes for Lithium Ion Batteries, Thermochim. Acta 437(1C2), 12 C16 (2005).

    Google Scholar 

  16. S. E. Sloop, J. B. Kerr, and K. Kinoshita, The Role of Li-ion Battery Electrolyte Reactivity in Performance Decline and Self-discharge, J. Power Sources 119–121, 330–337 (2003).

    Google Scholar 

  17. J. S. Gnanaraj, E. Zinigrad, L. Asraf, H. E. Gottlieb, M. Sprecher, D. Aurbach, and M. Schmidt, The use of accelerating rate calorimetry (ARC) for the study of the thermal reactions of Li-ion battery electrolyte solutions, J. Power Sources 119–121, 794–798 (2003).

    Google Scholar 

  18. P. Tundo, New Developments in Dimethyl Carbonate Chemistry, Pure Appl. Chem. 73, 1117–1124, (2001).

    CAS  Google Scholar 

  19. D. Aurbach, A. Zaban, Y. Ein-Eli, I. Weissman, O. Chusid, B. Markovsky, M. Levi, E. Levi, A. Schechter, and E. Granot, Recent Studies on the Correlation Between Surface Chemistry, Morphology, Three-dimensional Structures and Performance of Li and Li-C Intercalation Anodes in Several Important Electrolyte Systems, J. Power Sources 68(1), 91–98 (1997).

    CAS  Google Scholar 

  20. Y. Ono, Dimethyl Carbonate for Environmentally Benign Reactions, Pure Appl. Chem. 68, 367–375 (1996).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinhua Sun.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Q., Sun, J., Yao, X. et al. C80 Calorimeter Studies of the Thermal Behavior of LiPF 6 Solutions. J Solution Chem 35, 179–189 (2006). https://doi.org/10.1007/s10953-006-9377-6

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-006-9377-6

Key Words

Navigation