Skip to main content

Advertisement

Log in

Mapping risk zones of potential erosion in the upper Nazas River basin, Mexico through spatial autocorrelation techniques

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

The identification and prioritization of high erosion-prone areas represent an important challenge at national and local levels to help the policymakers to propose correct interventions in land management issues. The main objective of this work was to analyze the spatial pattern of potential erosion in the upper Nazas River basin, for the identification of critical areas of soil loss. For that, Universal Soil Loss Equation (USLE) and the combination of both global (Moran’s I index) and local (Getis-Ord Gi*) spatial autocorrelation techniques were used. The results showed that most of the surface in the basin has low levels of erosion. However, there is a significant amount of surface with high, very high, and extreme erosion levels. The Moran’s I index revealed a significant positive spatial autocorrelation with a value of 0.3948, thus indicating a spatial pattern of potentially erosive clusters. The clustering types found through the local spatial autocorrelation test were hotspots and coldspots with statistically significant values (p ≤ 0.05), which allows us to identify those areas that are more vulnerable to more soil erosion. This provides policymakers and soil researchers with information on soil erosion processes at the local level, based on a reliable assessment of vulnerability and risk levels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aguirre-Salado C, Miranda-Aragón L, Pompa-García M, Reyes-Hernández H, Soubervielle-Montalvo C, Flores-Cano J, Méndez-Cortés H (2017) Improving identification of areas for ecological restoration for conservation by integrating USLE and MCDA in a GIS-Environment: a pilot study in a priority region Northern Mexico. ISPRS Int J Geoinf. https://doi.org/10.3390/ijgi6090262

    Article  Google Scholar 

  • Alewell C, Egli M, Meusburger K (2015) An attempt to estimate tolerable soil erosion rates by matching soil formation with denudation in Alpine grasslands. J Soils Sediments 15(6):1383-e1399

    Article  Google Scholar 

  • Alewell C, Borrelli P, Meusburger K, Panagos P (2019) Using the USLE: Chances, challenges and limitations of soil erosion modelling. Int Soil Water Conserv Res 7:203–225. https://doi.org/10.1016/j.iswcr.2019.05.004

    Article  Google Scholar 

  • Amore E, Modica C, Nearing MA, Santoro VC (2004) Scale effect in USLE and WEEP application for soil erosion computation from three Sicilian basins. J Hydrol 293(1–4):100–114

    Article  Google Scholar 

  • Anselin L (1996) The Moran Scatterplot as an ESDA Tool to assess local instability in spatial association. In: Fischer M, Scholten H, Unwin D (eds) Spatial analytical perspectives on gis in environmental and socio-economic sciences, 1st edn. Taylor and Francis, pp 111–226

    Google Scholar 

  • Anselin L (2003) GeoDa 0.9 user’s guide. Spatial Analysis Laboratory, University of Illinois, Urbana-Champaign

    Google Scholar 

  • Aslam B, Naseer F (2020) A statistical analysis of the spatial existence of earthquakes in Balochistan: clusters of seismicity. Environ Earth Sci 79:41. https://doi.org/10.1007/s12665-019-8790-2

    Article  Google Scholar 

  • Asmamaw LB, Mohammed AA (2019) Identification of soil erosion hotspot areas for sustainable land management in the Gerado catchment, North-eastern Ethiopia. RSASE 13:306–317. https://doi.org/10.1016/j.rsase.2018.11.010

    Article  Google Scholar 

  • Avanzi JC, Silva MLN, Curi N, Norton LD, Beskow S, Martins SG (2013) Spatial distribution of water erosion risk in a watershed with eucalyptus and Atlantic Forest. Cienc Agrotecnol 37(5):427–434

    Article  Google Scholar 

  • Ávila-Flores DY, Pompa-García M, Vargas-Pérez E (2010) Spatial analysis of forest fire occurrence in the state of Durango. Rev Chapingo Ser Cienc Del Am 16(2):253–260

    Article  Google Scholar 

  • Bosco C, de Rigo D, Dewitte O (2014) Visual validation of the e-RUSLE model applied at the pan-European scale. Sci Top Focus. https://doi.org/10.6084/m9.figshare.844627

    Article  Google Scholar 

  • Cartus O, Kellndorfer J, Walker W, Franco C, Bishop J, Santos L, Fuentes JMM (2014) A national, detailed map of forest aboveground carbon stocks in Mexico. Remote Sens 6:5559–5588

    Article  Google Scholar 

  • Cerutti M, Rivas-Sada E (2008) La construcción de la cuenca lechera en La Laguna (1948–1975). Rev De Estud Soc 16(31):165–204

    Google Scholar 

  • Chainey S, Reid S, Stuart N (2003) When is a hotspot a hotspot? A procedure for creating statistically robust hotspot maps of crime. In: Kidner D, Higgs G, White S (eds) Socio-economic applications of geographic information science. Taylor and Francis

    Google Scholar 

  • Chuenchum P, Xu M, Tang W (2020) Estimation of soil erosion and sediment yield in the Lancang-Mekong river using the modified revised universal soil loss equation and GIS techniques. Water. https://doi.org/10.3390/w12010135

    Article  Google Scholar 

  • Comisión Nacional Forestal (CONAFOR) (2011) Recuperación de áreas degradadas por disturbios y/o perturbaciones antropogénicas. Términos de referencia Programa de Desarrollo Sustentable para las Comunidades Rurales e Indígenas del Noroeste Semiárido. http://www.conafor.gob.mx:8080/documentos/docs/1/2769Seminarios%20de%20Comunidad%20a%20Comunidad.pdf. (Accessed 19 Apr 2020)

  • Cotler H, López CA, Martínez-Trinidad S (2011) ¿Cuánto nos cuesta la erosión de suelos? Aproximación a una valoración económica de la pérdida de suelos agrícolas en México. Investigación Ambiental 3(2):31–43

    Google Scholar 

  • Cowie AL, Orr BJ, Sanchez VMC et al (2018) Land in balance: the scientific conceptual framework for land degradation neutrality. Environ Sci Policy 79:25–35. https://doi.org/10.1016/j.catena.2016.07.003

    Article  Google Scholar 

  • Dai X, Guo Z, Zhang L, Li D (2010) Spatio-temporal exploratory analysis of urban surface temperature field in Shanghai. China Stoch Environ Res Risk Assess 24:247–257. https://doi.org/10.1007/s00477-009-0314-2

    Article  Google Scholar 

  • Desmet PJJ, Govers G (1996) A GIS-procedure for the automated calculation of the USLE-LS factor on topographically complex land units. J Soil Water Conserv 51:427–433

    Google Scholar 

  • Dissanayake DMSLB, Morimoto T, Ranagalage M (2019) Accessing the soil erosion rate based on RUSLE model for sustainable land use management: a case study of the Kotmale watershed, Sri Lanka. Model Earth Syst Environ 5:291–306. https://doi.org/10.1007/s40808-018-0534-x

    Article  Google Scholar 

  • Durigon V, Carvalho D, Antunes M, Oliveira P, Fernández M (2014) NDVI time series for monitoring RUSLE cover management factor in a tropical watershed. Int J Remote Sens. https://doi.org/10.1080/01431161.2013.871081

    Article  Google Scholar 

  • Falcão CJLM, Araújo-Duarte SM, da Silva-Veloso A (2020) Estimating potential soil sheet Erosion in a Brazilian semiarid county using USLE, GIS, and remote sensing data. Environ Monit Assess. https://doi.org/10.1007/s10661-019-7955-5

    Article  Google Scholar 

  • Farr T, Rosen PA, Caro E et al (2007) The shuttle radar topography mission. Rev Geophys 45(2):1–33

    Article  Google Scholar 

  • Feng Y, Chen L, Chen X (2019) The impact of spatial scale on local Moran’s I clustering of annual fishing effort for Dosidicus gigas offshore Peru. J Oceanol Limnol 37:330–343

    Article  Google Scholar 

  • Foster GR, McCool DK, Renard KG, Moldenhauer WC (1981) Conversion of the universal soil loss equation to SI metric units. J Soil Water Conserv 36:355–359

    Google Scholar 

  • Galloza MS, López-Santos A, Martínez-Santiago S (2017) Predicting land at risk from wind erosion using an index-based framework under a climate change scenario in Durango. Mexico Environ Earth Sci 76:1–14. https://doi.org/10.1007/s12665-017-6751-1

    Article  Google Scholar 

  • Ganasri BP, Ramesh H (2016) Assessment of soil erosion by RUSLE model using remote sensing and GIS-A case study of Nethravathi Basin. Geosci Front 7:953–961. https://doi.org/10.1016/j.gsf.2015.10.007

    Article  Google Scholar 

  • García E (2004) Modificaciones al sistema de clasificación climática de Köppen. Instituto de Geografía de la Universidad Nacional Autónoma de México

    Google Scholar 

  • Getis A, Ord JK (1992) The analysis of spatial association by use of distance statistics. Geogr Anal 24:189–206. https://doi.org/10.1007/978-3-642-01976-0_10

    Article  Google Scholar 

  • Gónzales-Barrios JL, Descroix L, Jasso-Ibarra R, Estrada J, Bollery A, Solis-Moreno R, Sánchez-Cohen I (2007) Impacto de los sistemas productivos en la cuenca alta del Rio Nazas: análisis del problema de degradación física de una cuenca productora de agua. Avances de Investigación en agricultura sostenible. Bases metodológicas para el manejo integral de cuencas hidrológicas. https://hal.archives-ouvertes.fr/hal-02174023/. (Accessed 09 Sept 2020)

  • Huang J (2018) Assessment of potential changes in soil erosion using remote sensing and GIS: a case study of Dacaozi Watershed. China Environ Monit Assess. https://doi.org/10.1007/s10661-018-7120-6

    Article  Google Scholar 

  • FAO and ITPS (2015) Status of the world’s soil resources (SWSR) – main report. food and agriculture organization of the United Nations and intergovernmental technical panel on soils, Rome, Italy. http://www.fao.org/documents/card/es/c/c6814873-efc3-41db-b7d3-2081a10ede50/. (Accessed 19 Apr 2020).

  • IUSS Working Group WRB (2015) World reference base for soil resources 2014, update 2015. International soil classification system for naming soils and creating legends for soil maps. FAO, Rome

    Google Scholar 

  • Johnson LC (1987) Soil loss tolerance: fact or myth? J Soil Water Conserv 42:155–160

    Google Scholar 

  • Kapalanga TS (2008) A review of land degradation assessment methods. Land Restoration Training Programme

    Google Scholar 

  • Karan SK, Ghosh S, Samadder SR (2019) Identification of spatially distributed hotspots for soil loss and erosion potential in mining areas of Upper Damodar Basin – India. CATENA 182:104144. https://doi.org/10.1016/j.catena.2019.104144

    Article  Google Scholar 

  • Khanchoul K, Boubehziz S (2019) Spatial variability of soil erodibility at El Hammam catchment, northeast of Algeria. Environ Ecosyst Sci (EES) 3:17–25. https://doi.org/10.26480/ees.01.2019.17.25

    Article  Google Scholar 

  • Kim SM, Choi Y (2017) Assessing statistically significant heavy-metal concentrations in abandoned mine areas via hot spot analysis of portable XRF data. Int J Environ Res Pub Health 14:654

    Article  Google Scholar 

  • Kumar S, Mishra A (2015) Critical erosion area identification based on hydrological response unit level for effective sedimentation control in a river basin. Water Resour Manag 29:1749–1765. https://doi.org/10.1007/s11269-014-0909-3

    Article  Google Scholar 

  • Lal R (1994) Soil erosion research methods. CRC Press, Boca Ratón

    Google Scholar 

  • Lal R (2017) Soil erosion by wind and water: problems and prospects. In: Lal R (ed) Soil erosion research methods, 2nd edn. Soil and Water Conservation Society, Routledge, pp 1–10

    Google Scholar 

  • Lal R, Sobecki TM, Iivari T (2004) Soil degradation in the United States: extent, severity, and trends. Lewis Publishers, Boca Raton

    Google Scholar 

  • Lanorte A, Danese M, Lasaponara R, Murgante B (2013) Multiscale mapping of burn area and severity using multisensor satellite data and spatial autocorrelation analysis. Int J Appl Earth Obs Geoinf 20:42–51. https://doi.org/10.1016/j.jag.2011.09.005

    Article  Google Scholar 

  • Li L, Du S, Wu L, Liu L (2009) An overview of soil loss tolerance. CATENA 78:93–99. https://doi.org/10.1016/j.catena.2009.03.007

    Article  Google Scholar 

  • Li Y, Zhang L, Yan J, Wang P, Hu N, Cheng W, Fu B (2017) Mapping the hotspots and coldspots of ecosystem services in conservation priority setting. J Geogr Sci 27:681–696. https://doi.org/10.1007/s11442-017-1400-x

    Article  Google Scholar 

  • Li J, Heap AD (2008) A review of spatial interpolation methods for environmental scientists. Geoscience Australia, Record 2008/23

  • Liu X, Zhang Y, Li P (2020) Spatial variation characteristics of soil erodibility in the Yingwugou watershed of the middle dan river, China. Int J Environ Res Public Health. https://doi.org/10.3390/ijerph17103568

    Article  Google Scholar 

  • López-García EM, Torres-Trejo E, López-Reyes L, Flores-Domínguez AD, Peña-Moreno RD, López-Olguín JF (2019) Estimation of soil erosion using USLE and GIS in the locality of Tzicatlacoyan, Puebla, México. Soil Water Res 15(1):9–17. https://doi.org/10.17221/165/2018-SWR

    Article  Google Scholar 

  • López-Santos A (2016) Neutralizar la degradación de la tierra, una aspiración global. ¿Es posible lograrlo en México? Terra Latinoam 34:239–249

    Google Scholar 

  • Marzen M, Iserloh T, de Lima J, Fister W, Ries JB (2017) Impact of severe rain storms on soil erosion: experimental evaluation of wind driven rain and its implications for natural hazard management. Sci Total Environ 590:502–513

    Article  Google Scholar 

  • McCool DK, Brown LC, Foster GR, Mutchler CK, Meyer LD (1987) Revised slope steepness factor for the Universal Soil Loss Equation. Trans ASAE 30:1387–1396. https://doi.org/10.13031/2013.30576

    Article  Google Scholar 

  • Secretaría de Medio Ambiente y Recursos Naturales (SEMARNAT) (2003) Evaluación de la degradación del suelo causada por el hombre en la República Mexicana (escala 1:250.000). Colegio de Postgraduados (CP). Memoria Nacional. https://www.researchgate.net/publication/307967321_SEMARNAT-CP_2003_Memoria_Nacional_2001-2002_Evaluacion_de_la_Degradacion_del_Suelo_causada_por_el_Hombre_en_la_Republica_Mexicana_escala_1250000_Memoria_Nacional. (Accessed 20 Apr 2020)

  • Mekonnen M, Melesse AM (2011) Soil erosion mapping and hotspot area identification using GIS and remote sensing in northwest Ethiopian highlands near Lake Tana. In: Melesse AM (ed) Nile River Basin, 1st edn. Springer, Dordrecht, pp 207–224

    Chapter  Google Scholar 

  • Meliho M, Khattabi A, Mhammdi N (2020) Spatial assessment of soil erosion risk by integrating remote sensing and GIS techniques: a case of Tensift watershed in Morocco. Environ Earth Sci 79:207. https://doi.org/10.1007/s12665-020-08955-y

    Article  Google Scholar 

  • Meshesha DT, Tsunekawa A, Tsubo M, Haregeweyn N (2012) Dynamics and hotspots of soil erosion and management scenarios of the Central Rift Valley of Ethiopia. Int J Sediment Res 27:84–99. https://doi.org/10.1016/S1001-6279(12)60018-3

    Article  Google Scholar 

  • Mihi A, Benarfa N, Arar A (2020) Assessing and mapping water erosion-prone areas in northeastern Algeria using analytic hierarchy process USLE/RUSLE equation, GIS, and remote sensing. Appl Geomat 12:179–191

    Article  Google Scholar 

  • Montanarella L, Pennock DJ, McKenzie N et al (2016) World’s soils are under threat. Soil 2:79–82. https://doi.org/10.5194/soil-2-79-2016

    Article  Google Scholar 

  • Montes-León MAL, Uribe-Alcántara EM, García-Celis E (2011) Mapa Nacional de erosión potencial. Tecnol Ciencias Del Agua 2:5–17

    Google Scholar 

  • Moran PA (1950) Notes on continuous stochastic phenomena. Biometrika 37:17–23

    Article  Google Scholar 

  • Instituto Nacional de Geografía y Estadística (INEGI) (2013) Continuo Mexicano de elevaciones. https://www.inegi.org.mx/app/geo2/elevacionesmex/. (Accessed 19 Apr 2020)

  • Instituto Nacional de Geografía y Estadística (INEGI) (2014) Conjunto de datos vectoriales edafológico, Serie II. (Continuo Nacional), escala: 1:250000. 2 edn. https://www.inegi.org.mx/app/biblioteca/ficha.html?upc=702825235680. (Accessed 20 Apr 2020)

  • Nehaï SA, Guettouche MS (2020) Soil loss estimation using the revised universal soil loss equation and a GIS-based model: a case study of Jijel Wilaya Algeria. Arab J Geosci. https://doi.org/10.1007/s12517-020-5160-z

    Article  Google Scholar 

  • Ortiz SCA, Cuanalo HE (1984) Metodología del levantamiento fisiográfico: un sistema de clasificación de tierras. Colegio de Postgraduados, Chapingo

    Google Scholar 

  • Panagos P, Borrelli P, Meusburger K et al (2017) Global rainfall erosivity assessment based on high-temporal resolution rainfall records. Sci Rep. https://doi.org/10.1038/s41598-017-04282-8

    Article  Google Scholar 

  • Parveen R, Kumar U (2012) Integrated approach of universal soil loss equation (USLE) and geographical information system (GIS) for soil loss risk assessment in Upper South Koel Basin Jharkhand. J Geogr Inf Syst. https://doi.org/10.4236/jgis.2012.46061

    Article  Google Scholar 

  • Pérez-Salinas JE, Rodríguez FR, López-Santos A, Torres González JA, Meraz-Jiménez AJ, Díaz-Romo A, Valdivia OM (2019) Erodabilidad y riesgo de erosión de suelos negros del centro de México: estudio de un Phaozem. Terra Latinoam 37:391–400. https://doi.org/10.28940/terra.v37i4.531

    Article  Google Scholar 

  • Pham TG, Degener J, Kappas M (2018) Integrated universal soil loss equation (USLE) and Geographical Information System (GIS) for soil erosion estimation in A Sap basin: Central Vietnam. Int Soil Water Conserv Res 6:99–110. https://doi.org/10.1016/j.iswcr.2018.01.001

    Article  Google Scholar 

  • Pompa-García M, Antonio-Nemiga X, Carrasco-Mejorado JA, Mendoza-Briseño MA (2011) Spatial patterns of soil degradation in Mexico. Afr J Agric Res 6:1109–1113

    Google Scholar 

  • Rahman MR, Shi ZH, Chongfa C, Dun Z (2015) Assessing soil erosion hazard-a raster based GIS approach with spatial principal component analysis (SPCA). Earth Sci Inform 8:853–865. https://doi.org/10.1007/s12145-015-0219-1

    Article  Google Scholar 

  • Rodríguez FJ, Pompa-García M, Hernández-Díaz C, Juárez-Reyes A (2010) Patrón de distribución espacial de la pérdida, degradación y recuperación vegetal en Durango, México. Av En Invest Agropecuaria 14:53–66

    Google Scholar 

  • Salas-Aguilar VM, Pinedo-Álvarez C, Viramontes-Olivas OA, Báez-González AD, Quintana-Martínez RM (2011) Morfometría de la cuenca del río Nazas-Rodeo aplicando tecnología geoespacial en Durango, México. Tecn Chihuahua 5:34–42

    Google Scholar 

  • Sanchez-Cuervo AM, Aide TM (2013) Identifying hotspots of deforestation and reforestation in Colombia (2001–2010): implications for protected areas. Ecosphere 4(11):1–21

    Article  Google Scholar 

  • Sexton JO, Song XP, Feng M et al (2013) Global, 30-m resolution continuous fields of tree cover: landsat-based rescaling of MODIS vegetation continuous fields with lidar-based estimates of error. Int J Digit Earth 6:427–448

    Article  Google Scholar 

  • Shit PK, Nandi AS, Bhunia GS (2015) Soil erosion risk mapping using RUSLE model on Jhargram sub-division at West Bengal in India. MESE. https://doi.org/10.1007/s40808-015-0032-3

    Article  Google Scholar 

  • Singh G, Panda RK (2017) Grid-cell based assessment of soil erosion potential for identification of critical erosion prone areas using USLE, GIS and remote sensing: a case study in the Kapgari watershed. India Int Soil Water Conserv Res 5:202–211

    Google Scholar 

  • Smetanová A, Müller A, Zargar M, Suleiman MA, Gholami FR, Mousavi M (2020) Mesoscale mapping of sediment source hotspots for dam sediment management in data sparse semi-arid catchments. Water. https://doi.org/10.3390/w12020396

    Article  Google Scholar 

  • Solís-Moreno R, Treviño-Garza EJ, Aguirre OA, Jiménez-Pérez J, Jurado-Ybarra E (2006) Análisis de la cubierta vegetal de la cuenca alta del Río Nazas en Durango México. Rev Chapingo Ser Cienc for y Del Ambient 12(2):139–143

    Google Scholar 

  • Tamene L, Adimassu Z, Ellison J, Yaekob T, Woldearegay K, Mekonnen K, Thorne P, Le QB (2017) Mapping soil erosion hotspots and assessing the potential impacts of land management practices in the highlands of Ethiopia. Geomorphology 292:153–163. https://doi.org/10.1016/j.geomorph.2017.04.038

    Article  Google Scholar 

  • UN-Habitat-GLTN (2016) Scoping and status study on land and conflict: towards UN system-wide engagement at scale. United Nations Human Settlements Programme Report 5/2016. http://www.gltn.net/index.php/publications/publications/download/2gltndocuments/2343scoping-and-status-study-on-landand-conflict. (Accessed 20 Apr 2020)

  • Van Remortel RD, Hamilton ME, Hickey RJ (2001) Estimating the LS factor for RUSLE through iterative slope length processing of digital elevation data within ArcInfo grid. Cartography 30:27–35

    Article  Google Scholar 

  • Villanueva-Díaz J, Luckman BH, Stahle DW et al (2005) Hydroclimatic variability of the upper Nazas basin: Water management implications for the irrigated área of the Comarca Lagunera, Mexico. Dendrochronologia 22:215–223

    Article  Google Scholar 

  • Viramontes D, Descroix L (2003) Changes in the surface water hydrologic characteristics of an endoreic basin of northern Mexico from 1970 to 1998. Hydrol Process 17:1291–1306

    Article  Google Scholar 

  • Wang B, Zheng F, Guan Y (2016) Improved USLE-K factor prediction: a case study on water erosion areas in China. Int Soil Water Conserv Res 4:168–176. https://doi.org/10.1016/j.iswcr.2016.08.003

    Article  Google Scholar 

  • Wang NZ, Yao W, Liu X, Ma M (2019) spatial variabilities of runoff erosion and different underlying surfaces in the Xihe River basin. Water. https://doi.org/10.3390/w11020352

    Article  Google Scholar 

  • Wang B, Zhao X, Wang X, Zhang Z, Yi L, Hu S (2020) Spatial and temporal variability of soil erosion in the black soil region of Northeast China from 2000 to 2015. Environ Monit Assess 192(37):1–14. https://doi.org/10.1007/s10661-020-08298-y

    Article  Google Scholar 

  • Wei W, Chen L, Fu B, Huang Z, Wu D, Gui L (2007) The effect of land uses and rainfall regimes on runoff and soil erosion in the semi-arid loess hilly area. China J Hydrol 335(3–4):247–258. https://doi.org/10.1016/j.jhydrol.2006.11.016

    Article  Google Scholar 

  • Wischmeier WH, Smith DD (1978) Predicting rainfall erosion losses—a guide to conservation planning. US Department of Agriculture, Washington

    Google Scholar 

  • Zhang L, Bai KZ, Wang MJ, Karthikeyan R (2016) Basin-scale spatial soil erosion variability: pingshuo opencast mine site in Shanxi Province, Loess Plateau of China. Nat Hazards 80:1213–1230

    Article  Google Scholar 

  • Zhang W, Zhang Z, Liu F, Qiao Z, Hu S (2011) Estimation of the USLE cover and management factor C using satellite remote sensing: A review. In 2011 19th International Conference on Geoinformatics (pp. 1–5). IEEE

  • Zhu M (2012) Soil erosion risk assessment with CORINE model: case study in the Danjiangkou reservoir region, China. Stoch Environ Res Risk Assess 26:813–822. https://doi.org/10.1007/s00477-011-0511-7

    Article  Google Scholar 

  • Zúñiga-Vásquez JM, Pompa-García M (2019) The occurrence of forest fires in Mexico presents an altitudinal tendency: a geospatial analysis. Nat Hazards 96:213–224. https://doi.org/10.1007/s11069-018-3537-z

    Article  Google Scholar 

  • Zúñiga-Vásquez JM, Cisneros-González D, Pompa-García M, Rodríguez-Trejo DA, Pérez-Verdín G (2017) Spatial modeling of forest fires in Mexico: an integration of two data sources. Bosque 38:563–574. https://doi.org/10.4067/S0717-92002017000300014

    Article  Google Scholar 

Download references

Acknowledgements

We recognize the National Council of Science and Technology (CONACYT) for the support for the Doctorate studies of the first and third author. Jorge Alberto Garza Cossío helped by commenting on a previous version of this manuscript. Also, we are grateful to the editor and anonymous reviewers for their useful comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Manuel Zúñiga-Vásquez.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cabral-Alemán, C., López-Santos, A. & Zúñiga-Vásquez, J.M. Mapping risk zones of potential erosion in the upper Nazas River basin, Mexico through spatial autocorrelation techniques. Environ Earth Sci 80, 653 (2021). https://doi.org/10.1007/s12665-021-09956-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12665-021-09956-1

Keywords

Navigation