Skip to main content

Advertisement

Log in

Assessing soil erosion hazard in a key badland area of Central Italy

  • Original Paper
  • Published:
Natural Hazards Aims and scope Submit manuscript

Abstract

In this work, an integrated methodology was applied to assess the water erosion hazard in Upper Orcia Valley, an area of Southern Tuscany (Italy), greatly affected by severe denudation processes, that caused the development of widespread badlands. Prediction of areas prone to calanchi badland development was carried out by applying a susceptibility assessment method based on conditional statistical analysis, preceded by a bivariate statistical analysis aimed at selecting the most influential causal factors of erosion. Water erosion rates at badland sites were estimated by means of an empirical statistical method, implemented to evaluate the erosion intensity (Tu denudation index) and based on some geomorphic parameters as independent variables. This methodology allows associating the denudation intensity to the spatial prediction. The validation procedure, based on a random partition of calanchi badland areas, confirmed the efficiency of the spatial zonation of the erosion hazard values. Moreover, the comparison of the estimated erosion rates with the results of decadal investigations on denudation processes affecting the study area, performed by different monitoring methods, showed the effectiveness of the estimation model. These results allowed concluding that the proposed procedure represents a useful tool to be applicable for soil protection strategy planning in land management of Mediterranean areas characterized by similar morphoclimatic features, even when direct erosion rate measures are not available.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Acocella V, Rossetti F (2002) The role of extensional tectonics at different crustal levels on granite ascent and emplacement: an example from Tuscany (Italy). Tectonophysics 354:71–83

    Article  Google Scholar 

  • Akgün A, Türk N (2011) Mapping erosion susceptibility by a multivariate statistical method: a case study from the Ayvalık region, NW Turkey. Comput Geosci 37:1515–1524

    Article  Google Scholar 

  • Alexander DE (1980) I calanchi, accelerated erosion in Italy. Geography 65(2):95–100

    Google Scholar 

  • Aucelli PPC, Baldassarre MA, Conforti M, Della Seta M, Rosskopf CM, Scarciglia F, Vergari F (2010) Assessment of present morphodynamics and related erosion rates by means of direct erosion monitoring and digital photogrammetric analysis: the case study of the Upper Orcia Valley (Tuscany, Italy). In: Proceedings of the 1st Italian-Russian workshop on water erosion “slope processes and matter movement” Moscow 2010, Faculty of Geography of the MSU

  • Aucelli PPC, Conforti M, Della Seta M, Del Monte M, D’Uva L, Rosskopf CM, Vergari F (2012) Quantitative assessment of soil erosion rates: results from direct monitoring and digital photogrammetric analysis on the Landola catchment in the Upper Orcia Valley (Tuscany, Italy). Rend Online Soc Geol Ital 21:1199–1201

    Google Scholar 

  • Aucelli PPC, Conforti M, Della Seta M, Del Monte M, D’uva L, Rosskopf CM, Vergari F (2014) Multi-temporal digital photogrammetric analysis for quantitative assessment of soil erosion rates in the Landola catchment of the Upper Orcia Valley (Tuscany. Land Dev Degrad, Italy). doi:10.1002/ldr.2324

    Google Scholar 

  • Bagnold RA (1966) An approach to the sediment transport problem from general physics. Geological Survey professional paper 422 I. US Geological Survey, U. S. Government Printing Office

  • Baldi P, Bellani S, Ceccarelli A, Fiordalisi A, Squarci P, Taffi L (1994) Correlazioni tra le anomalie termiche ed altri elementi geofisici e strutturali della Toscana meridionale. Stud Geol Camerti 1:139–149

    Google Scholar 

  • Bonham-Carter GF, Agterberg FP, Wright DF (1989) Weights of evidence modelling: a new approach to mapping mineral potential. In: Agterberg FP, Bonham-Carter GF (eds) Statistical applications in the earth sciences, Geological Survey of Canada, pp 171–183

  • Bou Kheir R, Wilson J, Deng Y (2007) Use of terrain variables for mapping gully erosion susceptibility in Lebanon. Earth Surf Process Landf 32:1770–1782

    Article  Google Scholar 

  • Brochot S (1993) Erosion des badlands dans le systeme Durance-Etang de Berre. Introduction Générale—Apercu. CEMAGREF—Groupement de Grenoble, Division Protection Contre les Erosions

  • Bryan R, Yair A (1982) Perspectives on studies of badland geomorphology. In: Bryan R, Yair A (eds) Badland geomorphology and piping. Geobooks, Norwich, pp 1–12

    Google Scholar 

  • Bufalo M, Nahon D (1992) Erosional processes of Mediterranean badlands: a new erosivity index for predicting sediment yield from gully erosion. Geoderma 52:133–147

    Article  Google Scholar 

  • Busoni E, Salvador Sanchis P, Calzolari C, Romagnoli A (1995) Mass movement and erosion hazard patterns by multivariate analysis of landscape integrated data: the Upper Orcia River Valley (Siena, Italy) case. Catena 25:169–185

    Article  Google Scholar 

  • Calzolari C, Ungaro F (1998) Geomorphic features of a badland (biancane) area (Central Italy): characterization, distribution and quantitative spatial analysis. Catena 31:237–256

    Article  Google Scholar 

  • Calzolari C, Torri D, Del Sette M, Maccherini S, Bryan R (1997) Evoluzione dei suoli e processi di erosione su biancane: il caso delle biancane de La Foce_Val d’Orcia, Siena. Boll Soc Ital Sci Suolo Nuova Ser 8:185–203

    Google Scholar 

  • Cantón Y (1999) Efectos hydrológicos y geomorfológicos de la cubierta y propiedades del suelo en paisaje de cárcavas. Unpublished PhD thesis, Universidad de Almeria, Spain

  • Carmignani L, Decandia FA, Fantozzi PL, Lazzarotto A, Liotta D, Meccheri M (1994) Tertiary extensional tectonics in Tuscany (northern Apennines, Italy). Tectonophysics 238:295–315

    Article  Google Scholar 

  • Carrara A, Cardinali M, Guzzetti F, Reichenbach P (1995) GIS technology in mapping landslide hazard. In: Carrara A, Guzzetti F (eds) Geographical information systems in assessing natural hazards. Kluwer, Dordrecht, pp 135–176

    Chapter  Google Scholar 

  • Cerdan O, Govers G, Le Bissonnais Y, Van Oost K, Poesen J, Saby N, Gobin A, Vacca A, Quinton J, Auerswald K, Klik A, Kwaad FJPM, Raclot D, Ionita I, Rejman J, Rousseva S, Muxart T, Roxo MJ, Dostal T (2010) Rates and spatial variations of soil erosion in Europe: a study based on erosion plot data. Geomorphology 122(1–2):167–177

    Article  Google Scholar 

  • Chaplot V, Coadou le Brozec E, Silvera N, Valentin C (2005) Spatial and temporal assessment of linear erosion in catchments under sloping lands of northern Laos. Catena 63:167–184

    Article  Google Scholar 

  • Chung CJF, Fabbri AG (1999) Probabilistic prediction models for landslide hazard mapping. Photogramm Eng Remote Sens 65(12):1389–1399

    Google Scholar 

  • Chung CJF, Fabbri AG (2003) Validation of spatial prediction models for landslide hazard mapping. Nat Hazards 30(3):451–472. doi:10.1023/B:NHAZ.0000007172.62651.2b

    Article  Google Scholar 

  • Ciccacci S, Fredi P, Lupia Palmieri E, Pugliese F (1981) Contributo della analisi geomorfica quantitativa alla valutazione dell’entità dell’erosione nei bacini fluviali. Boll Soc Geol Ital 99:455–516

    Google Scholar 

  • Ciccacci S, Fredi P, Lupia Palmieri E, Pugliese F (1986) Indirect evaluation of erosion entity in drainage basins through geomorphic, climatic and hydrological parameters. In: Gardiner V (ed) International geomorphology. Part II. Wiley, Chichester, pp 33–48

    Google Scholar 

  • Ciccacci S, Del Monte M, Marini R (2003) Denudational processes and recent morphological change in a sample area of the Orcia River Upper Basin (Southern Tuscany). Geogr Fis Din Quat 26:97–109

    Google Scholar 

  • Ciccacci S, Galiano M, Roma MA, Salvatore MC (2008) Morphological analysis and erosion rate evaluation in badlands of Radicofani area (Southern Tuscany—Italy). Catena 74:87–97

    Article  Google Scholar 

  • Ciccacci S, Galiano M, Roma MA, Salvatore MC (2009) Morphodynamics and morphological changes of the last 50 years in a badland sample area of Southern Tuscany (Italy). Z Geomorphol N F 53(3):273–297

    Article  Google Scholar 

  • Clerici A, Perego S, Tellini C, Vescovi P (2006) A GIS-based automated procedure for landslide susceptibility mapping by the conditional analysis method: the Baganza valley case study (Italian Northern Apennines). Environ Geol 50:941–961

    Article  Google Scholar 

  • Clerici A, Perego S, Tellini C, Vescovi P (2010) Landslide failure and runout susceptibility in the upper T. Ceno valley (Northern Apennines, Italy). Nat Hazards 52(1):1–29. doi:10.1007/s11069-009-9349-4

    Article  Google Scholar 

  • Colica A, Guasparri G (1990) Sistemi di fatturazione nelle argille plioceniche del territorio senese. Implicazioni geomorfologiche. Atti dell’Accademia dei Fisiocritici in Siena 9:29–36

    Google Scholar 

  • Conforti M, Aucelli PPC, Robustelli G, Scarciglia F (2011) Geomorphology and GIS analysis for mapping gully erosion susceptibility in the Turbolo stream catchment (Northern Calabria, Italy). Nat Hazards 56:881–898

    Article  Google Scholar 

  • Conoscenti C, Di Maggio C, Rotigliano E (2008a) Soil erosion susceptibility assessment and validation using a geostatistical multivariate approach: a test in Southern Sicily. Nat Hazards 46:287–305

    Article  Google Scholar 

  • Conoscenti C, Di Maggio C, Rotigliano E (2008b) GIS analysis to assess landslide susceptibility in a fluvial basin of NW Sicily (Italy). Geomorphology 94(3–4):325–339. doi:10.1016/j.geomorph.2006.10.039

    Article  Google Scholar 

  • Conoscenti C, Agnesi V, Angileri S, Cappadonia C, Rotigliano E, Märker M (2013) A GIS-based approach for gully erosion susceptibility modelling: a test in Sicily. Environ Earth Sci, Italy. doi:10.1007/s12665-012-2205-y

    Google Scholar 

  • Conoscenti C, Angileri S, Cappadonia C, Rotigliano E, Agnesi V, Märker M (2014) Gully erosion susceptibility assessment by means of GIS-based logistic regression: a case of Sicily (Italy). Geomorphology 204(2014):399–411. doi:10.1016/j.geomorph.2013.08.021

    Article  Google Scholar 

  • Cooke RU, Doornkamp JC (1974) Geomorphology in environmental management. Clarendon Press, Oxford, p 413

    Google Scholar 

  • De Alba S, Borselli L, Torri D, Pellegrini S, Bazzoffi P (2006) Assessment of tillage erosion by mouldboard plough in Tuscany (Italy). Soil Tillage Res 85:123–142

    Article  Google Scholar 

  • de Vente J, Poesen J, Bazzoffi P, Van Rompaey A, Verstraeten G (2006) Predicting catchment sediment yield in Mediterranean environments: the importance of sediment sources and connectivity in Italian drainage basins. Earth Surf Process Landf 31(8):1017–1034

    Article  Google Scholar 

  • Del Monte M (2003) Caratteristiche morfometriche e morfodinamiche dell’alto bacino del Fiume Orcia (Toscana meridionale). Atti XXVIII Cong Geogr Ital, Roma, pp 1933–1975

    Google Scholar 

  • Del Monte M, Fredi P, Lupia Palmieri E, Marini R (2002) Contribution of quantitative geomorphic analysis to the evaluation of geomorphological hazards. In: Allison R (ed) Applied Geomorphology: theory and practice. Wiley, Chichester, pp 335–358

    Google Scholar 

  • Della Seta M, Del Monte M, Fredi P, Lupia Palmieri E (2004) Quantitative morphotectonic analysis as a tool for detecting deformation patterns in soft rock terrains: a case study from the southern Marches, Italy. Géomorphologie 4:267–284

    Article  Google Scholar 

  • Della Seta M, Del Monte M, Pascoli A (2005) Quantitative geomorphic analysis to evaluate flood hazards. Geogr Fis Din Quat 28(1):117–124

    Google Scholar 

  • Della Seta M, Del Monte M, Fredi P, Lupia Palmieri E (2007) Direct and indirect evaluation of denudation rates in Central Italy. Catena 71:21–30

    Article  Google Scholar 

  • Della Seta M, Del Monte M, Fredi P, Lupia Palmieri E (2009) Space–time variability of denudation rates at the catchment and hillslope scales on the Tyrrhenian side of Central Italy. Geomorphology 107:161–177

    Article  Google Scholar 

  • Desmet PJJ, Poesen J, Govers G, Vandaele K (1999) Importance of slope gradient and contributing area for optimal prediction of the initiation and trajectory of ephemeral gullies. Catena 37:377–392

    Article  Google Scholar 

  • EEA (2007) CLC2006 technical guidelines. EEA Technical report no. 17/2007

  • Fairbridge RW (1968) Encyclopedia of geomorphology. Reinhold Book, New York

    Google Scholar 

  • Farabollini P, Gentili B, Pambianchi G (1992) Contributo allo studio dei calanchi: due aree campione nelle Marche. Stud Geol Camerti 12:105–115

    Google Scholar 

  • Florinsky IV (2012) Digital terrain analysis in soil science and geology. Elsevier/Academic Press, Amsterdam. ISBN:978-0-12-385036-2

  • Gallart F, Solé A, Puigdefàbregas J, Lázaro R (2002) Badland systems in the Mediterranean. In: Bull LJ, Kirkby MJ (eds) Dryland rivers: hydrology and geomorphology of semi-arid channels. Wiley, London, pp 299–326

    Google Scholar 

  • García-Ruíz JM, López-Bermudez F (2009) Un caso especial: badlands y sufosión. In: Sociedad Española de Geomorfología (ed) Erosión del suelo en España, Zaragoza SEG 239–72

  • García-Ruíz JM, Beguería S, Nadal-Romero E, González-Hidalgo JC, Lana-Renault N, Sanjuán Y (2015) A meta-analysis of soil erosion rates across the world. Geomorphology 239:160–173

    Article  Google Scholar 

  • Gini C (1914) Sulla misura della concentrazione e della variabilità dei caratteri. Atti del Regio Istituto Veneto di Scienze, Lettere e Arti, LXXIII(parte II), pp 1203–1248

  • Gómez Gutiérrez Á, Schnabel S, Felicísimo ÁM (2009a) Modelling the occurrence of gullies in rangelands of southwest Spain. Earth Surf Process Landf 34:1894–1902

    Article  Google Scholar 

  • Gómez Gutiérrez Á, Schnabel SJ, Contador FL (2009b) Using and comparing two nonparametric methods (CART and MARS) to model the potential distribution of gullies. Ecol Model 220:3630–3637

    Article  Google Scholar 

  • Grimm M, Jones RJA, Montanarella L (2003) Soil erosion risk in Europe. European Soil Bureau Institute for Environment & Sustainability JRC Ispra, Ispra

    Google Scholar 

  • Irigaray Fernàndez C, Fernández Del Castillo T, El Hamdouni R, Chacón Montero J (1999) Verification of landslide susceptibility mapping: a case study. Earth Surf Proc Landf 24:537–544

    Article  Google Scholar 

  • Jenks GF (1967) The data model concept in statistical mapping. Int Yearbook Carthogr 7:186–190

    Google Scholar 

  • Kakembo V, Xanga WW, Rowntree K (2009) Topographic thresholds in gully development on the hillslopes of communal areas in Ngqushwa Local Municipality, Eastern Cape, South Africa. Geomorphology 110:188–194

    Article  Google Scholar 

  • Kirkby MJ, Atkinson K, Lockwood J (1990) Aspect, vegetation cover and erosion on semi-arid hillslopes. In: Thornes J (ed) Vegetation and erosion. Wiley, Chichester, pp 25–39

    Google Scholar 

  • Liotta D (1996) Analisi del settore centromeridionale del bacino pliocenico di Radicofani (Toscana meridionale). Boll Soc Geol Ital 115:115–143

    Google Scholar 

  • Lorenz MO (1905) Methods of measuring the concentration of wealth. Publ Am Stat As 9(70):209–219

    Google Scholar 

  • Lucà F, Conforti M, Robustelli G (2011) Comparison of GIS-based gullying susceptibility mapping using bivariate and multivariate statistics: Northern Calabria, South Italy. Geomorphology 134:297–308

    Article  Google Scholar 

  • Lupia Palmieri E (1983) Il problema della valutazione dell’entità dell’erosione nei bacini fluviali. In: Atti del XXIII Congresso Geografico Italiano II, pp 143–176

  • Lupia Palmieri E, Centamore E, Ciccacci S, D’Alessandro L, Del Monte M, Fredi P, Pugliese F (2001) Geomorfologia quantitativa e morfodinamica del territorio abruzzese. III—Il bacino idrografico del Fiume Saline. Geogr Fis Dinam Quat 24(2):157–176

    Google Scholar 

  • Maerker M, Della Seta M, Vergari F, Del Monte M (2012) Process-based assessment of erosion dynamics in the Upper Orcia Valley (Southern Tuscany, Italy): a new semiquantitative integrated approach. Rend Online Soc Geol Ital 21:1208–1211

    Google Scholar 

  • Maetens W, Vanmaercke M, Poesen J, Jankauskas B, Jankauskiene G, Ionita I (2012) Effects of land use on annual runoff and soil loss in Europe and the Mediterranean: a meta-analysis of plot data. Prog Phys Geogr 36(5):599–653

    Article  Google Scholar 

  • Magliulo P (2010) Soil erosion susceptibility maps of the Janare Torrent Basin (Southern Italy). J Maps 6:435–447

    Article  Google Scholar 

  • Magliulo P (2012) Assessing the susceptibility to water-induced soil erosion using a geomorphological, bivariate statistics-based approach. Environ Earth Sci 67:1801–1820

    Article  Google Scholar 

  • Märker M, Flügel WA, Rodolfi G (1999) Das Konzept der “Erosions Response Units” (ERU) und seine Anwendung am Beispiel des semi-ariden Mkomazi-Einzugsgebietes in der Provinz Kwazulu/Natal, Südafrika. In: Tübinger Geowissenschaftliche Studien, Reihe D.: Geoökologie und Quartaerforschung. Angewandte Studien zu Massenverlagerungen, Tübingen

  • Märker M, Pelacani S, Schröder B (2011) A functional entity approach to predict soil erosion processes in a small Plio-Pleistocene Mediterranean catchment in Northern Chianti, Italy. Geomorphology 125:530–540

    Article  Google Scholar 

  • Martínez-Carreras N, Soler M, Hernández E, Gallart F (2007) Simulating badland erosion with KINEROS2 in a small Mediterranean mountain basin (Vallcebre, Eastern Pyrenees). Catena 71:145–154

    Article  Google Scholar 

  • Martínez-Casasnovas JA, Poch RM (1998) Estado de conservacion de los suelos de la cuenca del embalse Joaquın Costa. Limnetica 14:83–91

    Google Scholar 

  • Meyer A, Martínez-Casasnovas JA (1999) Prediction of existing gully erosion in vineyard parcels of the NE Spain: a logistic modelling approach. Soil Tillage Res 50:319–331

    Article  Google Scholar 

  • Montgomery DR, Dietrich WE (1992) Channel initiation and the problem of landscape scale. Science 255:826–830

    Article  Google Scholar 

  • Moore ID, Grayson RB, Ladson AR (1991) Digital terrain modeling: a review of hydrological, geomorphological, and biological applications. Hydrol Process 5:3–30

    Article  Google Scholar 

  • Moretti S, Rodolfi G (2000) A typical “calanchi” landscape on the Eastern Apennine margin (Atri, Central Italy): geomorphological features and evolution. Catena 40:217–228

    Article  Google Scholar 

  • Morgan RPC (2005) Soil erosion and conservation, 3rd edn. Blackwell, Oxford. ISBN:1-4051-1781-8

  • Nadal-Romero E, Regüés D (2010) Geomorphological dynamics of subhumid mountain badland areas—weathering, hydrological and suspended sediment transport processes: a case study in the Araguás catchment (Central Pyrenees) and implications for altered hydroclimatic regimes. Prog Phys Geogr 34(2):123–150

    Article  Google Scholar 

  • Nadal-Romero E, Latron J, Martı-Bono C, Regüés D (2008) Temporal distribution of suspended sediment transport in a humid Mediterranean badland area: the Araguás catchment, Central Pyrenees. Geomorphology 97:601–616

    Article  Google Scholar 

  • Nadal-Romero E, Martínez-Murillo JF, Vanmaercke M, Poesen J (2011) Scale dependency of sediment yield from badland areas in Mediterranean environments. Prog Phys Geogr 35(3):297–332

    Article  Google Scholar 

  • Nadal-Romero E, Petrlic K, Verachtert E, Bochet E, Poesen J (2014) Effects of slope angle and aspect on plant cover and species richness in a humid Mediterranean badland. Earth Surf Proc Land 39(13):1705–1716

    Article  Google Scholar 

  • Nazari Samani A, Ahmadi H, Jafari M, Boggs G, Ghoddousi J, Malekian A (2009) Geomorphic threshold conditions for gully erosion in Southwestern Iran (Boushehr–Samal watershed). J Asian Earth Sci 35:180–189

    Article  Google Scholar 

  • Nefeslioglu HA, Duman TY, Durmaz S (2008) Landslide susceptibility mapping for a part of tectonic Kelkit Valley (Eastern Black Sea region of Turkey). Geomorphology 94:401–418. doi:10.1016/j.geomorph.2006.10.036

    Article  Google Scholar 

  • Nogueras P, Burjachs F, Gallart F, Puigdefabregas J (2000) Recent gully erosion in the El Cautivo badlands (Tabernas, SE Spain). Catena 40:203–215

    Article  Google Scholar 

  • Piccarreta M, Capolongo D, Miccoli MN, Bentivenga M (2012) Global change and long-term gully sediment production dynamics in Basilicata, southern Italy 01/2012. Environ Earth Sci 67:1619–1630

    Article  Google Scholar 

  • Regüés D, Balasch JC, Castelltort X, Soler M, Gallart F (2000a) Relaciòn entre las tendencias temporales de producciòn y transporte de sedimentos y las condiciones climàticas en una pequen˜a cuenca de montana mediterrànea (Vallcebre, Pirineos orientales). Cuad Investig Geogr 2:41–65

    Article  Google Scholar 

  • Regüés D, Guàrdia R, Gallart F (2000b) Geomorphic agents versus vegetation spreading as causes of badland occurrence in a Mediterranean subhumid mountainous area. Catena 40:173–187

    Article  Google Scholar 

  • Remondo J, Gonzáles A, Díaz de Terán JR, Cendrero A, Fabbri A, Chung CJF (2003) Validation of landslide susceptibility maps. Examples and applications from a case study in Northern Spain. Nat Hazards 30(3):437–449. doi:10.1023/B:NHAZ.0000007201.80743.fc

    Article  Google Scholar 

  • Richard D, Mathys S (1999) Historique, contexte technique et scientifique des BVRE de Draix. Caractéristiques, données disponibles et principaux résultats acquis au cours de dix ans de suivi. In: Mathys N (ed) Les bassins versants expérimentaux de Draix, Laboratoire d’étude de l’érosion en montagne, Cemagref Antony, pp 11–28

  • Rodolfi G, Frascati F (1979) Cartografia di base per la programmazione degli interventi in aree marginali (Area rappresentativa Alta Val D’Era). Annali lst. sper. Studio e Difesa Suolo, vol 10

  • Sirvent J, Desir G, Gutiérrez M, Sancho C, Benito G (1997) Erosion rates in badlands areas recorded by collectors, erosion pins and profilometer techniques (Ebro Basin, NE-Spain). Geomorphology 18:61–75

    Article  Google Scholar 

  • Solé A, Calvo A, Cerdà A, Làzaro R, Pini R, Barbero J (1997) Influence of micro-relief patterns and plant cover on runoff related processes in badlands from Tabernas (SE Spain). Catena 31:23–38

    Article  Google Scholar 

  • Svoray T, Michailov E, Cohen A, Rokah L, Sturm A (2012) Predicting gully initiation: comparing data mining techniques, analytical hierarchy processes and the topographic threshold. Earth Surf Process Landf 37:607–619

    Article  Google Scholar 

  • Torri D, Bryan RB (1997) Micropiping processes and biancane evolution in Southeast Tuscany, Italy. Geomorphology 20:219–235

    Article  Google Scholar 

  • Torri D, Poesen J (2014) A review of topographic threshold conditions for gully head development in different environments. Earth Sci Rev 130:73–85

    Article  Google Scholar 

  • Torri D, Colica A, Rockwell D (1994) Preliminary study of the erosion mechanisms in a biancana badland (Tuscany, Italy). Catena 23:281–294

    Article  Google Scholar 

  • Torri D, Calzolari C, Rodolfi G (2000) Badlands in changing environments: an introduction. Catena 40:119–125

    Article  Google Scholar 

  • Torri D, Borselli L, Calzolari C, Yañez MS, Salvador Sanchis MP (2002) Soil erosion, land use, soil qualities and soil functions: effects of erosion. In Rubio JL, Morgan RPC, Asins S, Andreu V (eds) Proceedings of the third International Congress Man and Soil at the Third Millennium, 2002, Geoforma Ediciones

  • Torri D, Santi E, Marignani M, Rossi M, Borselli L, Maccherini S (2013) The recurring cycles of biancana badlands: erosion, vegetation and human impact. Catena 106:22–30

    Article  Google Scholar 

  • Van Rompaey A, Bazzoffi P, Jones RJA, Montanarella L (2005) Modeling sediment yields in Italian catchments. Geomorphology 65(1–2):157–169

    Article  Google Scholar 

  • Vergari F, Della Seta M, Del Monte M, Fredi P, Lupia Palmieri E (2011) Landslide susceptibility assessment in the Upper Orcia Valley (Southern Tuscany, Italy) through conditional analysis: a contribution to the unbiased selection of causal factors. Nat Hazards Earth Syst Sci 11:1475–1497

    Article  Google Scholar 

  • Vergari F, Della Seta M, Del Monte M, Barbieri M (2013a) Badlands denudation “hot spots”: the role of parent material properties on geomorphic processes in 20-years monitored sites of Southern Tuscany (Italy). Catena 106:31–41

    Article  Google Scholar 

  • Vergari F, Della Seta M, Del Monte M, Fredi P, Lupia Palmieri E (2013b) Long- and short-term evolution of several Mediterranean denudation hot spots: the role of rainfall variations and human impact. Geomorphology 183:14–27

    Article  Google Scholar 

  • Vergari F, Della Seta M, Del Monte M, Pieri L, Ventura F (2014) Integrated approach to the evaluation of denudation rates in an experimental catchment of the Northern Italian Apennines. In: Lollino G, Manconi A, Clague J, Shan W, Chiarle M (eds) Engineering geology for society and territory. Volume 1: Climate change and engineering geology. Springer, Berlin, pp 533–537

    Google Scholar 

  • Wilson JP, Gallant JC (2000) Terrain analysis: principles and applications. Wiley, Canada

    Google Scholar 

  • Yair A, Lavee H (1985) Runoff generation in arid and semiarid zones. In: Anderson MG, Burt TP (eds) Hydrological forecasting. Wiley, Chichester, pp 183–220

    Google Scholar 

  • Yang CT, Stall JB (1974) Unit stream power for sediment transport in natural rivers. WRC research report no. 88

  • Zachar D (1982) Soil erosion. Elsevier, Amsterdam

    Google Scholar 

  • Zêzere JL, Trigo RM, Trigo IF (2004) Shallow and deep landslides induced by rainfall in the Lisbon region (Portugal): assessment of relationships with the North Atlantic Oscillation Source. Nat Hazards Earth Syst 5(3):331–344

    Article  Google Scholar 

Download references

Acknowledgments

The author is grateful to Prof. Ion Ionita, one of the Guest Editors, to Dr. Dino Torri and to the other two anonymous reviewers for their precious comments and suggestions that greatly improved the manuscript. The research was funded by the Ministry of Instruction, University and Research (MIUR), PRIN Project 2010–2011 «Dinamica dei sistemi morfoclimatici in risposta ai cambiamenti globali e rischi geomorfologici indotti» (National coordinator C. Baroni, Research Unit coordinator M. Del Monte).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesca Vergari.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vergari, F. Assessing soil erosion hazard in a key badland area of Central Italy. Nat Hazards 79 (Suppl 1), 71–95 (2015). https://doi.org/10.1007/s11069-015-1976-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11069-015-1976-3

Keywords

Navigation