Skip to main content
Log in

A GIS-based automated procedure for landslide susceptibility mapping by the Conditional Analysis method: the Baganza valley case study (Italian Northern Apennines)

  • Original Article
  • Published:
Environmental Geology

Abstract

Among the many GIS based multivariate statistical methods for landslide susceptibility zonation, the so called “Conditional Analysis method” holds a special place for its conceptual simplicity. In fact, in this method landslide susceptibility is simply expressed as landslide density in correspondence with different combinations of instability-factor classes. To overcome the operational complexity connected to the long, tedious and error prone sequence of commands required by the procedure, a shell script mainly based on the GRASS GIS was created. The script, starting from a landslide inventory map and a number of factor maps, automatically carries out the whole procedure resulting in the construction of a map with five landslide susceptibility classes. A validation procedure allows to assess the reliability of the resulting model, while the simple mean deviation of the density values in the factor class combinations, helps to evaluate the goodness of landslide density distribution. The procedure was applied to a relatively small basin (167 km2) in the Italian Northern Apennines considering three landslide types, namely rotational slides, flows and complex landslides, for a total of 1,137 landslides, and five factors, namely lithology, slope angle and aspect, elevation and slope/bedding relations. The analysis of the resulting 31 different models obtained combining the five factors, confirms the role of lithology, slope angle and slope/bedding relations in influencing slope stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aleotti P, Chowdhury R (1999) Landslide hazard assessment: summary review and new perspectives. Bull Eng Geol Env 58:21–44

    Article  Google Scholar 

  • Almagià R (1907) Studi geografici sulle frane in Italia. Mem Soc Geogr It 13:1–342

    Google Scholar 

  • Andreozzi M, Zanzucchi G (1999) Carta Geologica della Val Baganza. Scala 1: 50.000. STEP, Parma

  • Atkinson PM, Massari R (1998) Generalised linear modelling of susceptibility to landsliding in the central Apennines, Italy. Comput Geosci 24:373–385

    Article  Google Scholar 

  • Ayalew L, Yamagishi H (2004) Slope failure in the Blue Nile basin, as seen from landscape evolution perspective. Geomorphology 57:95–116

    Article  Google Scholar 

  • Ayalew L, Yamagishi H (2005) The application of GIS-based logistic regression for landslide susceptibility mapping in the Kakuda-Yahiko Mountains, Central Japan. Geomorphology 65:15–31

    Article  Google Scholar 

  • Ayalew L, Yamagishi H, Ugawa N (2004) Landslide susceptibility mapping using GIS-based weighted linear combination, the case in Tsugawa area of Agano River, Niigata Prefecture, Japan. Landslides 1:73–81

    Article  Google Scholar 

  • Bednárik M, Clerici A, Tellini C, Vescovi P (2005) Using GIS GRASS in evaluation of Landslide Susceptibility in Termina valley in the Northern Apennines (Italy). In: Proceedings of the 15th conference engineering geology, Erlangen, Germany, 6–9 April 2005

  • Bernini M, Vescovi P, Zanzucchi G (1997) Schema Strutturale dell’Appennino nord-occidentale. L’Ateneo Parmense-Acta Naturalia 33:43–54

    Google Scholar 

  • Bertolini G, Pellegrini M (2001) The landslides of the Emilia Apennines (northern Italy) with reference to those which resumed activity in the 1994–1999 period and required Civil Protection interventions. Quad Geol Appl 8:27–74

    Google Scholar 

  • Binaghi E, Luzi L, Madella P, Pergalani F, Rampini A (1998) Slope Instability Zonation: a comparison between Certainty Factor and Fuzzy Dempster–Shafer approaches. Nat Hazards 17:77–97

    Article  Google Scholar 

  • Boccia A (1804) Viaggio ai monti di Parma. Palatina, Parma

    Google Scholar 

  • Bonham-Carter GF (1994) Geographic information systems for geoscientists: modelling with GIS. Computer Methods in the Geosciences 13, Pergamon

  • Brabb EE (1984) Innovative approaches to landslide hazard mapping. In: Proceedings of the IV international symposium on landslides, Toronto, vol. 1, pp 307–324

  • Brabb EE, Pampeyan EH, Bonilla MG (1972) Landslide susceptibility in San Mateo County, California. Misc Field Studies Map MF360 (scale 1:52,500). U.S. Geological Survey, Reston, Va

  • Çevik E, Topal T (2003) GIS-based landslide susceptibility mapping for a problematic segment of the natural gas pipeline, Hendek (Turkey). Environ Geol 44:949–962

    Article  Google Scholar 

  • Carrara A, Cardinali M, Detti R, Guzzetti F, Pasqui V, Reichenbach P (1991) GIS techniques and statistical models in evaluating landslide hazard. Earth Surf Process Landforms 16:427–445

    Google Scholar 

  • Carrara A, Cardinali M, Guzzetti F (1992) Uncertainty in assessing landslide hazard and risk. ITC J 2:172–183

    Google Scholar 

  • Carrara A, Cardinali M, Guzzetti F, Reichenbach P (1995a) GIS technology in mapping landslide hazard. In: Carrara A,Guzzetti F (eds) Geographical information systems in assessing natural hazards. Kluwer, Dordrecht, pp 135–175

    Google Scholar 

  • Carrara A, Cardinali M, Guzzetti F, Reichenbach P (1995b) GIS-based techniques for mapping landslide hazard. (http://www.deis158.deis.unibo.it/gis/chapt0.htm)

  • Cerrina Feroni A,Vescovi P (2005) Foglio 217 “Neviano degli Arduini” della Nuova Carta Geologica d’Italia 1: 50.000. Servizio Geologico d’Italia, Roma

  • Cerrina Feroni A, Elter P, Plesi G, Rau A, Rio D, Vescovi P, Zanzucchi G (1990) Carta Geologica dell’Appennino emiliano-romagnolo 1:50.000. Foglio no 217 “Neviano degli Arduini”. Selca, Firenze

  • Chung CF, Fabbri AG (1999) Probabilistic prediction models for landslide hazard mapping. Photogrammetric Eng Remote Sensing 65:1389–1399

    Google Scholar 

  • Chung CF, Fabbri AG (2003) Validation of spatial prediction models for landslide hazard mapping. Nat Hazards 30:451–472

    Article  Google Scholar 

  • Chung CF, Fabbri AG, van Westen CJ (1995) Multivariate regression analysis for landslide hazard zonation. In: Carrara A, Guzzetti F (eds) Geographical information systems in assessing natural hazards. Kluwer, Dordrecht, pp 107–133

    Google Scholar 

  • Chung CF, Kojma H, Fabbri AG (2002) Stability analysis of prediction models for landslide hazard mapping. In: Allison RJ (ed) Applied geomorphology: theory and practice, pp 3–19

  • Clerici A (2002) A GRASS GIS based shell script for landslide susceptibility zonation. In: Proceedings of the open source free software GIS-GRASS users conference. Trento, Italy 11–13 September 2002 (http://www.ing.unitn.it/∼grass/conferences/GRASS2002/proceedings/proceedings/pdfs/Clerici_Aldo.pdf).

  • Clerici A, Cuccuru G, Trambaglio L, Lina F (1993) La realizzazione di una carta della stabilità dei versanti mediante l’uso di un Sistema d’Informazione Geografica. Geologia Tecnica Ambientale 4/93:25–40

    Google Scholar 

  • Clerici A, Perego S, Tellini C, Vescovi P (2002) A procedure for landslide susceptibility zonation by the conditional analysis method. Geomorphology 48:349–364

    Article  Google Scholar 

  • Cooper M (2005) Advanced bash-scripting guide. An in-depth exploration of the art of shell scripting (Revision 3.6) (http://www.en.tldp.org/LDP/abs/html/)

  • Cruden DM, Hu XQ (1996) Hazardous modes of rock slope movement in the Canadian Rockies. Environ Eng Geosci 2:507–516

    Google Scholar 

  • Cruden DM, Varnes DJ (1996) Landslide types and processes. In: Turner AK, Schuster RL (eds) Landslides: investigation and mitigation. Transportation research board special report 247, pp 36–75

  • Dai FC, Lee CF (2002) Landslide characteristics and slope instability modeling using GIS, Lantau Island, Hong Kong. Geomorphology 42:213–228

    Article  Google Scholar 

  • Dai FC, Lee CF (2003) A spatiotemporal probabilistic modeling of storm-induced shallow landsliding using aerial photographs and logistic regression. Earth Surf Process Landforms 28:527–545

    Article  Google Scholar 

  • Dai FC, Lee CF, Ngai YY (2002) Landslide risk assessment and menagement: an overview. Eng Geol 64:65–87

    Article  Google Scholar 

  • Dall’Olio E (1975) Itinerari turistici della Provincia di Parma. Artegrafica Silva, Parma

    Google Scholar 

  • D’Amato Avanzi G, Giannecchini R, Puccinelli A (2004) The influence of the geological and geomorphological settings on shallow landslides. An example in a temperate climate environment: the June 19, 1996 event in northwestern Tuscany (Italy). Eng Geol 73:215–228

    Article  Google Scholar 

  • Di Dio G, Lasagna S, Preti D, Sagne M (1997) Carta Geologica dei depositi quaternari della Provincia di Parma. Il Quaternario 10:445–452

    Google Scholar 

  • Donati L, Turrini MC (2002) An objective method to rank the importance of the factors predisposing to landslides with the GIS methodology: application to an area of the Apennines (Valnerina; Perugia, Italy). Eng Geol 63:277–289

    Article  Google Scholar 

  • Elter P, Grasso M, Parotto M, Vezzani L (2003) Structural setting of the Apennine-Maghrebian thrust belt. Episodes 26:205–211

    Google Scholar 

  • Ercanoglu M, Gokceoglu C (2004) Use of fuzzy relations to produce landslide susceptibility map of a landslide prone area (West Black Sea Region, Turkey). Eng Geol 75:229–250

    Article  Google Scholar 

  • Ermini L, Catani F, Casagli N (2005) Artificial Neural Network applied to landslide susceptibility assessment. Geomorphology 66:327–343

    Article  Google Scholar 

  • Fernandes NF, Guimarães RF, Gomes RAT, Vieira BC, Montgomery DR, Greenberg H (2004) Topographic controls of landslides in Rio de Janeiro: field evidence and modelling. Catena 55:163–181

    Article  Google Scholar 

  • Fernandez T, Irigaray C, El Hamdouni R, Chacón J (2003) Methodology for Landslide Susceptibility Mapping by means of a GIS. Application to the Contraviesa Area (Granada, Spain). Nat Hazards 30:297–308

    Article  Google Scholar 

  • Free software foundation (2002) Bash reference manual (Edition 2.5b) (http://www.gnu.org/software/bash/manual/bashref.html)

  • Free Software Foundation (2003) The GNU Awk User’s Guide (Edition 3)(http://www.gnu.org/software/gawk/manual/gawk.html)

  • GRASS Development Team (1999) GRASS: geographic resources analysis support system (http://www.grass.itc.it)

  • Guzzetti F, Carrara A, Cardinali M, Reichenbach P (1999) Landslide hazard evaluation: a review of current techniques and their application in a multi-scale study, Central Italy. Geomorphology 31:181–216

    Article  Google Scholar 

  • Jakob M (2000) The impacts of logging on landslide activity at Clayoquot Sound, British Columbia. Catena 38:279–300

    Article  Google Scholar 

  • Ko Ko C, Flentje P, Chowdhury R (2004) Landslides qualitative hazard and risk assessment method and its reliability. Bull Eng Geol Env 63:149–165

    Article  Google Scholar 

  • Lan HX, Zhou CH, Wang LJ, Zhang HY, Li RH (2004) Landslide hazard spatial analysis and prediction using GIS in the Xiaojiang watershed, Yunnan, China. Eng Geol 76:109–128

    Article  Google Scholar 

  • Larsen MC, Torres-Sánchez AJ (1998) The frequency and distribution of recent landslides in three montane tropical regions of Puerto Rico. Geomorphology 24:309–331

    Article  Google Scholar 

  • Lee S (2004) Application of likelihood ratio and logistic regression models to landslide susceptibility mapping using GIS. Environ Manage 34:223–232

    Article  PubMed  Google Scholar 

  • Lee S, Choi J (2004) Landslide susceptibility mapping using GIS and the weight-of-evidence model. Int J Geogr Inf Sci 18:789–814

    Article  Google Scholar 

  • Lee S, Chwae U, Min K (2002) Landslide susceptibility mapping by correlation between topography and geological structure: the Janghung area, Korea. Geomorphology 46:149–162

    Article  Google Scholar 

  • Lee S, Choi J, Woo I (2004) The effect of spatial resolution on the accuracy of landslide susceptibility mapping: a case study in Boun, Korea. Geosci J 8:51–60

    Article  Google Scholar 

  • Lin ML, Tung CC (2003) A GIS-based potential analysis of the landslides induced by the Chi-Chi earthquake. Eng Geol 71:63–77

    Article  Google Scholar 

  • Lineback Gritzner M, Marcus WA, Aspinall R, Custer SG (2001) Assessing landslide potential using GIS, soil wetness modeling and topographic attributes, Payette River, Idaho. Geomorphology 37:149–165

    Article  Google Scholar 

  • Lopez HJ, Zink JA (1991) GIS-assisted modelling of soil-induced mass movement hazards: a case study of the upper Coello river basin, Tolima, Colombia. ITC J 4:202–220

    Google Scholar 

  • Luzi L, Pergalani F (1999) Slope instability in static and dynamic conditions for urban planning: the ‘Oltre Po Pavese’ case history (Regione Lombardia-Italy). Nat Hazards 20:57–82

    Article  Google Scholar 

  • Menéndez Duarte R, Marqínez J (2002) The influence of environmental and lithologic factors on rockfall at a regional scale: evaluation using GIS. Geomorphology 43:117–136

    Article  Google Scholar 

  • Moreiras SM (2005) Landslide susceptibility zonation in the Rio Mendoza Valley, Argentina. Geomorphology 66:345–357

    Article  Google Scholar 

  • Nagarajan R, Roy A, Vinod Kumar R, Mukherjee A, Khire MV (2000) Landslide hazard susceptibility mapping based on terrain and climatic factors for tropical monsoon regions. Bull Eng Geol Env 58:275–287

    Article  Google Scholar 

  • Neteler M, Mitasova H (2004) Open source GIS: a GRASS GIS approach, 2nd edn. Kluwer, Dordrecht

    Google Scholar 

  • Ohlmacher GC, Davis JC (2003) Using multiple logistic regression and GIS technology to predict landslide hazard in northeast Kansas, USA. Eng Geol 69:331–343

    Article  Google Scholar 

  • Perotto-Baldiviezo HL, Thurow TL, Smith CT, Fisher RF, Wu XB (2004) GIS-based spatial analysis and modeling for landslide hazard assessment in steeplands, southern Honduras. Agric Ecosys Environ 103:165–176

    Article  Google Scholar 

  • Pinna M, Vittorini S (1985) Contributo alla determinazione dei regimi pluviometrici in Italia. In: Contributi di climatologia. Mem Soc Geogr It 39:147–167

  • Pizzini K (1998) sed, a stream editor (version 3.02). Free Software Foundation, Boston, MA (http://www.gnu.org/software/sed/manual/html_chapter/sed_toc.html)

  • Raghavan V, Masumoto S, Kajiyama A, Nemoto T, Fujita T (2004) Landslide hazard zonation using the GRASS GIS: a case study in the Ojiya District, Niigata Prefecture, Japan Int Symposium on Geoinformatics for Spatial Infrastructure Development in Earth and Allied Sciences. Hanoi, Vietnam, September 16–18, 2004 (http://www.gisws.media.osaka-cu.ac.jp/gisideas04/viewpaper.php?id=88)

  • Remondo J, Gonzales A, Díaz De Terán JR, Cendrero A, Fabbri A, Chung CF (2003) Validation of landslide susceptibility maps; examples and applications from a case study in Northern Spain. Nat Hazards 30:437–449

    Article  Google Scholar 

  • Santacana N, Corominas J (2002) Example of validation of landslide susceptibility maps. In: Rybář J, Stemberk J, Wagner P (eds) Landslides. Sweets& Zetlinger, Lisse, pp 305–310

    Google Scholar 

  • Santacana N, Baeza B, Corominas J, De Paz A, Marturiá J (2003) A GIS-based multivariate statistical analysis for shallow landslide susceptibility mapping in La Pobla de Lillet Area (Eastern Pyrenees, Spain). Nat Hazards 30:281–295

    Article  Google Scholar 

  • Shrestha DP, Zink JA, Van Ranst E (2004) Modelling land degradation in the Nepalese Himalaya. Catena 57:135–156

    Article  Google Scholar 

  • Soeters R, van Westen CJ (1996) Slope instability recognition, analysis, and zonation. In: Turner AK, Schuster RL (eds) Landslides: investigation and mitigation. Transportation Research Board Special Report 247, pp 129–177

  • Süzen ML, Doyuran V (2004) Data driven bivariate landslide susceptibility assessment using geographical information systems: a method and application to Asarsuyu catchment, Turkey. Eng Geol 71:303–321

    Article  Google Scholar 

  • Tangestani MH (2004) Landslide susceptibility mapping using the fuzzy gamma approach in a GIS, Kakan catchment area, southwest Iran. Aust J Earth Sci 51:439–450

    Article  Google Scholar 

  • Tellini C, Chelli A (2003) Ancient and recent landslide occurrences in the Emilia Apennines (Northern Apennines, Italy). In: Proceedings of the workshop on geomorphological sensitivity and system response, Camerino-Modena Apennines (Italy), July 4–9 2003, pp 105–114

  • Vescovi P (1998) Le Unità Subliguri dell’alta Val Parma (Provincia di Parma). Atti Tic Sc Terra 40:215–231

    Google Scholar 

  • Vescovi P (2002) Foglio 216 “Borgo Val di Taro” della Nuova Carta Geologica d’Italia 1:50.000. Servizio Geologico d’Italia, Roma

  • Vescovi P, Fornaciari E, Rio D, Valloni R (1999) The basal complex stratigraphy of the Helminthoid Monte Cassio Flysch: a key to Eoalpine tectonics of the Northern Apennines. Rivista Italiana di Paleontologia e Stratigrafia 105:101–128

    Google Scholar 

  • van Westen CJ, Rengers N, Soeters R (2003) Use of geomorphological information in indirect landslide susceptibility assessment. Nat Hazards 30:399–419

    Article  Google Scholar 

  • Zêzere JL, Ferreira AB, Rodrigues ML (1999) The role of conditioning and triggering factors in the occurrence of landslides: a case study in the area north of Lisbon (Portugal). Geomorphology 30:133–146

    Article  Google Scholar 

  • Zhou CH, Lee CF, Li J, Xu ZW (2002) On the spatial relationship between landslides and causative factors on Lantau Island, Hong Kong. Geomorphology 43:197–207

    Article  Google Scholar 

Download references

Acknowledgements

In this paper, A. Clerici was responsible for the procedure for landslide susceptibility zonation, S. Perego for geomorphological and climatic characteristics, C. Tellini for the landslide survey and mapping, P. Vescovi for the geological and lithological aspects. This study was supported partly by funds of the Parma University research project FIL 2004 “Evoluzione geomorfologica tardo-quaternaria: casi di studio nelle Alpi Marittime e nell’Appennino settentrionale” (Coordinator S. Perego), and partly by the COFIN 2002, National Research Program: “Evoluzione geomorfologia dei versanti e cambiamenti climatici: analisi di fenomeni franosi e ricostruzioni paleoclimatiche” (National coordinator M. Soldati); Local Research Program: “Cambiamenti climatici tardo-quaternari e instabilità dei versanti nell’Appennino settentrionale” (Local coordinator C. Tellini). Thanks to M. Gallarotti and A. Ruffini for help in data acquisition and editing, D. Peis for his kind assistance in solving computer problems, E. Masini for drawing some of the figures and P. Sears for valuable aid in translation. We are grateful to M. Soldati for detailed and helpful comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aldo Clerici.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Clerici, A., Perego, S., Tellini, C. et al. A GIS-based automated procedure for landslide susceptibility mapping by the Conditional Analysis method: the Baganza valley case study (Italian Northern Apennines). Environ Geol 50, 941–961 (2006). https://doi.org/10.1007/s00254-006-0264-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00254-006-0264-7

Keywords

Navigation