Skip to main content

Advertisement

Log in

Modulation of Inflammatory Mediators and Microglial Activation Through Physical Exercise in Alzheimer’s and Parkinson's Diseases

  • Review
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Neuroinflammation is an inflammatory process in the central nervous system (CNS), in addition to being one of the main features of Alzheimer's disease (AD) and Parkinson's disease (PD). Microglia are known for their immune functions and have multiple reactive phenotypes related to the types of stages involving neurodegenerative diseases. Depending on the state of activation of microglia in the CNS, it can be neuroprotective or neurotoxic. In this context, AD is a neurodegenerative and neuroinflammatory disease characterized by the deposition of beta-amyloid plaques, formation of fibrillar tangles of tau protein, and loss of neurons due to neurotoxic activation of microglia. However, PD is characterized by the loss of dopaminergic neurons in the substantia nigra and accumulation of alpha-synuclein in the cortical regions, spinal cord, and brain stem, which occurs by microglial activation, contributing to the neuroinflammatory process. In this aspect, the activation of microglia in both pathologies triggers high levels of inflammatory markers, such as interleukins, and causes the neuroinflammatory process of the diseases. Thus, physical exercise is pointed out as neuroprotective, as it can act to strengthen neurogenesis and reduce the inflammatory process. Therefore, the present review addresses the neuroprotective effect of microglia after different types of physical exercise protocols and evaluates the activity and effects of inflammatory and anti-inflammatory parameters and mechanisms of AD and PD. This review will discuss the anti-inflammatory effects of physical exercise through microglia activation with neuroprotective activity and the role of pro-and anti-inflammatory cytokines in AD and PD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

Enquiries about data availability should be directed to the authors.

References

  1. Glass CK et al (2010) Mechanisms underlying inflammation in neurodegeneration. Cell 140(6):918–934

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Stephenson J et al (2018) Inflammation in CNS neurodegenerative diseases. Immunology 154(2):204–219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Hanisch UK (2013) Functional diversity of microglia—how heterogeneous are they to begin with? Front Cell Neurosci 7:65

    Article  PubMed  PubMed Central  Google Scholar 

  4. Dugger BN, Dickson DW (2017) Pathology of neurodegenerative diseases. Cold Spring Harb Perspect Biol 9(7):a028035

    Article  PubMed  PubMed Central  Google Scholar 

  5. Kempuraj D et al (2016) Neuroinflammation induces neurodegeneration. J Neurol Neurosurg Spine 1(1):1003

    PubMed  PubMed Central  Google Scholar 

  6. Carson MJ et al (2006) CNS immune privilege: hiding in plain sight. Immunol Rev 213:48–65

    Article  PubMed  PubMed Central  Google Scholar 

  7. Dornelles GL et al (2020) Ellagic acid inhibits neuroinflammation and cognitive impairment induced by lipopolysaccharides. Neurochem Res 45(10):2456–2473

    Article  CAS  PubMed  Google Scholar 

  8. Hanisch UK, Kettenmann H (2007) Microglia: active sensor and versatile effector cells in the normal and pathologic brain. Nat Neurosci 10(11):1387–1394

    Article  CAS  PubMed  Google Scholar 

  9. Subhramanyam CS et al (2019) Microglia-mediated neuroinflammation in neurodegenerative diseases. Semin Cell Dev Biol 94:112–120

    Article  CAS  PubMed  Google Scholar 

  10. Zheng T, Zhang Z (2021) Activated microglia facilitate the transmission of α-synuclein in Parkinson’s disease. Neurochem Int 148:105094

    Article  CAS  PubMed  Google Scholar 

  11. Martinez FO, Gordon S (2014) The M1 and M2 paradigm of macrophage activation: time for reassessment. F1000Prime Rep 6:13

    Article  PubMed  PubMed Central  Google Scholar 

  12. Ransohoff RM (2016) A polarizing question: do M1 and M2 microglia exist? Nat Neurosci 19(8):987–991

    Article  CAS  PubMed  Google Scholar 

  13. Baufeld C et al (2018) Differential contribution of microglia and monocytes in neurodegenerative diseases. J Neural Transm (Vienna) 125(5):809–826

    Article  CAS  Google Scholar 

  14. De la Rosa A et al (2020) Physical exercise in the prevention and treatment of Alzheimer’s disease. J Sport Health Sci 9(5):394–404

    Article  PubMed  PubMed Central  Google Scholar 

  15. Ozben T, Ozben S (2019) Neuro-inflammation and anti-inflammatory treatment options for Alzheimer’s disease. Clin Biochem 72:87–89

    Article  CAS  PubMed  Google Scholar 

  16. Sun X, Jin L, Ling P (2012) Review of drugs for Alzheimer’s disease. Drug Discov Ther 6(6):285–290

    CAS  PubMed  Google Scholar 

  17. Wang WY et al (2015) Role of pro-inflammatory cytokines released from microglia in Alzheimer’s disease. Ann Transl Med 3(10):136

    PubMed  PubMed Central  Google Scholar 

  18. Newcombe EA et al (2018) Inflammation: the link between comorbidities, genetics, and Alzheimer’s disease. J Neuroinflamm 15(1):276

    Article  Google Scholar 

  19. Kam TI et al (2020) Microglia and astrocyte dysfunction in Parkinson’s disease. Neurobiol Dis 144:105028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Mosley RL et al (2012) Inflammation and adaptive immunity in Parkinson’s disease. Cold Spring Harb Perspect Med 2(1):a009381

    Article  PubMed  PubMed Central  Google Scholar 

  21. Khan AU et al (2019) Awareness and current knowledge of Parkinson’s disease: a neurodegenerative disorder. Int J Neurosci 129(1):55–93

    Article  PubMed  Google Scholar 

  22. Ellingson LD, Zaman A, Stegemöller EL (2019) Sedentary behavior and quality of life in individuals with Parkinson’s disease. Neurorehabil Neural Repair 33(8):595–601

    Article  PubMed  Google Scholar 

  23. Hu Y et al (2019) Exercise reverses dysregulation of T-Cell-related function in blood leukocytes of patients with parkinson’s disease. Front Neurol 10:1389

    Article  PubMed  Google Scholar 

  24. Feng YS et al (2020) The benefits and mechanisms of exercise training for Parkinson’s disease. Life Sci 245:117345

    Article  CAS  PubMed  Google Scholar 

  25. Soch A et al (2016) Effects of exercise on adolescent and adult hypothalamic and hippocampal neuroinflammation. Hippocampus 26(11):1435–1446

    Article  CAS  PubMed  Google Scholar 

  26. Nagamatsu LS et al (2014) Exercise is medicine, for the body and the brain. Br J Sports Med 48(12):943–944

    Article  PubMed  Google Scholar 

  27. Palasz E et al (2019) Neuroplasticity and neuroprotective effect of treadmill training in the chronic mouse model of Parkinson’s disease. Neural Plast 2019:8215017

    Article  PubMed  PubMed Central  Google Scholar 

  28. Yoo SZ et al (2019) Effects of acute exercise on mitochondrial function, dynamics, and mitophagy in rat cardiac and skeletal muscles. Int Neurourol J 23(Suppl 1):S22-31

    Article  PubMed  PubMed Central  Google Scholar 

  29. Perry VH, Teeling J (2013) Microglia and macrophages of the central nervous system: the contribution of microglia priming and systemic inflammation to chronic neurodegeneration. Semin Immunopathol 35(5):601–612

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ransohoff RM, El Khoury J (2015) Microglia in health and disease. Cold Spring Harb Perspect Biol 8(1):a020560

    Article  PubMed  Google Scholar 

  31. Pignataro P et al (2021) FNDC5/Irisin system in neuroinflammation and neurodegenerative diseases: update and novel perspective. Int J Mol Sci 22(4):1605

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Walter L, Neumann H (2009) Role of microglia in neuronal degeneration and regeneration. Semin Immunopathol 31(4):513–525

    Article  PubMed  Google Scholar 

  33. Wolf SA, Boddeke HW, Kettenmann H (2017) Microglia in physiology and disease. Annu Rev Physiol 79:619–643

    Article  CAS  PubMed  Google Scholar 

  34. Gao X et al (2016) In vivo reprogramming reactive glia into iPSCs to produce new neurons in the cortex following traumatic brain injury. Sci Rep 6:22490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Badanjak K et al (2021) The contribution of microglia to neuroinflammation in Parkinson’s Disease. Int J Mol Sci 22(9):4676

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kwon HS, Koh SH (2020) Neuroinflammation in neurodegenerative disorders: the roles of microglia and astrocytes. Transl Neurodegener 9(1):42

    Article  PubMed  PubMed Central  Google Scholar 

  37. Tang Y, Le W (2016) Differential roles of M1 and M2 microglia in neurodegenerative diseases. Mol Neurobiol 53(2):1181–1194

    Article  CAS  PubMed  Google Scholar 

  38. Prinz M, Jung S, Priller J (2019) Microglia biology: one century of evolving concepts. Cell 179(2):292–311

    Article  CAS  PubMed  Google Scholar 

  39. Sierra A et al (2013) Janus-faced microglia: beneficial and detrimental consequences of microglial phagocytosis. Front Cell Neurosci 7:6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Fakhoury M (2018) Microglia and astrocytes in Alzheimer’s disease: implications for therapy. Curr Neuropharmacol 16(5):508–518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Hickman S et al (2018) Microglia in neurodegeneration. Nat Neurosci 21(10):1359–1369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Ho MS (2019) Microglia in Parkinson’s Disease. Adv Exp Med Biol 1175:335–353

    Article  CAS  PubMed  Google Scholar 

  43. Ros-Bernal F et al (2011) Microglial glucocorticoid receptors play a pivotal role in regulating dopaminergic neurodegeneration in parkinsonism. Proc Natl Acad Sci USA 108(16):6632–6637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Yun SP et al (2018) Block of A1 astrocyte conversion by microglia is neuroprotective in models of Parkinson’s disease. Nat Med 24(7):931–938

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Mee-Inta O, Zhao ZW, Kuo YM (2019) Physical Exercise Inhibits Inflammation and Microglial Activation. Cells 8(7):691

    Article  CAS  PubMed Central  Google Scholar 

  46. Bobinski F et al (2018) Interleukin-4 mediates the analgesia produced by low-intensity exercise in mice with neuropathic pain. Pain 159(3):437–450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Kelly ÁM (2018) Exercise-induced modulation of neuroinflammation in models of Alzheimer’s disease. Brain Plast 4(1):81–94

    Article  PubMed  PubMed Central  Google Scholar 

  48. Calegari L et al (2018) Exercise training improves the IL-10/TNF-α cytokine balance in the gastrocnemius of rats with heart failure. Braz J Phys Ther 22(2):154–160

    Article  PubMed  Google Scholar 

  49. Cianciulli A et al (2015) IL-10 plays a pivotal role in anti-inflammatory effects of resveratrol in activated microglia cells. Int Immunopharmacol 24(2):369–376

    Article  CAS  PubMed  Google Scholar 

  50. Rosenzweig JM, Lei J, Burd I (2014) Interleukin-1 receptor blockade in perinatal brain injury. Front Pediatr 2:108

    Article  PubMed  PubMed Central  Google Scholar 

  51. Scheller J et al (2011) The pro- and anti-inflammatory properties of the cytokine interleukin-6. Biochim Biophys Acta 1813(5):878–888

    Article  CAS  PubMed  Google Scholar 

  52. Steensberg A et al (2003) IL-6 enhances plasma IL-1ra, IL-10, and cortisol in humans. Am J Physiol Endocrinol Metab 285(2):E433–E437

    Article  CAS  PubMed  Google Scholar 

  53. Lu Y et al (2017) Treadmill exercise exerts neuroprotection and regulates microglial polarization and oxidative stress in a streptozotocin-induced rat model of sporadic Alzheimer’s disease. J Alzheim Dis 56(4):1469–1484

    Article  CAS  Google Scholar 

  54. Saavedra A, Baltazar G, Duarte EP (2007) Interleukin-1beta mediates GDNF up-regulation upon dopaminergic injury in ventral midbrain cell cultures. Neurobiol Dis 25(1):92–104

    Article  CAS  PubMed  Google Scholar 

  55. Hardy JA, Higgins GA (1992) Alzheimer’s disease: the amyloid cascade hypothesis. Science 256(5054):184–185

    Article  CAS  PubMed  Google Scholar 

  56. Cai H, Liang Q, Ge G (2016) Gypenoside attenuates β amyloid-induced inflammation in N9 microglial cells via SOCS1 signaling. Neural Plast 2016:6362707

    Article  PubMed  PubMed Central  Google Scholar 

  57. Sajja VS, Hlavac N, VandeVord PJ (2016) Role of glia in memory deficits following traumatic brain injury: biomarkers of glia dysfunction. Front Integr Neurosci 10:7

    Article  PubMed  PubMed Central  Google Scholar 

  58. Spielman LJ, Little JP, Klegeris A (2016) Physical activity and exercise attenuate neuroinflammation in neurological diseases. Brain Res Bull 125:19–29

    Article  CAS  PubMed  Google Scholar 

  59. López-Ortiz S et al (2021) Physical exercise and Alzheimer’s disease: effects on pathophysiological molecular pathways of the disease. Int J Mol Sci 22(6):2897

    Article  PubMed  PubMed Central  Google Scholar 

  60. Li Z et al (2020) Physical exercise ameliorates the cognitive function and attenuates the neuroinflammation of Alzheimer’s disease via miR-129-5p. Dement Geriatr Cogn Disord 49(2):163–169

    Article  PubMed  Google Scholar 

  61. Heneka MT et al (2015) Neuroinflammation in Alzheimer’s disease. Lancet Neurol 14(4):388–405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Abd El-Kader SM, Al-Jiffri OH (2016) Aerobic exercise improves quality of life, psychological well-being and systemic inflammation in subjects with Alzheimer’s disease. Afr Health Sci 16(4):1045–1055

    Article  PubMed  PubMed Central  Google Scholar 

  63. Wu C et al (2018) Beneficial effects of exercise pretreatment in a sporadic Alzheimer’s Rat model. Med Sci Sports Exerc 50(5):945–956

    Article  PubMed  PubMed Central  Google Scholar 

  64. Pervaiz N, Hoffman-Goetz L (2012) Immune cell inflammatory cytokine responses differ between central and systemic compartments in response to acute exercise in mice. Exerc Immunol Rev 18:142–157

    PubMed  Google Scholar 

  65. Hashiguchi D et al (2020) Resistance exercise decreases amyloid load and modulates inflammatory responses in the APP/PS1 mouse model for Alzheimer’s Disease. J Alzheim Dis 73(4):1525–1539

    Article  CAS  Google Scholar 

  66. Liu Y et al (2020) The neuroprotective effect of Irisin in ischemic stroke. Front Aging Neurosci 12:588958

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Rothaug M, Becker-Pauly C, Rose-John S (2016) The role of interleukin-6 signaling in nervous tissue. Biochim Biophys Acta 1863(6 Pt A):1218–1227

    Article  CAS  PubMed  Google Scholar 

  68. Jensen CS et al (2019) Exercise as a potential modulator of inflammation in patients with Alzheimer’s disease measured in cerebrospinal fluid and plasma. Exp Gerontol 121:91–98

    Article  CAS  PubMed  Google Scholar 

  69. Colonna M (2003) TREMs in the immune system and beyond. Nat Rev Immunol 3(6):445–453

    Article  CAS  PubMed  Google Scholar 

  70. Forloni G, Balducci C (2018) Alzheimer’s disease, oligomers, and inflammation. J Alzheimers Dis 62(3):1261–1276

    Article  PubMed  PubMed Central  Google Scholar 

  71. Choi SH et al (2018) Combined adult neurogenesis and BDNF mimic exercise effects on cognition in an Alzheimer’s mouse model. Science 361:6406

    Article  Google Scholar 

  72. Balestrino R, Schapira AHV (2020) Parkinson disease. Eur J Neurol 27(1):27–42

    Article  CAS  PubMed  Google Scholar 

  73. Lotankar S, Prabhavalkar KS, Bhatt LK (2017) Biomarkers for Parkinson’s disease: recent advancement. Neurosci Bull 33(5):585–597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. O’Callaghan A et al (2020) Comparing the influence of exercise intensity on brain-derived neurotrophic factor serum levels in people with Parkinson’s disease: a pilot study. Aging Clin Exp Res 32(9):1731–1738

    Article  PubMed  Google Scholar 

  75. Daniele SG et al (2015) Activation of MyD88-dependent TLR1/2 signaling by misfolded α-synuclein, a protein linked to neurodegenerative disorders. Sci Signal 8(376):ra45

    Article  PubMed  PubMed Central  Google Scholar 

  76. Dzamko N et al (2017) Toll-like receptor 2 is increased in neurons in Parkinson’s disease brain and may contribute to alpha-synuclein pathology. Acta Neuropathol 133(2):303–319

    Article  CAS  PubMed  Google Scholar 

  77. Béraud D et al (2013) Microglial activation and antioxidant responses induced by the Parkinson’s disease protein α-synuclein. J Neuroimmune Pharmacol 8(1):94–117

    Article  PubMed  Google Scholar 

  78. Surmeier DJ, Obeso JA, Halliday GM (2017) Selective neuronal vulnerability in Parkinson disease. Nat Rev Neurosci 18(2):101–113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Joers V et al (2017) Microglial phenotypes in Parkinson’s disease and animal models of the disease. Prog Neurobiol 155:57–75

    Article  CAS  PubMed  Google Scholar 

  80. Shabab T et al (2017) Neuroinflammation pathways: a general review. Int J Neurosci 127(7):624–633

    Article  CAS  PubMed  Google Scholar 

  81. Jang Y et al (2017) Neuroprotective effects of endurance exercise against neuroinflammation in MPTP-induced Parkinson’s disease mice. Brain Res 1655:186–193

    Article  CAS  PubMed  Google Scholar 

  82. Koo JH, Cho JY, Lee UB (2017) Treadmill exercise alleviates motor deficits and improves mitochondrial import machinery in an MPTP-induced mouse model of Parkinson’s disease. Exp Gerontol 89:20–29

    Article  CAS  PubMed  Google Scholar 

  83. Monteiro-Junior RS et al (2015) We need to move more: Neurobiological hypotheses of physical exercise as a treatment for Parkinson’s disease. Med Hypotheses 85(5):537–541

    Article  PubMed  Google Scholar 

  84. Tuon T et al (2012) Physical training exerts neuroprotective effects in the regulation of neurochemical factors in an animal model of Parkinson’s disease. Neuroscience 227:305–312

    Article  CAS  PubMed  Google Scholar 

  85. Dimatelis JJ et al (2013) Exercise partly reverses the effect of maternal separation on hippocampal proteins in 6-hydroxydopamine-lesioned rat brain. Exp Physiol 98(1):233–244

    Article  CAS  PubMed  Google Scholar 

  86. Eikelenboom P et al (2006) The significance of neuroinflammation in understanding Alzheimer’s disease. J Neural Transm (Vienna) 113(11):1685–1695

    Article  CAS  Google Scholar 

  87. Singh SS et al (2020) NF-κB-mediated neuroinflammation in Parkinson’s Disease and potential therapeutic effect of polyphenols. Neurotox Res 37(3):491–507

    Article  CAS  PubMed  Google Scholar 

  88. Tuon T et al (2015) Physical training regulates mitochondrial parameters and neuroinflammatory mechanisms in an experimental model of Parkinson’s Disease. Oxid Med Cell Longev 2015:261809

    Article  PubMed  PubMed Central  Google Scholar 

  89. Orr CF, Rowe DB, Halliday GM (2002) An inflammatory review of Parkinson’s disease. Prog Neurobiol 68(5):325–340

    Article  CAS  PubMed  Google Scholar 

  90. Nikokalam Nazif N et al (2020) Effect of treadmill exercise on catalepsy and the expression of the BDNF gene in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced Parkinson in male NMRI mice. Iran J Basic Med Sci 23(4):483–493

    PubMed  PubMed Central  Google Scholar 

  91. Shahidani S, Rajaei Z, Alaei H (2019) Pretreatment with crocin along with treadmill exercise ameliorates motor and memory deficits in hemiparkinsonian rats by anti-inflammatory and antioxidant mechanisms. Metab Brain Dis 34(2):459–468

    Article  CAS  PubMed  Google Scholar 

  92. Szymura J et al (2020) The immunomodulary effects of systematic exercise in older adults and people with Parkinson’s Disease. J Clin Med 9(1):184

    Article  CAS  PubMed Central  Google Scholar 

  93. Wu SY et al (2011) Running exercise protects the substantia nigra dopaminergic neurons against inflammation-induced degeneration via the activation of BDNF signaling pathway. Brain Behav Immun 25(1):135–146

    Article  CAS  PubMed  Google Scholar 

  94. Zoladz JA et al (2014) Moderate-intensity interval training increases serum brain-derived neurotrophic factor level and decreases inflammation in Parkinson’s disease patients. J Physiol Pharmacol 65(3):441–448

    CAS  PubMed  Google Scholar 

  95. Koo JH et al (2017) Treadmill exercise produces neuroprotective effects in a murine model of Parkinson’s disease by regulating the TLR2/MyD88/NF-κB signaling pathway. Neuroscience 356:102–113

    Article  CAS  PubMed  Google Scholar 

  96. Fickenscher H et al (2002) The interleukin-10 family of cytokines. Trends Immunol 23(2):89–96

    Article  CAS  PubMed  Google Scholar 

  97. Gonzalez-Aparicio R, Flores JA, Fernandez-Espejo E (2010) Antiparkinsonian trophic action of glial cell line-derived neurotrophic factor and transforming growth factor β1 is enhanced after co-infusion in rats. Exp Neurol 226(1):136–147

    Article  CAS  PubMed  Google Scholar 

  98. Zhou X, Spittau B, Krieglstein K (2012) TGFβ signalling plays an important role in IL4-induced alternative activation of microglia. J Neuroinflammation 9:210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Bent R et al (2018) Interleukin-1 beta-a friend or foe in malignancies? Int J Mol Sci 19(8):2155

    Article  PubMed Central  Google Scholar 

  100. Wang Y et al (2020) The role of IL-1β and TNF-α in intervertebral disc degeneration. Biomed Pharmacother 131:110660

    Article  CAS  PubMed  Google Scholar 

  101. Bronzuoli MR et al (2016) Targeting neuroinflammation in Alzheimer’s disease. J Inflamm Res 9:199–208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Neal M, Richardson JR (2018) Epigenetic regulation of astrocyte function in neuroinflammation and neurodegeneration. Biochim Biophys Acta Mol Basis Dis 1864(2):432–443

    Article  CAS  PubMed  Google Scholar 

  103. Wei H et al (2019) Interleukin-10 family cytokines immunobiology and structure. Adv Exp Med Biol 1172:79–96

    Article  CAS  PubMed  Google Scholar 

  104. Prado Lima MG et al (2018) Environmental enrichment and exercise are better than social enrichment to reduce memory deficits in amyloid beta neurotoxicity. Proc Natl Acad Sci USA 115(10):E2403-e2409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Katoh-Semba R et al (1997) Distribution of brain-derived neurotrophic factor in rats and its changes with development in the brain. J Neurochem 69(1):34–42

    Article  CAS  PubMed  Google Scholar 

  106. von Bohlen Und Halbach O, von Bohlen Und Halbach V (2018) BDNF effects on dendritic spine morphology and hippocampal function. Cell Tissue Res 373(3):729–741

    Article  Google Scholar 

  107. Lau YS et al (2011) Neuroprotective effects and mechanisms of exercise in a chronic mouse model of Parkinson’s disease with moderate neurodegeneration. Eur J Neurosci 33(7):1264–1274

    Article  PubMed  PubMed Central  Google Scholar 

  108. Erickson KI et al (2011) Exercise training increases size of hippocampus and improves memory. Proc Natl Acad Sci USA 108(7):3017–3022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andréia Machado Cardoso.

Ethics declarations

Conflict of interest

Authors declare that it is an academic work and there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Almeida, E.J.R., Ibrahim, H.J., Chitolina Schetinger, M.R. et al. Modulation of Inflammatory Mediators and Microglial Activation Through Physical Exercise in Alzheimer’s and Parkinson's Diseases. Neurochem Res 47, 3221–3240 (2022). https://doi.org/10.1007/s11064-022-03713-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-022-03713-x

Keywords

Navigation