Skip to main content

Advertisement

Log in

A Review on Potential Footprints of Ferulic Acid for Treatment of Neurological Disorders

  • Review
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Ferulic acid is being screened in preclinical settings to combat various neurological disorders. It is a naturally occurring dietary flavonoid commonly found in grains, fruits, and vegetables such as rice, wheat, oats, tomatoes, sweet corn etc., which exhibits protective effects against a number of neurological diseases such as epilepsy, depression, ischemia-reperfusion injury, Alzheimer’s disease, and Parkinson’s disease. Ferulic acid prevents and treats different neurological diseases pertaining to its potent anti-oxidative and anti-inflammatory effects, beside modulating unique neuro-signaling pathways. It stays in the bloodstream for longer periods than other dietary polyphenols and antioxidants and easily crosses blood brain barrier. The use of novel drug delivery systems such as solid-lipid nanoparticles (SLNs) or its salt forms (sodium ferulate, ethyl ferulate, and isopentyl ferulate) further enhance its bioavailability and cerebral penetration. Based on reported studies, ferulic acid appears to be a promising molecule for treatment of neurological disorders; however, more preclinical (in vitro and in vivo) mechanism-based studies should be planned and conceived followed by its testing in clinical settings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Parvez MK (2018) Natural or plant products for the treatment of neurological disorders: current knowledge. Curr Drug Metab 19:424–428. https://doi.org/10.2174/1389200218666170710190249

    Article  CAS  PubMed  Google Scholar 

  2. Kumar GP, Khanum F (2012) Neuroprotective potential of phytochemicals. Pharmacogn Rev 6:81–90. https://doi.org/10.4103/0973-7847.99898

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Velmurugan BK, Rathinasamy B, Lohanathan BP et al (2018) Neuroprotective role of phytochemicals. Molecules 23:2485. https://doi.org/10.3390/molecules23102485

    Article  CAS  PubMed Central  Google Scholar 

  4. Kumar GP, Anilakumar KR, Naveen S (2014) Phytochemicals having neuroprotective properties from dietary sources and medicinal herbs. Phcog J 7:1–17. https://doi.org/10.5530/pj.2015.7.1

    Article  CAS  Google Scholar 

  5. Wang J, Song Y, Gao M et al (2016) Neuroprotective effect of several phytochemicals and its potential application in the prevention of neurodegenerative diseases. Geriatrics 1:29. https://doi.org/10.3390/geriatrics1040029

    Article  PubMed Central  Google Scholar 

  6. Zhang YJ, Gan RY, Li S et al (2015) Antioxidant phytochemicals for the prevention and treatment of chronic diseases. Molecules 20:21138–21156. https://doi.org/10.3390/molecules201219753

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Szwajgier D, Borowiec K, Pustelniak K (2017) The neuroprotective effects of phenolic acids: molecular mechanism of action. Nutrients 9:477

    Article  PubMed Central  Google Scholar 

  8. Teengam P, Nunant N, Rattanarat P et al (2013) Simple and rapid determination of ferulic acid levels in food and cosmetic samples using paper-based platforms. Sensors 13:13039–13053. https://doi.org/10.3390/s131013039

    Article  CAS  Google Scholar 

  9. Hou Y, Yang J, Zhao G et al (2004) Ferulic acid inhibits endothelial cell proliferation through NO down-regulating ERK1/2 pathway. J Cell Biochem 93:1203–1209. https://doi.org/10.1002/jcb.20281

    Article  CAS  PubMed  Google Scholar 

  10. Narasimhan A, Chinnaiyan M, Karundevi B (2015) Ferulic acid exerts its antidiabetic effect by modulating insulin-signalling molecules in the liver of high-fat diet and fructose-induced type-2 diabetic adult male rat. Appl Physiol Nutr Metab 40:769–781. https://doi.org/10.1139/apnm-2015-0002

    Article  CAS  PubMed  Google Scholar 

  11. Rehman SU, Ali T, Alam SI et al (2019) Ferulic acid rescues LPS-induced neurotoxicity via modulation of the TLR4 receptor in the mouse hippocampus. Mol Neurobiol 56:2774–2790. https://doi.org/10.1007/s12035-018-1280-9

    Article  CAS  PubMed  Google Scholar 

  12. Grasso R, Dell Albani P, Carbone C et al (2020) Synergic pro-apoptotic effects of ferulic Acid and nanostructured lipid carrier in glioblastoma cells assessed through molecular and delayed luminescence studies. Sci Rep 10:4680. https://doi.org/10.1038/s41598-020-61670-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kumar N, Pruthi V (2014) Potential applications of ferulic acid from natural sources. Biotechnology Reports 4:86–93. https://doi.org/10.1016/j.btre.2014.09.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Wu K, Wang ZZ, Liu D et al (2014) Pharmacokinetics, brain distribution, release and blood–brain barrier transport of Shunaoxin pills. J Ethnopharmacol 151:1133–1140. https://doi.org/10.1016/j.jep.2013.12.027

    Article  CAS  PubMed  Google Scholar 

  15. Chang MX, Xu LY, Tao JS et al (1993) Metabolism and pharmacokinetics of ferulic acid in rats. Zhongguo Zhong Yao Za Zhi 18:300–302,319 (in Chinese)

    CAS  PubMed  Google Scholar 

  16. Wang BH, Ouyang JP (2006) Pharmacological actions of sodium ferulate in cardiovascular system. Cardiovasc Drug Rev 23:161–172. https://doi.org/10.1111/j.1527-3466.2005.tb00163.x

    Article  Google Scholar 

  17. Zhang MF (1990) Sodium ferulate in the prevention of atherogenesis. Zhong Cao Yao 21:41–43 (in Chinese)

    CAS  Google Scholar 

  18. Deng H, Jiang F, Lei QR (2004) Inhibition of ET-1-induced proliferation of vascular smooth muscle cells from patients with hypertension by sodium ferulate. Chin J Cardiovasc Rev 2:105–108 (in Chinese)

    Google Scholar 

  19. Bumrungpert A, Lilitchan S, Tuntipopipat S et al (2018) Ferulic acid supplementation improves lipid profiles, oxidative stress, and inflammatory status in hyperlipidemic subjects: A randomized, double-blind, placebo-controlled clinical trial. Nutrients 10:713. https://doi.org/10.3390/nu10060713

    Article  CAS  PubMed Central  Google Scholar 

  20. Yeh YH, Lee YT, Hsieh HS et al (2009) Dietary caffeic acid, ferulic acid and coumaric acid supplements on cholesterol metabolism and antioxidant activity in rats. J Food Drug Anal 17:123–132

    CAS  Google Scholar 

  21. Kwon EY, Do GM, Cho YY et al (2010) Anti-atherogenic property of ferulic acid in apolipoprotein E-deficient mice fed Western diet: comparison with clofibrate. Food Chem Toxicol 48:2298–2303. https://doi.org/10.1016/j.fct.2010.05.063

    Article  CAS  PubMed  Google Scholar 

  22. Wang B, Ouyang J, Liu Y et al (2004) Sodium ferulate inhibits atherosclerogenesis in hyperlipidemia rabbits. J Cardiovasc Pharmacol 43:549–554. https://doi.org/10.1097/00005344-200404000-00010

    Article  CAS  PubMed  Google Scholar 

  23. Xu LN, Ouyang R (1981) Antithrombotic effect of sodium ferulate in rats (author’s transl). Zhongguo Yao Li Xue Bao 2:35–37 (in Chinese)

    CAS  PubMed  Google Scholar 

  24. Zhui Y, Jing Ping OY, Yongming L et al (2000) Experimental study of the antiatherogenesis effect of Chinese medicine angelica and its mechanisms. Clin Hemorheol Microcirc 22:305–310

    CAS  PubMed  Google Scholar 

  25. Wang JJ, Han JC, Yang Z (2004) Effective observation of sodium ferulate for treatment of coronary heart disease unstable angina pectoris. J Chin Clin Med 5:87–88 (in Chinese)

    Google Scholar 

  26. Wang YL (2003) Effective observation of sodium ferulate injection on CHD. J Henan Med Coll Staff Works China 15:76 (in Chinese)

    Google Scholar 

  27. Wei CL (2002) Observation on the effects of sodium ferulate in the treatment of patients with unstable angina pectoris. China J Modern Med 12:77–78 (in Chinese)

    Google Scholar 

  28. Yang T, Song XD, Zhang H (2001) A compared observation of sodium ferulate for treatment of unstable angina pectoris. J Xinxiang Med Coll China 18:421–422 (in Chinese)

    Google Scholar 

  29. Yang YZ, Huang WX (2003) Clinical research on the treatment of sodium ferulate in angina pectoris of coronary heart disease. Acta Med Sin 16:301–302 (in Chinese)

    Google Scholar 

  30. Zeng QY (1995) Di-ao-xin-xue-kang capsule in treating acute myocardial infarction. New Drugs Clin Remedies China 14:343–346 (in Chinese)

    Google Scholar 

  31. Li ZD, Li L (2004) Treating 40 patients of coronary heart disease with angina pectoris by sodium ferulate injection. J Emerg Syndromes Chin Med 13:318–319 (in Chinese)

    Google Scholar 

  32. Xu XY, Wang Q (1991) The influence of sodium ferulate on hypotensive effects and urinary excretion of TXB2 after captopril in essential hypertensive patients. Zhong Xi Yi Jie He Za Zhi 11:657–658, 644 (in Chinese)

    CAS  PubMed  Google Scholar 

  33. Song Y, Zhang C, Wang C et al (2016) Ferulic acid against cyclophosphamide-induced heart toxicity in mice by inhibiting NF- κB pathway. Evidence-Based Complementary Alternative Medicine 2016:1–8. https://doi.org/10.1155/2016/1261270

    Article  Google Scholar 

  34. Smith RE, Tran K, Smith CC et al (2016) The role of the Nrf2/ARE antioxidant system in preventing cardiovascular diseases. Diseases 4:34. https://doi.org/10.3390/diseases4040034

    Article  CAS  PubMed Central  Google Scholar 

  35. Sivandzade F, Prasad S, Bhalerao A et al (2019) Nrf2 and NF-қB interplay in cerebrovascular and neurodegenerative disorders: Molecular mechanisms and possible therapeutic approaches. Redox Biol 21:101059. https://doi.org/10.1016/j.redox.2018.11.017

    Article  CAS  PubMed  Google Scholar 

  36. Singh N, Vijayanti S, Saha L (2018) Targeting crosstalk between Nuclear factor (erythroid-derived 2)-like 2 and Nuclear factor kappa beta pathway by Nrf2 activator dimethyl fumarate in epileptogenesis. Int J Neurosci 128:987–994. https://doi.org/10.1080/00207454.2018.1441149

    Article  CAS  PubMed  Google Scholar 

  37. Liddell JR (2017) Interplay between Nrf2 and NF-κB in Neuroinflammatory Diseases. J Clin Cell Immunol 8:489. https://doi.org/10.4172/2155-9899.1000489

    Article  CAS  Google Scholar 

  38. Cuadrado A, Manda G, Hassan A et al (2018) Transcription factor Nrf2 as a therapeutic target for chronic diseases: a systems medicine approach. Pharmacol Rev 70:348–383. https://doi.org/10.1124/pr.117.014753

    Article  CAS  PubMed  Google Scholar 

  39. Dai Y, Zhang H, Zhang J, Yan M (2018) Isoquercetin attenuates oxidative stress and neuronal apoptosis after ischemia/reperfusion injury via Nrf2-mediated inhibition of the NOX4/ROS/NF-κB pathway. Chem Biol Interact 284:32–40. https://doi.org/10.1016/j.cbi.2018.02.017

    Article  CAS  PubMed  Google Scholar 

  40. Wardyn JD, Ponsford AH, Sanderson CM (2015) Dissecting molecular cross-talk between Nrf2 and NF-κB response pathways. Biochem Soc Trans 43:621–626. https://doi.org/10.1042/BST20150014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Yang J, Su J, Wan F et al (2017) Tissue kallikrein protects against ischemic stroke by suppressing TLR4/NF-κB and activating Nrf2 signaling pathway in rats. Exp Ther Med 14:1163–1170. https://doi.org/10.3892/etm.2017.4614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Ren Z, Zhang R, Li Y et al (2017) Ferulic acid exerts neuroprotective effects against cerebral ischemia/reperfusion-induced injury via antioxidant and anti-apoptotic mechanisms in vitro and in vivo. Int J Mol Med 40:1444–1456. https://doi.org/10.3892/ijmm.2017.3127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Cheng C, Su S, Tang N et al (2010) Ferulic acid inhibits nitric oxide-induced apoptosis by enhancing GABAB1 receptor expression in transient focal cerebral ischemia in rats. Acta Pharmacol Sin 31:889–899. https://doi.org/10.1038/aps.2010.66

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Srinivasan M, Sudheer AR, Menon VP (2007) Ferulic Acid: therapeutic potential through its antioxidant property. J Clin Biochem Nutr 40:92–100. https://doi.org/10.3164/jcbn.40.92

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Le W, Xie W, Appel SH (1999) Protective role of hemeoxygenase-1 in oxidative stress-induced neuronal injury. J Neurosci Res 56:652–658. https://doi.org/10.1002/(SICI)1097-4547(19990615)56:6<652::AID-JNR11>3.0.CO;2-5

    Article  CAS  PubMed  Google Scholar 

  46. Scapagnini G, Butterfield DA, Colombrita C et al (2004) Ethyl ferulate, a lipophilic polyphenol, induces HO-1 and protects rat neurons against oxidative stress. Antioxid Redox Signal 6:811–818. https://doi.org/10.1089/ars.2004.6.811

    Article  CAS  PubMed  Google Scholar 

  47. Sun J, Hoshino H, Takaku K et al (2002) Hemoprotein Bach1 regulates enhancer availability of heme oxygenase-1 gene. EMBO J 21:5216–5224. https://doi.org/10.1093/emboj/cdf516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Liu X, Yan Y, Li F et al (2016) Fruit and vegetable consumption and the risk of depression: A meta-analysis. Nutrition 32:296–302. https://doi.org/10.1016/j.nut.2015.09.009

    Article  CAS  PubMed  Google Scholar 

  49. Grosso G, Micek A, Castellano S, Pajak A et al (2016) Coffee, tea, caffeine and risk of depression: A systematic review and dose-response meta-analysis of observational studies. Mol Nutr Food Res 60:223–234. https://doi.org/10.1002/mnfr.201500620

    Article  CAS  PubMed  Google Scholar 

  50. Barrientos RM, Sprunger DB, Campeau S et al (2003) Brain-derived neurotrophic factor mRNA downregulation produced by social isolation is blocked by intrahippocampal interleukin-1 receptor antagonist. Neuroscience 121:847–853. https://doi.org/10.1016/S0306-4522(03)00564-5

    Article  CAS  PubMed  Google Scholar 

  51. You Z, Luo C, Zhang W et al (2011) Pro- and anti-inflammatory cytokines expression in rat’s brain and spleen exposed to chronic mild stress: involvement in depression. Behav Brain Res 225:135–141. https://doi.org/10.1016/j.bbr.2011.07.006

    Article  CAS  PubMed  Google Scholar 

  52. Duman RS, Monteggia LM (2006) A neurotrophic model for stress-related mood disorders. Biol Psychiatry 59:1116–1127. https://doi.org/10.1016/j.biopsych.2006.02.013

    Article  CAS  PubMed  Google Scholar 

  53. Yabe T, Hirahara H, Harada N et al (2010) Ferulic acid induces neural progenitor cell proliferation in vitro and in vivo. Neuroscience 165:515–524. https://doi.org/10.1016/j.neuroscience.2009.10.023

    Article  CAS  PubMed  Google Scholar 

  54. Yu L, Zhang Y, Ma R et al (2006) Potent protection of ferulic acid against excitotoxic effects of maternal intragastric administration of monosodium glutamate at a late stage of pregnancy on developing mouse fetal brain. Eur Neuropsychopharmacol 16:170–177. https://doi.org/10.1016/j.euroneuro.2005.08.006

    Article  CAS  PubMed  Google Scholar 

  55. Ghasemi M, Schachter SC (2011) The NMDA receptor complex as a therapeutic target in epilepsy: a review. Epilepsy Behav 22:617–640. https://doi.org/10.1016/j.yebeh.2011.07.024

    Article  PubMed  Google Scholar 

  56. Thakur P, Nehru B (2013) Anti-inflammatory properties rather than anti-oxidant capability is the major mechanism of neuroprotection by sodium salicylate in a chronic rotenone model of Parkinson’s disease. Neuroscience 231:420–431. https://doi.org/10.1016/j.neuroscience.2012.11.006

    Article  CAS  PubMed  Google Scholar 

  57. McCarty MF, Assanga SB (2018) Ferulic acid may target MyD88-mediated pro-inflammatory signaling – Implications for the health protection afforded by whole grains, anthocyanins, and coffee. Med Hypotheses 118:114–120. https://doi.org/10.1016/j.mehy.2018.06.032

    Article  CAS  PubMed  Google Scholar 

  58. Schapira AHV, Olanow CW, Greenamyre JT et al (2014) Slowing of neurodegeneration in Parkinson’s disease and Huntington’s disease: future therapeutic perspectives. Lancet 384:545–555. https://doi.org/10.1016/S0140-6736(14)61010-2

    Article  CAS  PubMed  Google Scholar 

  59. Pi R, Mao X, Chao X et al (2012) Tacrine-6-Ferulic Acid, a novel multifunctional dimer, inhibits Amyloid-β-mediated Alzheimer’s disease-associated pathogenesis in vitro and in vivo. PLoS One 7:e31921. https://doi.org/10.1371/journal.pone.0031921

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Fisher RS, Acevedo C, Arzimanoglou A et al (2014) ILAE official report: A practical clinical definition of epilepsy. Epilepsia 55:475–482. https://doi.org/10.1111/epi.12550

    Article  PubMed  Google Scholar 

  61. Singh T, Joshi S, Williamson JM et al (2020) Neocortical injury–induced status epilepticus. Epilepsia 61:2811–2824. https://doi.org/10.1111/epi.16715

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Mendez Armenta M, Nava Ruíz C, Juárez Rebollar D et al (2014) Oxidative stress associated with neuronal apoptosis in experimental models of epilepsy. Oxid Med Cell Longev 2014:1–12. https://doi.org/10.1155/2014/293689

    Article  Google Scholar 

  63. Eastman CL, Ambrosio D, Ganesh R T (2019) Modulating neuroinflammation and oxidative stress to prevent epilepsy and improve outcomes after traumatic brain injury. Neuropharmacology 72:107907. https://doi.org/10.1016/j.neuropharm.2019.107907

    Article  CAS  Google Scholar 

  64. Grigoletto J, de Oliveira CV, Grauncke AC et al (2016) Rosmarinic acid is anticonvulsant against seizures induced by pentylenetetrazol and pilocarpine in mice. Epilepsy Behav 62:27–34. https://doi.org/10.1016/j.yebeh.2016.06.037

    Article  PubMed  Google Scholar 

  65. Sandhir R, Kaur H (2019) Potential therapeutic impacts of curcumin in treating epilepsy. In: Curcumin for Neurological and Psychiatric Disorders. Elsevier: 381–399. Academic Press

  66. Hussein AM, Abbas KM, Abulseoud OA et al (2017) Effects of ferulic acid on oxidative stress, heat shock protein 70, connexin 43, and monoamines in the hippocampus of pentylenetetrazole-kindled rats. Can J Physiol Pharmacol 95:732–742. https://doi.org/10.1139/cjpp-2016-0219

    Article  CAS  PubMed  Google Scholar 

  67. Mylvaganam S, Ramani M, Krawczyk M et al (2014) Roles of gap junctions, connexins, and pannexins in epilepsy. Front Physiol 5:172. https://doi.org/10.3389/fphys.2014.00172

    Article  PubMed  PubMed Central  Google Scholar 

  68. Nakase T, Naus CCG (2004) Gap junctions and neurological disorders of the central nervous system. Biochim Biophys Acta 1662:149–158. https://doi.org/10.1016/j.bbamem.2004.01.009

    Article  CAS  PubMed  Google Scholar 

  69. Machado KC, Oliveira GLS, Machado KC et al (2015) Anticonvulsant and behavioral effects observed in mice following treatment with an ester derivative of ferulic acid: Isopentyl ferulate. Chem Biol Interact 242:273–279. https://doi.org/10.1016/j.cbi.2015.10.003

    Article  CAS  PubMed  Google Scholar 

  70. Hassanzadeh P, Arbabi E, Atyabi F et al (2017) Ferulic acid exhibits antiepileptogenic effect and prevents oxidative stress and cognitive impairment in the kindling model of epilepsy. Life Sci 179:9–14. https://doi.org/10.1016/j.lfs.2016.08.011

    Article  CAS  PubMed  Google Scholar 

  71. Weinshenker D, Szot P (2002) The role of catecholamines in seizure susceptibility: new results using genetically engineered mice. Pharmacol Ther 94:213–233. https://doi.org/10.1016/S0163-7258(02)00218-8

    Article  CAS  PubMed  Google Scholar 

  72. Izquierdo I, Medina JH (1997) Memory Formation: the sequence of biochemical events in the hippocampus and its connection to activity in other brain structures. Neurobiol Learn Mem 68:285–316. https://doi.org/10.1006/nlme.1997.3799

    Article  CAS  PubMed  Google Scholar 

  73. Starr MS (1996) The role of dopamine in epilepsy. Synapse 22:159–194. https://doi.org/10.1002/(SICI)1098-2396(199602)22:2<159::AID-SYN8>3.0.CO;2-C

    Article  CAS  PubMed  Google Scholar 

  74. Jobe PC, Dailey JW, Wernicke JF (1999) A Noradrenergic and Serotonergic Hypothesis of the Linkage Between Epilepsy and Affective Disorders. Crit Rev Neurobiol 13:317–356. https://doi.org/10.1615/CritRevNeurobiol.v13.i4.10

    Article  CAS  PubMed  Google Scholar 

  75. Applegate CD, Burchfiel JL, Konkol RJ (1986) Kindling antagonism: effects of norepinephrine depletion on kindled seizure suppression after concurrent, alternate stimulation in rats. Exp Neurol 94:379–390. https://doi.org/10.1016/0014-4886(86)90111-1

    Article  CAS  PubMed  Google Scholar 

  76. Corcoran M (1988) Characteristics of accelerated kindling after depletion of noradrenaline in adult rats. Neuropharmacology 27:1081–1084. https://doi.org/10.1016/0028-3908(88)90072-X

    Article  CAS  PubMed  Google Scholar 

  77. Racine R, Coscina DV (1979) Effects of midbrain raphe lesions or systemic p-chlorophenylalanine on the development of kindled seizures in rats. Brain Res Bull 4:1–7. https://doi.org/10.1016/0361-9230(79)90050-9

    Article  CAS  PubMed  Google Scholar 

  78. Zis AP, Nomikos GG, Brown EE et al (1992) Neurochemical effects of electrically and chemically induced seizures: an in vivo microdialysis study in the rat hippocampus. Neuropsychopharmacology 7:189–195

    CAS  PubMed  Google Scholar 

  79. Chen G, Ensor CR, Bohner B (1954) A facilitation action of reserpine on the central nervous system. Exp Biol Med 86:507–510. https://doi.org/10.3181/00379727-86-21149

    Article  CAS  Google Scholar 

  80. Zhang SH, Liu D, Hu Q et al (2019) Ferulic acid ameliorates pentylenetetrazol-induced seizures by reducing neuron cell death. Epilepsy Res 156:106183. https://doi.org/10.1016/j.eplepsyres.2019.106183

    Article  CAS  PubMed  Google Scholar 

  81. Chitra KK, Babitha S, Durg S et al (2014) Anti-epileptic and anti-psychotic effects of Ipomoea reniformis (Convolvulaceae) in experimental animals. J Nat Remedies 14:153–163

    Google Scholar 

  82. Perucca E, Meador KJ (2005) Adverse effects of antiepileptic drugs. Acta Neurol Scand 112:30–35. https://doi.org/10.1111/j.1600-0404.2005.00506.x

    Article  Google Scholar 

  83. Schachter SC, Garcia Cairasco N, Kanner AM (2014) Introduction to epilepsies: complexity and comorbidities. Epilepsy Behav 38:1–2. https://doi.org/10.1016/j.yebeh.2014.06.035

    Article  PubMed  Google Scholar 

  84. Barry JJ, Ettinger AB, Friel P et al (2008) Consensus statement: The evaluation and treatment of people with epilepsy and affective disorders. Epilepsy Behav 13:S1–S29. https://doi.org/10.1016/j.yebeh.2008.04.005

    Article  PubMed  Google Scholar 

  85. Cotterman-Hart S (2010) Depression in epilepsy: Why aren’t we treating? Epilepsy Behav 19:419–421. https://doi.org/10.1016/j.yebeh.2010.08.018

    Article  PubMed  Google Scholar 

  86. Singh T, Kaur T, Goel RK (2017) Ferulic Acid Supplementation for Management of Depression in Epilepsy. Neurochem Res 42:2940–2948. https://doi.org/10.1007/s11064-017-2325-6

    Article  CAS  PubMed  Google Scholar 

  87. Singh T, Bagga N, Kaur A et al (2017) Agmatine for combined treatment of epilepsy, depression and cognitive impairment in chronic epileptic animals. Biomed Pharmacother 92:720–725. https://doi.org/10.1016/j.biopha.2017.05.085

    Article  CAS  PubMed  Google Scholar 

  88. Singh T, Goel RK (2016) Adjuvant indoleamine 2,3-dioxygenase enzyme inhibition for comprehensive management of epilepsy and comorbid depression. Eur J Pharmacol 784:111–120. https://doi.org/10.1016/j.ejphar.2016.05.019

    Article  CAS  PubMed  Google Scholar 

  89. Singh T, Kaur T, Goel RK (2017) Adjuvant quercetin therapy for combined treatment of epilepsy and comorbid depression. Neurochem Int 104:27–33. https://doi.org/10.1016/j.neuint.2016.12.023

    Article  CAS  PubMed  Google Scholar 

  90. World Health Day (2017) Depression: Let’s talk. http://www.origin.searo.who.int/india/mediacentre/events/world_health_day/whd_2017/en/. Accessed 26 Nov 2020

  91. James SL, Abate D, Abate KH et al (2018) Global, regional, and national incidence, prevalence, and years lived with disability for 354 diseases and injuries for 195 countries and territories, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet 392:1789–1858. https://doi.org/10.1016/S0140-6736(18)32279-7

    Article  Google Scholar 

  92. Liu CH, Zhang GZ, Li B et al (2019) Role of inflammation in depression relapse. J Neuroinflammation 16:90. https://doi.org/10.1186/s12974-019-1475-7

    Article  PubMed  PubMed Central  Google Scholar 

  93. Boyle MP, Brewer JA, Funatsu M et al (2005) Acquired deficit of forebrain glucocorticoid receptor produces depression-like changes in adrenal axis regulation and behavior. Proc Natl Acad Sci 102:473–478. https://doi.org/10.1073/pnas.0406458102

    Article  CAS  PubMed  Google Scholar 

  94. Andrade C, Rao SK (2010) How antidepressant drugs act: A primer on neuroplasticity as the eventual mediator of antidepressant efficacy. Indian J Psychiatry 52:378. https://doi.org/10.4103/0019-5545.74318

    Article  PubMed  PubMed Central  Google Scholar 

  95. Miller AH, Raison CL (2016) The role of inflammation in depression: from evolutionary imperative to modern treatment target. Nat Rev Immunol 16:22–34. https://doi.org/10.1038/nri.2015.5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Ferguson JM (2001) SSRI antidepressant medications. Prim Care Companion J Clin Psychiatry 3:22–27. https://doi.org/10.4088/PCC.v03n0105

    Article  PubMed  PubMed Central  Google Scholar 

  97. Appleby BS, Duggan PS, Regenberg A et al (2007) Psychiatric and neuropsychiatric adverse events associated with deep brain stimulation: A meta-analysis of ten years’ experience. Mov Disord 22:1722–1728. https://doi.org/10.1002/mds.21551

    Article  PubMed  Google Scholar 

  98. Akil H, Gordon J, Hen R et al (2018) Treatment resistant depression: A multi-scale, systems biology approach. Neurosci Biobehav Rev 84:272–288. https://doi.org/10.1016/j.neubiorev.2017.08.019

    Article  PubMed  Google Scholar 

  99. Pandarakalam JP (2018) Challenges of treatment-resistant depression. Psychiatr Danub 30:273–284. https://doi.org/10.24869/psyd.2018.273

    Article  CAS  PubMed  Google Scholar 

  100. RazzaghiAsl N, Garrido J, Khazraei H et al (2013) Antioxidant properties of hydroxycinnamic acids: A review of structure- activity relationships. Curr Med Chem 20:4436–4450. https://doi.org/10.2174/09298673113209990141

    Article  CAS  Google Scholar 

  101. Zduńska K, Dana A, Kolodziejczak A, Rotsztejn H (2018) Antioxidant properties of ferulic acid and its possible application. Skin Pharmacol Physiol 31:332–336. https://doi.org/10.1159/000491755

    Article  CAS  PubMed  Google Scholar 

  102. Zeni ALB, Zomkowski ADE, Maraschin M et al (2012) Ferulic acid exerts antidepressant-like effect in the tail suspension test in mice: evidence for the involvement of the serotonergic system. Eur J Pharmacol 679:68–74. https://doi.org/10.1016/j.ejphar.2011.12.041

    Article  CAS  PubMed  Google Scholar 

  103. Zeni ALB, Camargo A, Dalmagro AP (2017) Ferulic acid reverses depression-like behavior and oxidative stress induced by chronic corticosterone treatment in mice. Steroids 125:131–136. https://doi.org/10.1016/j.steroids.2017.07.006

    Article  CAS  PubMed  Google Scholar 

  104. Sasaki K, Iwata N, Ferdousi F, Isoda H (2019) Antidepressant-like effect of ferulic acid via promotion of energy metabolism activity. Mol Nutr Food Res 63:1900327. https://doi.org/10.1002/mnfr.201900327

    Article  CAS  PubMed Central  Google Scholar 

  105. Li G, Ruan L, Chen R et al (2015) Synergistic antidepressant-like effect of ferulic acid in combination with piperine: involvement of monoaminergic system. Metab Brain Dis 30:1505–1514. https://doi.org/10.1007/s11011-015-9704-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Allen J, Romay-Tallon R, Brymer KJ et al (2018) Mitochondria and mood: mitochondrial dysfunction as a key player in the manifestation of depression. Front Neurosci 12:386. https://doi.org/10.3389/fnins.2018.00386

    Article  PubMed  PubMed Central  Google Scholar 

  107. Wen L, Jin Y, Li L et al (2014) Exercise prevents raphe nucleus mitochondrial overactivity in a rat depression model. Physiol Behav 132:57–65. https://doi.org/10.1016/j.physbeh.2014.04.050

    Article  CAS  PubMed  Google Scholar 

  108. Cao X, Li LP, Wang Q et al (2013) Astrocyte-derived ATP modulates depressive-like behaviors. Nat Med 19:773–777. https://doi.org/10.1038/nm.3162

    Article  CAS  PubMed  Google Scholar 

  109. Lenzi J, Rodrigues AF, de Sousa Rós A et al (2015) Erratum to: Ferulic acid chronic treatment exerts antidepressant-like effect: role of antioxidant defense system. Metab Brain Dis 30:1465–1465. https://doi.org/10.1007/s11011-015-9751-4

    Article  PubMed  Google Scholar 

  110. Liu YM, Hu CY, Shen JD et al (2017) Elevation of synaptic protein is associated with the antidepressant-like effects of ferulic acid in a chronic model of depression. Physiol Behav 169:184–188. https://doi.org/10.1016/j.physbeh.2016.12.003

    Article  CAS  PubMed  Google Scholar 

  111. Zheng X, Cheng Y, Chen Y et al (2019) Ferulic acid improves depressive-like behavior in prenatally-stressed offspring rats via anti-inflammatory activity and HPA axis. Int J Mol Sci 20:493. https://doi.org/10.3390/ijms20030493

    Article  CAS  PubMed Central  Google Scholar 

  112. Zhang Y, Huang X, Wang Y et al (2011) Ferulic acid-induced anti-depression and prokinetics similar to Chaihu–Shugan–San via polypharmacology. Brain Res Bull 86:222–228. https://doi.org/10.1016/j.brainresbull.2011.07.002

    Article  CAS  PubMed  Google Scholar 

  113. Chen J, Lin D, Zhang C et al (2015) Antidepressant-like effects of ferulic acid: involvement of serotonergic and norepinergic systems. Metab Brain Dis 30:129–136. https://doi.org/10.1007/s11011-014-9635-z

    Article  CAS  PubMed  Google Scholar 

  114. Zeni ALB, Zomkowski ADE, Maraschin M et al (2012) Involvement of PKA, CaMKII, PKC, MAPK/ERK and PI3K in the acute antidepressant-like effect of ferulic acid in the tail suspension test. Pharmacol Biochem Behav 103:181–186. https://doi.org/10.1016/j.pbb.2012.08.020

    Article  CAS  PubMed  Google Scholar 

  115. Vijaya KK, Rudra A, Sreedhara MV et al (2014) Bacillus Calmette–Guérin vaccine induces a selective serotonin reuptake inhibitor (SSRI)-resistant depression like phenotype in mice. Brain Behav Immun 42:204–211. https://doi.org/10.1016/j.bbi.2014.06.205

    Article  CAS  Google Scholar 

  116. Wu MY, Yiang GT, Liao WT et al (2018) Current mechanistic concepts in ischemia and reperfusion injury. Cell Physiol Biochem 46:1650–1667. https://doi.org/10.1159/000489241

    Article  CAS  PubMed  Google Scholar 

  117. Cheng CY, Ho TY, Lee EJ et al (2008) Ferulic acid reduces cerebral infarct through its antioxidative and anti-inflammatory effects following transient focal cerebral ischemia in rats. Am J Chin Med 36:1105–1119. https://doi.org/10.1142/S0192415X08006570

    Article  CAS  PubMed  Google Scholar 

  118. Supanc V, Biloglav Z, Kes VB, Demarin V (2011) Role of cell adhesion molecules in acute ischemic stroke. Ann Saudi Med 31:365–370. https://doi.org/10.4103/0256-4947.83217

    Article  PubMed  PubMed Central  Google Scholar 

  119. Cheng CY, Su SY, Tang NY et al (2008) Ferulic acid provides neuroprotection against oxidative stress-related apoptosis after cerebral ischemia/reperfusion injury by inhibiting ICAM-1 mRNA expression in rats. Brain Res 1209:136–150. https://doi.org/10.1016/j.brainres.2008.02.090

    Article  CAS  PubMed  Google Scholar 

  120. Nurmi A, Vartiainen N, Pihlaja R et al (2004) Pyrrolidine dithiocarbamate inhibits translocation of nuclear factor kappa-B in neurons and protects against brain ischaemia with a wide therapeutic time window. J Neurochem 91:755–765. https://doi.org/10.1111/j.1471-4159.2004.02756.x

    Article  CAS  PubMed  Google Scholar 

  121. Berti R, Williams AJ, Moffett JR et al (2002) Quantitative real-time RT—PCR analysis of inflammatory gene expression associated with ischemia—reperfusion brain injury. J Cereb Blood Flow Metab 22:1068–1079. https://doi.org/10.1097/00004647-200209000-00004

    Article  CAS  PubMed  Google Scholar 

  122. Zhang RL, Chopp M, Li Y et al (1994) Anti-ICAM-1 antibody reduces ischemic cell damage after transient middle cerebral artery occlusion in the rat. Neurology 44:1747–1747. https://doi.org/10.1212/WNL.44.9.1747

    Article  CAS  PubMed  Google Scholar 

  123. Matsuo Y, Onodera H, Shiga Y et al (1994) Role of cell adhesion molecules in brain injury after transient middle cerebral artery occlusion in the rat. Brain Res 656:344–352. https://doi.org/10.1016/0006-8993(94)91478-8

    Article  CAS  PubMed  Google Scholar 

  124. Chopp M, Li Y, Jiang N et al (1996) Antibodies against adhesion molecules reduce apoptosis after transient middle cerebral artery occlusion in rat brain. J Cereb Blood Flow Metab 16:578–584. https://doi.org/10.1097/00004647-199607000-00007

    Article  CAS  PubMed  Google Scholar 

  125. Ishikawa M, Cooper D, Russell J et al (2003) Molecular determinants of the prothrombogenic and inflammatory phenotype assumed by the postischemic cerebral microcirculation. Stroke 34:17771782. https://doi.org/10.1161/01.STR.0000074921.17767.F2

    Article  CAS  Google Scholar 

  126. Couturier JY, Ding-Zhou L, Croci N et al (2003) 3-Aminobenzamide reduces brain infarction and neutrophil infiltration after transient focal cerebral ischemia in mice. Exp Neurol 184:973–980. https://doi.org/10.1016/S0014-4886(03)00367-4

    Article  CAS  PubMed  Google Scholar 

  127. Zhang L, Wang H, Wang T et al (2015) Ferulic acid ameliorates nerve injury induced by cerebral ischemia in rats. Exp Ther Med 9:972–976. https://doi.org/10.3892/etm.2014.2157

    Article  CAS  PubMed  Google Scholar 

  128. Prass K, Scharff A, Ruscher K et al (2003) Hypoxia-induced stroke tolerance in the mouse is mediated by erythropoietin. Stroke 34:1981–1986. https://doi.org/10.1161/01.STR.0000080381.76409.B2

    Article  CAS  PubMed  Google Scholar 

  129. Yamada M, Burke C, Colditz P et al (2011) Erythropoietin protects against apoptosis and increases expression of non-neuronal cell markers in the hypoxia-injured developing brain. J Pathol 224:101–109. https://doi.org/10.1002/path.2862

    Article  CAS  PubMed  Google Scholar 

  130. Sung JH, Gim SA, Koh PO (2014) Ferulic acid attenuates the cerebral ischemic injury-induced decrease in peroxiredoxin-2 and thioredoxin expression. Neurosci Lett 566:88–92. https://doi.org/10.1016/j.neulet.2014.02.040

    Article  CAS  PubMed  Google Scholar 

  131. Sarafian TA, Verity MA, Vinters HV et al (1999) Differential expression of peroxiredoxin subtypes in human brain cell types. J Neurosci Res 56:206–212

    Article  CAS  PubMed  Google Scholar 

  132. Cheng CY, Tang NY, Kao ST, Hsieh CL (2016) Ferulic acid administered at various time points protects against cerebral infarction by activating p38 MAPK/p90RSK/CREB/Bcl-2 anti-apoptotic signaling in the subacute phase of cerebral ischemia-reperfusion injury in rats. PLoS One 11:e0155748. https://doi.org/10.1371/journal.pone.0155748

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Ge LJ, Fan SY, Yang JH et al (2015) Pharmacokinetic and pharmacodynamic analysis of ferulic acid-puerarin-astragaloside in combination with neuroprotective in cerebral ischemia/reperfusion injury in rats. Asian Pac J Trop Med 8:299–304. https://doi.org/10.1016/S1995-7645(14)60334-5

    Article  CAS  PubMed  Google Scholar 

  134. Koh PO (2015) Ferulic acid attenuates the down-regulation of MEK/ERK/p90RSK signaling pathway in focal cerebral ischemic injury. Neurosci Lett 588:18–23. https://doi.org/10.1016/j.neulet.2014.12.047

    Article  CAS  PubMed  Google Scholar 

  135. Hommes DW (2003) Mitogen activated protein (MAP) kinase signal transduction pathways and novel anti-inflammatory targets. Gut 52:144–151. https://doi.org/10.1136/gut.52.1.144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Kanski J, Aksenova M, Stoyanova A, Butterfield DA (2002) Ferulic acid antioxidant protection against hydroxyl and peroxyl radical oxidation in synaptosomal and neuronal cell culture systems in vitro: structure-activity studies. J Nutr Biochem 13:273–281. https://doi.org/10.1016/S0955-2863(01)00215-7

    Article  CAS  PubMed  Google Scholar 

  137. Meloche S, Pouysségur J (2007) The ERK1/2 mitogen-activated protein kinase pathway as a master regulator of the G1- to S-phase transition. Oncogene 26:3227–3239. https://doi.org/10.1038/sj.onc.1210414

    Article  CAS  PubMed  Google Scholar 

  138. Roux PP, Blenis J (2004) ERK and p38 MAPK-activated protein kinases: a family of protein kinases with diverse biological functions. Microbiol Mol Biol Rev 68:320–344. https://doi.org/10.1128/MMBR.68.2.320-344.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Dalby KN, Morrice N, Caudwell FB et al (1998) Identification of regulatory phosphorylation sites in mitogen-activated protein kinase (MAPK)-activated protein Kinase-1a/p90 rsk that are inducible by MAPK. J Biol Chem 273:1496–1505. https://doi.org/10.1074/jbc.273.3.1496

    Article  CAS  PubMed  Google Scholar 

  140. Kortenjann M, Thomae O, Shaw PE (1994) Inhibition of v-raf-dependent c-fos expression and transformation by a kinase-defective mutant of the mitogen-activated protein kinase Erk2. Mol Cell Biol 14:4815–4824. https://doi.org/10.1128/MCB.14.7.4815

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Marais R, Wynne J, Treisman R (1993) The SRF accessory protein Elk-1 contains a growth factor-regulated transcriptional activation domain. Cell 73:381–393. https://doi.org/10.1016/0092-8674(93)90237-K

    Article  CAS  PubMed  Google Scholar 

  142. Pearson G, Robinson F, Beers Gibson T et al (2001) Mitogen-activated protein (MAP) kinase pathways: regulation and physiological functions. Endocr Rev 22:153–183. https://doi.org/10.1210/edrv.22.2.0428

    Article  CAS  PubMed  Google Scholar 

  143. Bonni A, Brunet A, West AE et al (1999) Cell survival promoted by the Ras-MAPK signaling pathway by transcription-dependent and-independent mechanisms. Science 286:1358–1362. https://doi.org/10.1126/science.286.5443.1358

    Article  CAS  PubMed  Google Scholar 

  144. Shimamura A, Ballif BA, Richards SA, Blenis J (2000) Rsk1 mediates a MEK–MAP kinase cell survival signal. Curr Biol 10:127–135. https://doi.org/10.1016/S0960-9822(00)00310-9

    Article  CAS  PubMed  Google Scholar 

  145. Frödin M, Gammeltoft S (1999) Role and regulation of 90 kDa ribosomal S6 kinase (RSK) in signal transduction. Mol Cell Endocrinol 151:65–77. https://doi.org/10.1016/S0303-7207(99)00061-1

    Article  PubMed  Google Scholar 

  146. Ma ZC, Hong Q, Wang YG et al (2010) Ferulic acid protects human umbilical vein endothelial cells from radiation induced oxidative stress by phosphatidylinositol 3-kinase and extracellular signal-regulated kinase pathways. Biol Pharm Bull 33:29–34. https://doi.org/10.1248/bpb.33.29

    Article  CAS  PubMed  Google Scholar 

  147. Jin Y, Fan Y, Yan E et al (2006) Effects of sodium ferulate on amyloid-beta-induced MKK3/MKK6-p38 MAPK-Hsp27 signal pathway and apoptosis in rat hippocampus. Acta Pharmacol Sin 27:1309–1316. https://doi.org/10.1111/j.1745-7254.2006.00414.x

    Article  CAS  PubMed  Google Scholar 

  148. Jin Y, Yan E, Fan Y et al (2007) Neuroprotection by sodium ferulate against glutamate-induced apoptosis is mediated by ERK and PI3 kinase pathways. Acta Pharmacol Sin 28:1881–1890. https://doi.org/10.1111/j.1745-7254.2007.00634.x

    Article  CAS  PubMed  Google Scholar 

  149. Ma Z, Hong Q, Wang Y et al (2011) Ferulic acid induces heme oxygenase-1 via activation of ERK and Nrf2. Drug Discov Ther 5:299–305. https://doi.org/10.5582/ddt.2011.v5.6.299

    Article  CAS  PubMed  Google Scholar 

  150. Shah FA, Zeb A, Ali T et al (2018) Identification of proteins differentially expressed in the striatum by melatonin in a middle cerebral artery occlusion rat model—a proteomic and in silico approach. Front Neurosci 12:888. https://doi.org/10.3389/fnins.2018.00888

    Article  PubMed  PubMed Central  Google Scholar 

  151. Gim SA, Koh PO (2014) Ferulic acid prevents the injury-induced decrease of γ-enolase expression in brain tissue and HT22 cells. Lab Anim Res 30:8–13. https://doi.org/10.5625/lar.2014.30.1.8

    Article  PubMed  PubMed Central  Google Scholar 

  152. Hattori T, Takei N, Mizuno Y et al (1995) Neurotrophic and neuroprotective effects of neuron-specific enolase on cultured neurons from embryonic rat brain. Neurosci Res 21:191–198. https://doi.org/10.1016/0168-0102(94)00849-B

    Article  CAS  PubMed  Google Scholar 

  153. Hafner A, Obermajer N, Kos J (2012) γ-Enolase C-terminal peptide promotes cell survival and neurite outgrowth by activation of the PI3K/Akt and MAPK/ERK signalling pathways. Biochem J 443:439–450. https://doi.org/10.1042/BJ20111351

    Article  CAS  PubMed  Google Scholar 

  154. Koh PO (2013) Ferulic Acid attenuates the injury-induced decrease of protein phosphatase 2A Subunit B in ischemic brain injury. PLoS One 8:e54217. https://doi.org/10.1371/journal.pone.0054217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Gim SA, Sung JH, Shah FA et al (2013) Ferulic acid regulates the AKT/GSK-3β/CRMP-2 signaling pathway in a middle cerebral artery occlusion animal model. Lab Anim Res 29:63–69. https://doi.org/10.5625/lar.2013.29.2.63

    Article  PubMed  PubMed Central  Google Scholar 

  156. Janelidze S, Hu BR, Siesjö P, Siesjö BK (2001) Alterations of Akt1 (PKBα) and p70S6K in transient focal ischemia. Neurobiol Dis 8:147–154. https://doi.org/10.1006/nbdi.2000.0325

    Article  CAS  PubMed  Google Scholar 

  157. Noshita N, Lewén A, Sugawara T, Chan PH (2001) Evidence of phosphorylation of Akt and neuronal survival after transient focal cerebral ischemia in mice. J Cereb Blood Flow Metab 21:1442–1450. https://doi.org/10.1097/00004647-200112000-00009

    Article  CAS  PubMed  Google Scholar 

  158. Shibata M, Yamawaki T, Sasaki T et al (2002) Upregulation of Akt phosphorylation at the early stage of middle cerebral artery occlusion in mice. Brain Res 942:1–10. https://doi.org/10.1016/S0006-8993(02)02474-5

    Article  CAS  PubMed  Google Scholar 

  159. Cross DA, Alessi DR, Cohen P et al (1995) Inhibition of glycogen synthase kinase-3 by insulin mediated by protein kinase B. Nature 378:785–789. https://doi.org/10.1038/378785a0

    Article  CAS  PubMed  Google Scholar 

  160. Brywe KG, Mallard C, Gustavsson M et al (2005) IGF-I neuroprotection in the immature brain after hypoxia-ischemia, involvement of Akt and GSK3β? Eur J Neurosci 21:1489–1502. https://doi.org/10.1111/j.1460-9568.2005.03982.x

    Article  PubMed  Google Scholar 

  161. Fukata Y, Itoh TJ, Kimura T et al (2002) CRMP-2 binds to tubulin heterodimers to promote microtubule assembly. Nat Cell Biol 4:583–591. https://doi.org/10.1038/ncb825

    Article  CAS  PubMed  Google Scholar 

  162. Zumbrunn J, Kinoshita K, Hyman AA, Näthke IS (2001) Binding of the adenomatous polyposis coli protein to microtubules increases microtubule stability and is regulated by GSK3β phosphorylation. Curr Biol 11:44–49. https://doi.org/10.1016/S0960-9822(01)00002-1

    Article  CAS  PubMed  Google Scholar 

  163. Yoshimura T, Kawano Y, Arimura N et al (2005) GSK-3β regulates phosphorylation of CRMP-2 and neuronal polarity. Cell 120:137–149. https://doi.org/10.1016/j.cell.2004.11.012

    Article  CAS  PubMed  Google Scholar 

  164. Brown M (2004) 2-Chimaerin, cyclin-dependent kinase 5/p35, and its target collapsin response mediator protein-2 are essential components in semaphorin 3A-induced growth-cone collapse. J Neurosci 24:8994–9004. https://doi.org/10.1523/JNEUROSCI.3184-04.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Cole AR, Knebel A, Morrice NA et al (2004) GSK-3 phosphorylation of the alzheimer epitope within collapsin response mediator proteins regulates axon elongation in primary neurons. J Biol Chem 279:50176–50180. https://doi.org/10.1074/jbc.C400412200

    Article  CAS  PubMed  Google Scholar 

  166. Koh PO (2012) Ferulic acid prevents the cerebral ischemic injury-induced decreases of astrocytic phosphoprotein PEA-15 and its two phosphorylated forms. Neurosci Lett 511:101–105. https://doi.org/10.1016/j.neulet.2012.01.049

    Article  CAS  PubMed  Google Scholar 

  167. Koh PO (2012) Ferulic acid prevents the cerebral ischemic injury-induced decrease of Akt and Bad phosphorylation. Neurosci Lett 507:156–160. https://doi.org/10.1016/j.neulet.2011.12.012

    Article  CAS  PubMed  Google Scholar 

  168. Basics of Alzheimer’s disease and dementia. https://www.nia.nih.gov/health/what-alzheimers-disease. Accessed 26 Nov 2020

  169. Bertram L, Tanzi RE (2008) Thirty years of Alzheimer’s disease genetics: the implications of systematic meta-analyses. Nat Rev Neurosci 9:768–778. https://doi.org/10.1038/nrn2494

    Article  CAS  PubMed  Google Scholar 

  170. Praticò D, Uryu K, Leight S et al (2001) Increased lipid peroxidation precedes amyloid plaque formation in an animal model of alzheimer amyloidosis. J Neurosci 21:4183–4187. https://doi.org/10.1523/JNEUROSCI.21-12-04183.2001

    Article  PubMed  PubMed Central  Google Scholar 

  171. Muche A, Arendt T, Schliebs R (2017) Oxidative stress affects processing of amyloid precursor protein in vascular endothelial cells. PLoS One 12:e0178127. https://doi.org/10.1371/journal.pone.0178127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Lin TY, Lu CW, Huang SK, Wang SJ (2013) Ferulic acid suppresses glutamate release through inhibition of voltage-dependent calcium entry in rat cerebrocortical nerve terminals. J Med Food 16:112–119. https://doi.org/10.1089/jmf.2012.2387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Cui L, Zhang Y, Cao H et al (2013) Ferulic acid inhibits the transition of amyloid-β42 monomers to oligomers but accelerates the transition from oligomers to fibrils. J Alzheimer’s Dis 37:19–28. https://doi.org/10.3233/JAD-130164

    Article  CAS  Google Scholar 

  174. Porat Y, Abramowitz A, Gazit E (2006) Inhibition of amyloid fibril formation by polyphenols: structural similarity and aromatic interactions as a common inhibition mechanism. Chem Biol Drug Des 67:27–37. https://doi.org/10.1111/j.1747-0285.2005.00318.x

    Article  CAS  PubMed  Google Scholar 

  175. Ono K, Hirohata M, Yamada M (2005) Ferulic acid destabilizes preformed β-amyloid fibrils in vitro. Biochem Biophys Res Commun 336:444–449. https://doi.org/10.1016/j.bbrc.2005.08.148

    Article  CAS  PubMed  Google Scholar 

  176. Bramanti E, Fulgentini L, Bizzarri R et al (2013) β-Amyloid amorphous aggregates induced by the small natural molecule ferulic acid. J Phys Chem B 117:13816–13821. https://doi.org/10.1021/jp4079986

    Article  CAS  PubMed  Google Scholar 

  177. Sultana R, Ravagna A, Mohmmad-Abdul H et al (2005) Ferulic acid ethyl ester protects neurons against amyloid beta- peptide(1–42)-induced oxidative stress and neurotoxicity: relationship to antioxidant activity. J Neurochem 92:749–758. https://doi.org/10.1111/j.1471-4159.2004.02899.x

    Article  CAS  PubMed  Google Scholar 

  178. Kim HS, Cho JY, Kim DH et al (2004) Inhibitory effects of long-term administration of ferulic acid on microglial activation induced by intracerebroventricular injection of β-amyloid peptide (1–42) in mice. Biol Pharm Bull 27:120–121. https://doi.org/10.1248/bpb.27.120

    Article  CAS  PubMed  Google Scholar 

  179. Yan JJ, Cho JY, Kim HS et al (2001) Protection against β-amyloid peptide toxicity in vivo with long-term administration of ferulic acid. Br J Pharmacol 133:89–96. https://doi.org/10.1038/sj.bjp.0704047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Jin Y, Yan E, Fan Y et al (2005) Sodium ferulate prevents amyloid-beta-induced neurotoxicity through suppression of p38 MAPK and upregulation of ERK-1/2 and Akt/protein kinase B in rat hippocampus1. Acta Pharmacol Sin 26:943–951. https://doi.org/10.1111/j.1745-7254.2005.00158.x

    Article  CAS  PubMed  Google Scholar 

  181. Mori T, Koyama N, Tan J et al (2019) Combined treatment with the phenolics (–)-epigallocatechin-3-gallate and ferulic acid improves cognition and reduces Alzheimer-like pathology in mice. J Biol Chem 294:2714–2731. https://doi.org/10.1074/jbc.RA118.004280

    Article  CAS  PubMed  Google Scholar 

  182. Sgarbossa A, Giacomazza D, Di Carlo M (2015) Ferulic acid: A hope for alzheimer’s disease therapy from plants. Nutrients 7:5764–5782. https://doi.org/10.3390/nu7075246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Picone P, Bondi ML, Picone P et al (2009) Ferulic acid inhibits oxidative stress and cell death induced by Ab oligomers: Improved delivery by solid lipid nanoparticles. Free Radic Res 43:1133–1145. https://doi.org/10.1080/10715760903214454

    Article  CAS  PubMed  Google Scholar 

  184. Bondi M, Montana G, Craparo E et al (2009) Ferulic acid-loaded lipid nanostructures as drug delivery systems for alzheimers disease: Preparation, characterization and cytotoxicity studies. Curr Nanosci 5:26–32. https://doi.org/10.2174/157341309787314656

    Article  CAS  Google Scholar 

  185. Parkinson’s Disease. https://www.nia.nih.gov/health/parkinsons-disease. Accessed 26 Nov 2020

  186. Spillantini MG, Crowther RA, Jakes R et al (1998) Synuclein in filamentous inclusions of Lewy bodies from Parkinson’s disease and dementia with Lewy bodies. Proc Natl Acad Sci 95:6469–6473. https://doi.org/10.1073/pnas.95.11.6469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Mancuso C, Scapagini G, Curro D et al (2007) Mitochondrial dysfunction, free radical generation and cellular stress response in neurodegenerative disorders. Front Biosci 12:1107–1123. https://doi.org/10.2741/2130

    Article  CAS  PubMed  Google Scholar 

  188. Haque E, Javed H, Azimullah S et al (2015) Neuroprotective potential of ferulic acid in the rotenone model of Parkinson’s disease. Drug Des Devel Ther 9:5499. https://doi.org/10.2147/DDDT.S90616

    Article  PubMed  PubMed Central  Google Scholar 

  189. Nagarajan S, Chellappan DR, Chinnaswamy P, Thulasingam S (2015) Ferulic acid pretreatment mitigates MPTP-induced motor impairment and histopathological alterations in C57BL/6 mice. Pharm Biol 53:1591–1601. https://doi.org/10.3109/13880209.2014.993041

    Article  CAS  PubMed  Google Scholar 

  190. Kim BW, Koppula S, Park SY et al (2015) Attenuation of neuroinflammatory responses and behavioral deficits by Ligusticum officinale (Makino) Kitag in stimulated microglia and MPTP-induced mouse model of Parkinson׳s disease. J Ethnopharmacol 164:388–397. https://doi.org/10.1016/j.jep.2014.11.004

    Article  PubMed  Google Scholar 

  191. Takahashi R, Ono K, Takamura Y et al (2015) Phenolic compounds prevent the oligomerization of α-synuclein and reduce synaptic toxicity. J Neurochem 134:943–955. https://doi.org/10.1111/jnc.13180

    Article  CAS  PubMed  Google Scholar 

  192. Luo GR, Chen S, Le WD (2007) Are heat shock proteins therapeutic target for Parkinson’s disease? Int J Biol Sci 3:20–26. https://doi.org/10.7150/ijbs.3.20

    Article  CAS  Google Scholar 

  193. Jia C, Ma X, Liu Z et al (2019) Different heat shock proteins bind α-Synuclein with distinct mechanisms and synergistically prevent its amyloid aggregation. Front Neurosci 13:1124. https://doi.org/10.3389/fnins.2019.01124

    Article  PubMed  PubMed Central  Google Scholar 

  194. Askar MH, Hussein AM, Al-Basiony SF et al (2019) Effects of exercise and ferulic acid on alpha synuclein and neuroprotective heat shock protein 70 in an experimental model of Parkinsonism Disease. CNS Neurol Disord - Drug Targets 18:156–169. https://doi.org/10.2174/1871527317666180816095707

    Article  CAS  PubMed  Google Scholar 

  195. Araujo SM, de Paula MT, Poetini MR et al (2015) Effectiveness of γ-oryzanol in reducing neuromotor deficits, dopamine depletion and oxidative stress in a Drosophila melanogaster model of Parkinson’s disease induced by rotenone. Neurotoxicology 51:96–105. https://doi.org/10.1016/j.neuro.2015.09.003

    Article  CAS  PubMed  Google Scholar 

  196. Lenzi J, Rodrigues AF, de Sousa Rós A et al (2015) Ferulic acid chronic treatment exerts antidepressant-like effect: role of antioxidant defense system. Metab Brain Dis 30:1453–1463. https://doi.org/10.1007/s11011-015-9725-6

    Article  CAS  PubMed  Google Scholar 

  197. Mori T, Koyama N, Guillot-Sestier MV et al (2013) Ferulic Acid is a nutraceutical β-secretase modulator that improves behavioral impairment and Alzheimer-like pathology in transgenic mice. PLoS One 8:e55774. https://doi.org/10.1371/journal.pone.0055774

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Montaser A, Huttunen J, Ibrahim SA, Huttunen KM (2019) Astrocyte-targeted transporter-utilizing derivatives of ferulic acid can have multifunctional effects ameliorating inflammation and oxidative stress in the brain. Oxid Med Cell Longev 2019:1–13. https://doi.org/10.1155/2019/3528148

    Article  CAS  Google Scholar 

  199. Liu YM, Shen JD, Xu LP et al (2017) Ferulic acid inhibits neuro-inflammation in mice exposed to chronic unpredictable mild stress. Int Immunopharmacol 45:128–134. https://doi.org/10.1016/j.intimp.2017.02.007

    Article  CAS  PubMed  Google Scholar 

  200. Singh SS, Rai SN, Birla H et al (2018) Effect of chlorogenic acid supplementation in MPTP-intoxicated mouse. Front Pharmacol 9:757. https://doi.org/10.3389/fphar.2018.00757

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Koh PO (2012) Ferulic acid modulates nitric oxide synthase expression in focal cerebral ischemia. Lab Anim Res 28:273–278. https://doi.org/10.5625/lar.2012.28.4.273

    Article  PubMed  PubMed Central  Google Scholar 

  202. Muthusamy G, Gunaseelan S, Prasad NR (2019) Ferulic acid reverses P-glycoprotein-mediated multidrug resistance via inhibition of PI3K/Akt/NF-κB signaling pathway. J Nutr Biochem 63:62–71. https://doi.org/10.1016/j.jnutbio.2018.09.022

    Article  CAS  PubMed  Google Scholar 

  203. Anis E, Zafeer MF, Firdaus F et al (2020) Ferulic acid reinstates mitochondrial dynamics through PGC1α expression modulation in 6-hydroxydopamine lesioned rats. Phyther Res 34:214–226. https://doi.org/10.1002/ptr.6523

    Article  CAS  Google Scholar 

  204. Dhiman P, Malik N, Khatkar A (2018) Hybrid caffeic acid derivatives as monoamine oxidases inhibitors: synthesis, radical scavenging activity, molecular docking studies and in silico ADMET analysis. Chem Cent J 12:112. https://doi.org/10.1186/s13065-018-0481-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Cheng C, Kao S, Lee Y (2018) Ferulic acid ameliorates cerebral infarction by activating Akt/mTOR/4E-BP1/Bcl-2 anti-apoptotic signaling in the penumbral cortex following permanent cerebral ischemia in rats. Mol Med Rep 19:792–804. https://doi.org/10.3892/mmr.2018.9737

    Article  CAS  PubMed  Google Scholar 

  206. Koh PO (2013) Ferulic acid attenuates focal cerebral ischemia-induced decreases in p70S6 kinase and S6 phosphorylation. Neurosci Lett 555:7–11. https://doi.org/10.1016/j.neulet.2013.09.001

    Article  CAS  PubMed  Google Scholar 

  207. Medvedeva M, Barinova K, Melnikova A et al (2020) Naturally occurring cinnamic acid derivatives prevent amyloid transformation of alpha-synuclein. Biochimie 170:128–139. https://doi.org/10.1016/j.biochi.2020.01.004

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shailendra Handu.

Ethics declarations

Conflict of Interest

No conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thapliyal, S., Singh, T., Handu, S. et al. A Review on Potential Footprints of Ferulic Acid for Treatment of Neurological Disorders. Neurochem Res 46, 1043–1057 (2021). https://doi.org/10.1007/s11064-021-03257-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-021-03257-6

Keywords

Navigation