Skip to main content

Interleukin-10 Family Cytokines Immunobiology and Structure

  • Chapter
  • First Online:
Structural Immunology

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1172))

Abstract

The Interleukin (IL)-10 cytokine family includes IL-10, IL-19, IL-20, IL-22, IL-24, and IL-26, which are considered as Class 2α-helical cytokines. IL-10 is the most important cytokine in suppressing pro-inflammatory responses in all kinds of autoimmune diseases and limiting excessive immune responses. Due to protein structure homology and shared usage of receptor complexes as well as downstream signaling pathway, other IL-10 family cytokines also show indispensable functions in immune regulation, tissue homeostasis, and host defense. In this review, we focus on immune functions and structures of different cytokines in this family and try to better understand how their molecular mechanisms connect to their biological functions. The molecular details regarding their actions also provide useful information in developing candidate immune therapy reagents for a variety of diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ouyang W, Rutz S, Crellin NK, Valdez PA, Hymowitz SG (2011) Regulation and functions of the IL-10 family of cytokines in inflammation and disease. Annu Rev Immunol 29:71–109

    Article  CAS  PubMed  Google Scholar 

  2. Chen J, Caspi RR, Chong WP (2018) IL-20 receptor cytokines in autoimmune diseases. J Leukoc Biol 104:953–959

    Article  CAS  PubMed  Google Scholar 

  3. Rutz S, Wang X, Ouyang W (2014) The IL-20 subfamily of cytokines—from host defence to tissue homeostasis. Nat Rev Immunol 14:783–795

    Article  CAS  PubMed  Google Scholar 

  4. Fiorentino DF, Bond MW, Mosmann TR (1989) Two types of mouse T helper cell. IV. Th2 clones secrete a factor that inhibits cytokine production by Th1 clones. J Exp Med 170:2081–2095

    Article  CAS  PubMed  Google Scholar 

  5. Ding L, Shevach EM (1992) IL-10 inhibits mitogen-induced T cell proliferation by selectively inhibiting macrophage costimulatory function. J Immunol 148:3133–3139

    CAS  PubMed  Google Scholar 

  6. Macatonia SE, Doherty TM, Knight SC, O’Garra A (1993) Differential effect of IL-10 on dendritic cell-induced T cell proliferation and IFN-gamma production. J Immunol 150:3755–3765

    CAS  PubMed  Google Scholar 

  7. Ding L, Linsley PS, Huang LY, Germain RN, Shevach EM (1993) IL-10 inhibits macrophage costimulatory activity by selectively inhibiting the up-regulation of B7 expression. J Immunol 151:1224–1234

    CAS  PubMed  Google Scholar 

  8. Kuhn R, Lohler J, Rennick D, Rajewsky K, Muller W (1993) Interleukin-10-deficient mice develop chronic enterocolitis. Cell 75:263–274

    Article  CAS  PubMed  Google Scholar 

  9. Spencer SD, Di Marco F, Hooley J, Pitts-Meek S, Bauer M, Ryan AM, Sordat B, Gibbs VC, Aguet M (1998) The orphan receptor CRF2-4 is an essential subunit of the interleukin 10 receptor. J Exp Med 187:571–578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Glocker EO, Kotlarz D, Boztug K, Gertz EM, Schaffer AA, Noyan F, Perro M, Diestelhorst J, Allroth A, Murugan D et al (2009) Inflammatory bowel disease and mutations affecting the interleukin-10 receptor. N Engl J Med 361:2033–2045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Moran CJ, Walters TD, Guo CH, Kugathasan S, Klein C, Turner D, Wolters VM, Bandsma RH, Mouzaki M, Zachos M et al (2013) IL-10R polymorphisms are associated with very-early-onset ulcerative colitis. Inflamm Bowel Dis 19:115–123

    Article  PubMed  Google Scholar 

  12. Pigneur B, Escher J, Elawad M, Lima R, Buderus S, Kierkus J, Guariso G, Canioni D, Lambot K, Talbotec C et al (2013) Phenotypic characterization of very early-onset IBD due to mutations in the IL10, IL10 receptor alpha or beta gene: a survey of the Genius Working Group. Inflamm Bowel Dis 19:2820–2828

    Article  PubMed  Google Scholar 

  13. Zigmond E, Bernshtein B, Friedlander G, Walker CR, Yona S, Kim KW, Brenner O, Krauthgamer R, Varol C, Muller W, Jung S (2014) Macrophage-restricted interleukin-10 receptor deficiency, but not IL-10 deficiency, causes severe spontaneous colitis. Immunity 40:720–733

    Article  CAS  PubMed  Google Scholar 

  14. Shouval DS, Biswas A, Goettel JA, McCann K, Conaway E, Redhu NS, Mascanfroni ID, Al Adham Z, Lavoie S, Ibourk M et al (2014) Interleukin-10 receptor signaling in innate immune cells regulates mucosal immune tolerance and anti-inflammatory macrophage function. Immunity 40:706–719

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Li B, Gurung P, Malireddi RK, Vogel P, Kanneganti TD, Geiger TL (2015) IL-10 engages macrophages to shift Th17 cytokine dependency and pathogenicity during T-cell-mediated colitis. Nat Commun 6:6131

    Article  CAS  PubMed  Google Scholar 

  16. Ip WKE, Hoshi N, Shouval DS, Snapper S, Medzhitov R (2017) Anti-inflammatory effect of IL-10 mediated by metabolic reprogramming of macrophages. Science 356:513–519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Huber S, Gagliani N, Esplugues E, O’Connor W Jr, Huber FJ, Chaudhry A, Kamanaka M, Kobayashi Y, Booth CJ, Rudensky AY et al (2011) Th17 cells express interleukin-10 receptor and are controlled by Foxp3 and Foxp3+ regulatory CD4+ T cells in an interleukin-10-dependent manner. Immunity 34:554–565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Murai M, Turovskaya O, Kim G, Madan R, Karp CL, Cheroutre H, Kronenberg M (2009) Interleukin 10 acts on regulatory T cells to maintain expression of the transcription factor Foxp3 and suppressive function in mice with colitis. Nat Immunol 10:1178–1184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Pestka S, Krause CD, Sarkar D, Walter MR, Shi Y, Fisher PB (2004) Interleukin-10 and related cytokines and receptors. Annu Rev Immunol 22:929–979

    Article  CAS  PubMed  Google Scholar 

  20. Bach EA, Tanner JW, Marsters S, Ashkenazi A, Aguet M, Shaw AS, Schreiber RD (1996) Ligand-induced assembly and activation of the gamma interferon receptor in intact cells. Mol Cell Biol 16:3214–3221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kotenko SV, Izotova LS, Pollack BP, Muthukumaran G, Paukku K, Silvennoinen O, Ihle JN, Pestka S (1996) Other kinases can substitute for Jak2 in signal transduction by interferon-gamma. J Biol Chem 271:17174–17182

    Article  CAS  PubMed  Google Scholar 

  22. Ding Y, Chen D, Tarcsafalvi A, Su R, Qin L, Bromberg JS (2003) Suppressor of cytokine signaling 1 inhibits IL-10-mediated immune responses. J Immunol 170:1383–1391

    Article  CAS  PubMed  Google Scholar 

  23. Guarda G, Braun M, Staehli F, Tardivel A, Mattmann C, Forster I, Farlik M, Decker T, Du Pasquier RA, Romero P, Tschopp J (2011) Type I interferon inhibits interleukin-1 production and inflammasome activation. Immunity 34:213–223

    Article  CAS  PubMed  Google Scholar 

  24. Gurung P, Li B, Subbarao Malireddi RK, Lamkanfi M, Geiger TL, Kanneganti TD (2015) Chronic TLR stimulation controls NLRP3 inflammasome activation through IL-10 mediated regulation of NLRP3 expression and caspase-8 activation. Sci Rep 5:14488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Smith LK, Boukhaled GM, Condotta SA, Mazouz S, Guthmiller JJ, Vijay R, Butler NS, Bruneau J, Shoukry NH, Krawczyk CM, Richer MJ (2018) Interleukin-10 directly inhibits CD8+ T cell function by enhancing N-Glycan branching to decrease antigen sensitivity. Immunity 48(299–312):e295

    Google Scholar 

  26. Banerjee A, Gugasyan R, McMahon M, Gerondakis S (2006) Diverse Toll-like receptors utilize Tpl2 to activate extracellular signal-regulated kinase (ERK) in hemopoietic cells. Proc Natl Acad Sci USA 103:3274–3279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Saraiva M, Christensen JR, Tsytsykova AV, Goldfeld AE, Ley SC, Kioussis D, O’Garra A (2005) Identification of a macrophage-specific chromatin signature in the IL-10 locus. J Immunol 175:1041–1046

    Article  CAS  PubMed  Google Scholar 

  28. Gringhuis SI, den Dunnen J, Litjens M, van Het Hof B, van Kooyk Y, Geijtenbeek TB (2007) C-type lectin DC-SIGN modulates Toll-like receptor signaling via Raf-1 kinase-dependent acetylation of transcription factor NF-kappaB. Immunity 26:605–616

    Article  CAS  PubMed  Google Scholar 

  29. Saraiva M, Christensen JR, Veldhoen M, Murphy TL, Murphy KM, O’Garra A (2009) Interleukin-10 production by Th1 cells requires interleukin-12-induced STAT4 transcription factor and ERK MAP kinase activation by high antigen dose. Immunity 31:209–219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kim C, Sano Y, Todorova K, Carlson BA, Arpa L, Celada A, Lawrence T, Otsu K, Brissette JL, Arthur JS, Park JM (2008) The kinase p38 alpha serves cell type-specific inflammatory functions in skin injury and coordinates pro- and anti-inflammatory gene expression. Nat Immunol 9:1019–1027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Jarnicki AG, Conroy H, Brereton C, Donnelly G, Toomey D, Walsh K, Sweeney C, Leavy O, Fletcher J, Lavelle EC et al (2008) Attenuating regulatory T cell induction by TLR agonists through inhibition of p38 MAPK signaling in dendritic cells enhances their efficacy as vaccine adjuvants and cancer immunotherapeutics. J Immunol 180:3797–3806

    Article  CAS  PubMed  Google Scholar 

  32. Foey AD, Parry SL, Williams LM, Feldmann M, Foxwell BM, Brennan FM (1998) Regulation of monocyte IL-10 synthesis by endogenous IL-1 and TNF-alpha: role of the p38 and p42/44 mitogen-activated protein kinases. J Immunol 160:920–928

    CAS  PubMed  Google Scholar 

  33. Saraiva M, O’Garra A (2010) The regulation of IL-10 production by immune cells. Nat Rev Immunol 10:170–181

    Article  CAS  PubMed  Google Scholar 

  34. Josephson K, Logsdon NJ, Walter MR (2001) Crystal structure of the IL-10/IL-10R1 complex reveals a shared receptor binding site. Immunity 15:35–46

    Article  CAS  PubMed  Google Scholar 

  35. Colonna M (2009) Interleukin-22-producing natural killer cells and lymphoid tissue inducer-like cells in mucosal immunity. Immunity 31:15–23

    Article  CAS  PubMed  Google Scholar 

  36. Dudakov JA, Hanash AM, van den Brink MR (2015) Interleukin-22: immunobiology and pathology. Annu Rev Immunol 33:747–785

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Eyerich S, Eyerich K, Pennino D, Carbone T, Nasorri F, Pallotta S, Cianfarani F, Odorisio T, Traidl-Hoffmann C, Behrendt H et al (2009) Th22 cells represent a distinct human T cell subset involved in epidermal immunity and remodeling. J Clin Investig 119:3573–3585

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Dumoutier L, Louahed J, Renauld JC (2000) Cloning and characterization of IL-10-related T cell-derived inducible factor (IL-TIF), a novel cytokine structurally related to IL-10 and inducible by IL-9. J Immunol 164:1814–1819

    Article  CAS  PubMed  Google Scholar 

  39. Dumoutier L, Van Roost E, Ameye G, Michaux L, Renauld JC (2000) IL-TIF/IL-22: genomic organization and mapping of the human and mouse genes. Genes Immun 1:488–494

    Article  CAS  PubMed  Google Scholar 

  40. Dumoutier L, Van Roost E, Colau D, Renauld JC (2000) Human interleukin-10-related T cell-derived inducible factor: molecular cloning and functional characterization as an hepatocyte-stimulating factor. Proc Natl Acad Sci USA 97:10144–10149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Goto M, Murakawa M, Kadoshima-Yamaoka K, Tanaka Y, Nagahira K, Fukuda Y, Nishimura T (2009) Murine NKT cells produce Th17 cytokine interleukin-22. Cell Immunol 254:81–84

    Article  CAS  PubMed  Google Scholar 

  42. Coquet JM, Chakravarti S, Kyparissoudis K, McNab FW, Pitt LA, McKenzie BS, Berzins SP, Smyth MJ, Godfrey DI (2008) Diverse cytokine production by NKT cell subsets and identification of an IL-17-producing CD4-NK1.1- NKT cell population. Proc Natl Acad Sci USA 105:11287–11292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Michel ML, Mendes-da-Cruz D, Keller AC, Lochner M, Schneider E, Dy M, Eberl G, Leite-de-Moraes MC (2008) Critical role of ROR-gammat in a new thymic pathway leading to IL-17-producing invariant NKT cell differentiation. Proc Natl Acad Sci USA 105:19845–19850

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Zindl CL, Lai JF, Lee YK, Maynard CL, Harbour SN, Ouyang W, Chaplin DD, Weaver CT (2013) IL-22-producing neutrophils contribute to antimicrobial defense and restitution of colonic epithelial integrity during colitis. Proc Natl Acad Sci USA 110:12768–12773

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Sender LY, Gibbert K, Suezer Y, Radeke HH, Kalinke U, Waibler Z (2010) CD40 ligand-triggered human dendritic cells mount interleukin-23 responses that are further enhanced by danger signals. Mol Immunol 47:1255–1261

    Article  CAS  PubMed  Google Scholar 

  46. Lee JS, Cella M, McDonald KG, Garlanda C, Kennedy GD, Nukaya M, Mantovani A, Kopan R, Bradfield CA, Newberry RD, Colonna M (2011) AHR drives the development of gut ILC22 cells and postnatal lymphoid tissues via pathways dependent on and independent of Notch. Nat Immunol 13:144–151

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Qiu J, Heller JJ, Guo X, Chen ZM, Fish K, Fu YX, Zhou L (2012) The aryl hydrocarbon receptor regulates gut immunity through modulation of innate lymphoid cells. Immunity 36:92–104

    Article  CAS  PubMed  Google Scholar 

  48. Rankin L, Groom JR, Chopin M, Herold MJ, Walker JA, Mielke LA, McKenzie ANJ, Carotta S, Nutt SL, Belz GT (2013) The transcription factor T-bet is essential for the development of NKp46+ innate lymphocytes via the Notch pathway (vol 14, pg 389, 2013). Nat Immunol 14:877–877

    Article  CAS  Google Scholar 

  49. Alam MS, Maekawa Y, Kitamura A, Tanigaki K, Yoshimoto T, Kishihara K, Yasutomo K (2010) Notch signaling drives IL-22 secretion in CD4+ T cells by stimulating the aryl hydrocarbon receptor. Proc Natl Acad Sci USA 107:5943–5948

    Article  PubMed  PubMed Central  Google Scholar 

  50. Liang SC, Tan XY, Luxenberg DP, Karim R, Dunussi-Joannopoulos K, Collins M, Fouser LA (2006) Interleukin (IL)-22 and IL-17 are coexpressed by Th17 cells and cooperatively enhance expression of antimicrobial peptides. J Exp Med 203:2271–2279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Zheng Y, Danilenko DM, Valdez P, Kasman I, Eastham-Anderson J, Wu J, Ouyang W (2007) Interleukin-22, a T(H)17 cytokine, mediates IL-23-induced dermal inflammation and acanthosis. Nature 445:648–651

    Article  CAS  PubMed  Google Scholar 

  52. Spits H, Artis D, Colonna M, Diefenbach A, Di Santo JP, Eberl G, Koyasu S, Locksley RM, McKenzie AN, Mebius RE et al (2013) Innate lymphoid cells—a proposal for uniform nomenclature. Nat Rev Immunol 13:145–149

    Article  CAS  PubMed  Google Scholar 

  53. Sawa S, Cherrier M, Lochner M, Satoh-Takayama N, Fehling HJ, Langa F, Di Santo JP, Eberl G (2010) Lineage relationship analysis of RORgammat + innate lymphoid cells. Science 330:665–669

    Article  CAS  PubMed  Google Scholar 

  54. Takatori H, Kanno Y, Watford WT, Tato CM, Weiss G, Ivanov II, Littman DR, O’Shea JJ (2009) Lymphoid tissue inducer-like cells are an innate source of IL-17 and IL-22. J Exp Med 206:35–41

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Rutz S, Noubade R, Eidenschenk C, Ota N, Zeng W, Zheng Y, Hackney J, Ding J, Singh H, Ouyang W (2011) Transcription factor c-Maf mediates the TGF-beta-dependent suppression of IL-22 production in T(H)17 cells. Nat Immunol 12:1238–1245

    Article  CAS  PubMed  Google Scholar 

  56. Paulos CM, Carpenito C, Plesa G, Suhoski MM, Varela-Rohena A, Golovina TN, Carroll RG, Riley JL, June CH (2010) The inducible costimulator (ICOS) is critical for the development of human T(H)17 cells. Sci Transl Med 2:55ra78

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Wang H, Li Z, Yang B, Yu S, Wu C (2013) IL-27 suppresses the production of IL-22 in human CD4+ T cells by inducing the expression of SOCS1. Immunol Lett 152:96–103

    Article  CAS  PubMed  Google Scholar 

  58. Niess JH, Hruz P, Kaymak T (2018) The interleukin-20 cytokines in intestinal diseases. Front Immunol 9:1373

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Sonnenberg GF, Fouser LA, Artis D (2011) Border patrol: regulation of immunity, inflammation and tissue homeostasis at barrier surfaces by IL-22. Nat Immunol 12:383–390

    Article  CAS  PubMed  Google Scholar 

  60. Witte E, Kokolakis G, Witte K, Philipp S, Doecke WD, Babel N, Wittig BM, Warszawska K, Kurek A, Erdmann-Keding M et al (2014) IL-19 Is a component of the pathogenetic IL-23/IL-17 cascade in psoriasis. J Invest Dermatol 134:2757–2767

    Article  CAS  PubMed  Google Scholar 

  61. Andoh A, Zhang Z, Inatomi O, Fujino S, Deguchi Y, Araki Y, Tsujikawa T, Kitoh K, Kim-Mitsuyama S, Takayanagi A et al (2005) Interleukin-22, a member of the IL-10 subfamily, induces inflammatory responses in colonic subepithelial myofibroblasts. Gastroenterology 129:969–984

    Article  CAS  PubMed  Google Scholar 

  62. Jones BC, Logsdon NJ, Walter MR (2008) Structure of IL-22 bound to its high-affinity IL-22R1 chain. Structure 16:1333–1344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Blumberg H, Conklin D, Xu WF, Grossmann A, Brender T, Carollo S, Eagan M, Foster D, Haldeman BA, Hammond A et al (2001) Interleukin 20: discovery, receptor identification, and role in epidermal function. Cell 104:9–19

    Article  CAS  PubMed  Google Scholar 

  64. Dumoutier L, Leemans C, Lejeune D, Kotenko SV, Renauld JC (2001) Cutting edge: STAT activation by IL-19, IL-20 and MDA-7 through IL-20 receptor complexes of two types. J Immunol 167:3545–3549

    Article  CAS  PubMed  Google Scholar 

  65. Reiss-Mandel A, Rubin C, Zayoud M, Rahav G, Regev-Yochay G (2018) Staphylococcus aureus Colonization Induces Strain-Specific Suppression of Interleukin-17. Infect Immun 86

    Google Scholar 

  66. Anuradha R, Munisankar S, Dolla C, Kumaran P, Nutman TB, Babu S (2016) Modulation of CD4+ and CD8+ T-cell function by interleukin 19 and interleukin 24 during filarial infections. J Infect Dis 213:811–815

    Article  CAS  PubMed  Google Scholar 

  67. Myles IA, Fontecilla NM, Valdez PA, Vithayathil PJ, Naik S, Belkaid Y, Ouyang W, Datta SK (2013) Signaling via the IL-20 receptor inhibits cutaneous production of IL-1beta and IL-17A to promote infection with methicillin-resistant Staphylococcus aureus. Nat Immunol 14:804–811

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Azuma YT, Matsuo Y, Kuwamura M, Yancopoulos GD, Valenzuela DM, Murphy AJ, Nakajima H, Karow M, Takeuchi T (2010) Interleukin-19 protects mice from innate-mediated colonic inflammation. Inflamm Bowel Dis 16:1017–1028

    Article  PubMed  Google Scholar 

  69. Canto E, Garcia Planella E, Zamora-Atenza C, Nieto JC, Gordillo J, Ortiz MA, Meton I, Serrano E, Vegas E, Garcia-Bosch O et al (2014) Interleukin-19 impairment in active Crohn’s disease patients. PLoS ONE 9:e93910

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Liao YC, Liang WG, Chen FW, Hsu JH, Yang JJ, Chang MS (2002) IL-19 induces production of IL-6 and TNF-alpha and results in cell apoptosis through TNF-alpha. J Immunol 169:4288–4297

    Article  CAS  PubMed  Google Scholar 

  71. Sun DP, Yeh CH, So E, Wang LY, Wei TS, Chang MS, Hsing CH (2013) Interleukin (IL)-19 promoted skin wound healing by increasing fibroblast keratinocyte growth factor expression. Cytokine 62:360–368

    Article  CAS  PubMed  Google Scholar 

  72. Hsing CH, Chiu CJ, Chang LY, Hsu CC, Chang MS (2008) IL-19 is involved in the pathogenesis of endotoxic shock. Shock 29:7–15

    CAS  PubMed  Google Scholar 

  73. Liao SC, Cheng YC, Wang YC, Wang CW, Yang SM, Yu CK, Shieh CC, Cheng KC, Lee MF, Chiang SR et al (2004) IL-19 induced Th2 cytokines and was up-regulated in asthma patients. J Immunol 173:6712–6718

    Article  CAS  PubMed  Google Scholar 

  74. Chan JR, Blumenschein W, Murphy E, Diveu C, Wiekowski M, Abbondanzo S, Lucian L, Geissler R, Brodie S, Kimball AB et al (2006) IL-23 stimulates epidermal hyperplasia via TNF and IL-20R2-dependent mechanisms with implications for psoriasis pathogenesis. J Exp Med 203:2577–2587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Dambacher J, Beigel F, Zitzmann K, De Toni EN, Goke B, Diepolder HM, Auernhammer CJ, Brand S (2009) The role of the novel Th17 cytokine IL-26 in intestinal inflammation. Gut 58:1207–1217

    Article  CAS  PubMed  Google Scholar 

  76. Fonseca-Camarillo G, Furuzawa-Carballeda J, Granados J, Yamamoto-Furusho JK (2014) Expression of interleukin (IL)-19 and IL-24 in inflammatory bowel disease patients: a cross-sectional study. Clin Exp Immunol 177:64–75

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Fonseca-Camarillo G, Furuzawa-Carballeda J, Llorente L, Yamamoto-Furusho JK (2013) IL-10– and IL-20–expressing epithelial and inflammatory cells are increased in patients with ulcerative colitis. J Clin Immunol 33:640–648

    Article  CAS  PubMed  Google Scholar 

  78. Steinert A, Linas I, Kaya B, Ibrahim M, Schlitzer A, Hruz P, Radulovic K, Terracciano L, Macpherson AJ, Niess JH (2017) The stimulation of macrophages with TLR ligands supports increased IL-19 expression in inflammatory bowel disease patients and in colitis models. J Immunol 199:2570–2584

    Article  CAS  PubMed  Google Scholar 

  79. Chang C, Magracheva E, Kozlov S, Fong S, Tobin G, Kotenko S, Wlodawer A, Zdanov A (2003) Crystal structure of interleukin-19 defines a new subfamily of helical cytokines. J Biol Chem 278:3308–3313

    Article  CAS  PubMed  Google Scholar 

  80. Gedebjerg A, Johansen C, Kragballe K, Iversen L (2013) IL-20, IL-21 and p40: potential biomarkers of treatment response for ustekinumab. Acta dermato-venereologica 93:150–155

    Article  CAS  PubMed  Google Scholar 

  81. Wei CC, Hsu YH, Li HH, Wang YC, Hsieh MY, Chen WY, Hsing CH, Chang MS (2006) IL-20: biological functions and clinical implications. J Biomed Sci 13:601–612

    Article  CAS  PubMed  Google Scholar 

  82. Hsieh MY, Chen WY, Jiang MJ, Cheng BC, Huang TY, Chang MS (2006) Interleukin-20 promotes angiogenesis in a direct and indirect manner. Genes Immun 7:234–242

    Article  CAS  PubMed  Google Scholar 

  83. Hsu YH, Chiu YS, Chen WY, Huang KY, Jou IM, Wu PT, Wu CH, Chang MS (2016) Anti-IL-20 monoclonal antibody promotes bone fracture healing through regulating IL-20-mediated osteoblastogenesis. Sci Rep 6:24339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Hsu YH, Hsing CH, Li CF, Chan CH, Chang MC, Yan JJ, Chang MS (2012) Anti-IL-20 monoclonal antibody suppresses breast cancer progression and bone osteolysis in murine models. J Immunol 188:1981–1991

    Article  CAS  PubMed  Google Scholar 

  85. Lee SJ, Cho SC, Lee EJ, Kim S, Lee SB, Lim JH, Choi YH, Kim WJ, Moon SK (2013) Interleukin-20 promotes migration of bladder cancer cells through extracellular signal-regulated kinase (ERK)-mediated MMP-9 protein expression leading to nuclear factor (NF-kappaB) activation by inducing the up-regulation of p21(WAF1) protein expression. J Biol Chem 288:5539–5552

    Article  CAS  PubMed  Google Scholar 

  86. Logsdon NJ, Deshpande A, Harris BD, Rajashankar KR, Walter MR (2012) Structural basis for receptor sharing and activation by interleukin-20 receptor-2 (IL-20R2) binding cytokines. P Natl Acad Sci USA 109:12704–12709

    Article  CAS  Google Scholar 

  87. Jiang H, Lin JJ, Su ZZ, Goldstein NI, Fisher PB (1995) Subtraction hybridization identifies a novel melanoma differentiation associated gene, MDA-7, modulated during human melanoma differentiation, growth and progression. Oncogene 11:2477–2486

    CAS  PubMed  Google Scholar 

  88. Andoh A, Shioya M, Nishida A, Bamba S, Tsujikawa T, Kim-Mitsuyama S, Fujiyama Y (2009) Expression of IL-24, an activator of the JAK1/STAT3/SOCS3 cascade, is enhanced in inflammatory bowel disease. J Immunol 183:687–695

    Article  CAS  PubMed  Google Scholar 

  89. Kragstrup TW, Otkjaer K, Holm C, Jorgensen A, Hokland M, Iversen L, Deleuran B (2008) The expression of IL-20 and IL-24 and their shared receptors are increased in rheumatoid arthritis and spondyloarthropathy. Cytokine 41:16–23

    Article  CAS  PubMed  Google Scholar 

  90. Uto-Konomi A, Miyauchi K, Ozaki N, Motomura Y, Suzuki Y, Yoshimura A, Suzuki S, Cua D, Kubo M (2012) Dysregulation of suppressor of cytokine signaling 3 in keratinocytes causes skin inflammation mediated by interleukin-20 receptor-related cytokines. PLoS ONE 7:e40343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Ross BX, Gao N, Cui X, Standiford TJ, Xu J, Yu FX (2017) IL-24 promotes pseudomonas aeruginosa keratitis in C57BL/6 mouse corneas. J Immunol 198:3536–3547

    Article  CAS  PubMed  Google Scholar 

  92. Ma YF, Chen HD, Wang YB, Wang QL, Li YY, Zhao YL, Zhang XL (2011) Interleukin 24 as a novel potential cytokine immunotherapy for the treatment of Mycobacterium tuberculosis infection. Microbes Infect 13:1099–1110

    Article  CAS  PubMed  Google Scholar 

  93. Whitaker EL, Filippov VA, Duerksen-Hughes PJ (2012) Interleukin 24: mechanisms and therapeutic potential of an anti-cancer gene. Cytokine Growth F R 23:323–331

    Article  CAS  Google Scholar 

  94. Lubkowski J, Sonmez C, Smirnov SV, Anishkin A, Kotenko SV, Wlodawer A (2018) Crystal structure of the labile complex of IL-24 with the extracellular domains of IL-22R1 and IL-20R2. J Immunol 201:2082–2093

    Article  CAS  PubMed  Google Scholar 

  95. Knappe A, Hor S, Wittmann S, Fickenscher H (2000) Induction of a novel cellular homolog of interleukin-10, AK155, by transformation of T lymphocytes with herpesvirus saimiri. J Virol 74:3881–3887

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Stephen-Victor E, Fickenscher H, Bayry J (2016) IL-26: an emerging proinflammatory member of the IL-10 cytokine family with multifaceted actions in antiviral, antimicrobial, and autoimmune responses. PLoS Pathog 12:e1005624

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  97. Sheikh F, Baurin VV, Lewis-Antes A, Shah NK, Smirnov SV, Anantha S, Dickensheets H, Dumoutier L, Renauld JC, Zdanov A et al (2004) Cutting edge: IL-26 signals through a novel receptor complex composed of IL-20 receptor 1 and IL-10 receptor 2. J Immunol 172:2006–2010

    Article  CAS  PubMed  Google Scholar 

  98. Miot C, Beaumont E, Duluc D, Le Guillou-Guillemette H, Preisser L, Garo E, Blanchard S, Hubert Fouchard I, Creminon C, Lamourette P et al (2015) IL-26 is overexpressed in chronically HCV-infected patients and enhances TRAIL-mediated cytotoxicity and interferon production by human NK cells. Gut 64:1466–1475

    Article  CAS  PubMed  Google Scholar 

  99. Meller S, Di Domizio J, Voo KS, Friedrich HC, Chamilos G, Ganguly D, Conrad C, Gregorio J, Le Roy D, Roger T et al (2015) T(H)17 cells promote microbial killing and innate immune sensing of DNA via interleukin 26. Nat Immunol 16:970–979

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bofeng Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wei, H., Li, B., Sun, A., Guo, F. (2019). Interleukin-10 Family Cytokines Immunobiology and Structure. In: Jin, T., Yin, Q. (eds) Structural Immunology. Advances in Experimental Medicine and Biology, vol 1172. Springer, Singapore. https://doi.org/10.1007/978-981-13-9367-9_4

Download citation

Publish with us

Policies and ethics