Skip to main content
Log in

Effects of Ethanol Exposure on the Neurochemical Profile of a Transgenic Mouse Model with Enhanced Glutamate Release Using In Vivo 1H MRS

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Ethanol (EtOH) intake leads to modulation of glutamatergic transmission, which may contribute to ethanol intoxication, tolerance and dependence. To study metabolic responses to the hyper glutamatergic status at synapses during ethanol exposure, we used Glud1 transgenic (tg) mice that over-express the enzyme glutamate dehydrogenase in brain neurons and release excess glutamate (Glu) in synapses. We measured neurochemical changes in the hippocampus and striatum of tg and wild-type (wt) mice using proton magnetic resonance spectroscopy before and after the animals were fed with diets within which EtOH constituting up to 6.4% of total calories for 24 weeks. In the hippocampus, the EtOH diet led to significant increases in concentrations of EtOH, glutamine (Gln), Glu, phosphocholine (PCho), taurine, and Gln + Glu, when compared with their baseline concentrations. In the striatum, the EtOH diet led to significant increases in concentrations of GABA, Gln, Gln + Glu, and PCho. In general, neurochemical changes were more pronounced in the striatum than the hippocampus in both tg and wt mice. Overall neurochemical changes due to EtOH exposure were very similar in tg and wt mice. This study describes time courses of neurochemical profiles before and during chronic EtOH exposure, which can serve as a reference for future studies investigating ethanol-induced neurochemical changes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Krystal JH, Petrakis IL, Mason G, Trevisan L, D’Souza DC (2003) N-methyl-d-aspartate glutamate receptors and alcoholism: reward, dependence, treatment, and vulnerability. Pharmacol Ther 99:79–94

    Article  CAS  PubMed  Google Scholar 

  2. Tabakoff B, Hoffman PL (1995) Pharmacological effects of ethanol on the nervous system. CRC Press, New York

    Google Scholar 

  3. Tsai G, Gastfriend DR, Coyle JT (1995) The glutamatergic basis of human alcoholism. Am J Psychiatry 152:332–340

    Article  CAS  PubMed  Google Scholar 

  4. Allan AM, Harris RA (1987) Acute and chronic ethanol treatments alter GABA receptor-operated chloride channels. Pharmacol Biochem Behav 27:665–670

    Article  CAS  PubMed  Google Scholar 

  5. Lovinger DM, White G, Weight FF (1989) Ethanol inhibits NMDA-activated ion current in hippocampal neurons. Science 243:1721–1724

    Article  CAS  PubMed  Google Scholar 

  6. Hoffman PL, Rabe CS, Moses F, Tabakoff B (1989) N-methyl-d-aspartate receptors and ethanol: inhibition of calcium flux and cyclic GMP production. J Neurochem 52:1937–1940

    Article  CAS  PubMed  Google Scholar 

  7. Lima-Landman MT, Albuquerque EX (1989) Ethanol potentiates and blocks NMDA-activated single-channel currents in rat hippocampal pyramidal cells. FEBS Lett 247:61–67

    Article  CAS  PubMed  Google Scholar 

  8. White G, Lovinger DM, Weight FF (1990) Ethanol inhibits NMDA-activated current but does not alter GABA-activated current in an isolated adult mammalian neuron. Brain Res 507:332–336

    Article  CAS  PubMed  Google Scholar 

  9. Kotlinska J, Liljequist S (1997) The NMDA/glycine receptor antagonist, L-701,324, produces discriminative stimuli similar to those of ethanol. Eur J Pharmacol 332:1–8

    Article  CAS  PubMed  Google Scholar 

  10. Foley TD, Rhoads DE (1992) Effects of ethanol on Na(+)-dependent amino acid uptake: dependence on rat age and Na+, K(+)-ATPase activity. Brain Res 593:39–44

    Article  CAS  PubMed  Google Scholar 

  11. Hitzemann R, Mark C, Panini A (1982) Effects of free fatty acids, ethanol and development on gamma-aminobutyric acid and glutamate fluxes in rat nerve endings. Biochem Pharmacol 31:4039–4044

    Article  CAS  PubMed  Google Scholar 

  12. Smith TL, Zsigo A (1996) Increased Na(+)-dependent high affinity uptake of glutamate in astrocytes chronically exposed to ethanol. Neurosci Lett 218:142–144

    Article  CAS  PubMed  Google Scholar 

  13. Svensson L, Wu C, Johannessen K, Engel JA (1992) Effect of ethanol on ascorbate release in the nucleus accumbens and striatum of freely moving rats. Alcohol 9:535–540

    Article  CAS  PubMed  Google Scholar 

  14. Shimizu K, Matsubara K, Uezono T, Kimura K, Shiono H (1998) Reduced dorsal hippocampal glutamate release significantly correlates with the spatial memory deficits produced by benzodiazepines and ethanol. Neuroscience 83:701–706

    Article  CAS  PubMed  Google Scholar 

  15. Tiwari V, Veeraiah P, Subramaniam V, Patel AB (2014) Differential effects of ethanol on regional glutamatergic and GABAergic neurotransmitter pathways in mouse brain. J Neurochem 128:628–640

    Article  CAS  PubMed  Google Scholar 

  16. Chefer V, Meis J, Wang G, Kuzmin A, Bakalkin G, Shippenberg T (2011) Repeated exposure to moderate doses of ethanol augments hippocampal glutamate neurotransmission by increasing release. Addict Biol 16:229–237

    Article  CAS  PubMed  Google Scholar 

  17. Zahr NM, Rohlfing T, Mayer D, Luong R, Sullivan EV, Pfefferbaum A (2016) Transient CNS responses to repeated binge ethanol treatment. Addict Biol 21:1199–1216

    Article  CAS  PubMed  Google Scholar 

  18. Rao PSS, Bell RL, Engleman EA, Sari Y (2015) Targeting glutamate uptake to treat alcohol use disorders. Front Neurosci 9:144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Keller E, Cummins JT, von Hungen K (1983) Regional effects of ethanol on glutamate levels, uptake and release in slice and synaptosome preparations from rat brain. Subst Alcohol Actions Misuse 4:383–392

    CAS  PubMed  Google Scholar 

  20. Ruden DM, Michaelis ML, Benremouga A, Michaelis EK (1999) Enhanced sensitivity to ethanol in Drosophila with mutations in glutamate biosynthetic enzymes. Alcoholism 23:61

    Article  Google Scholar 

  21. Morozova TV, Anholt RR, Mackay TF (2007) Phenotypic and transcriptional response to selection for alcohol sensitivity in Drosophila melanogaster. Genome Biol 8:R231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Bao X, Pal R, Hascup KN, Wang Y, Wang WT, Xu W, Hui D, Agbas A, Wang X, Michaelis ML, Choi IY, Belousov AB, Gerhardt GA, Michaelis EK (2009) Transgenic expression of Glud1 (glutamate dehydrogenase 1) in neurons: in vivo model of enhanced glutamate release, altered synaptic plasticity, and selective neuronal vulnerability. J Neurosci 29:13929–13944

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Michaelis EK, Wang X, Pal R, Bao X, Hascup KN, Wang Y, Wang WT, Hui D, Agbas A, Choi IY, Belousov A, Gerhardt GA (2011) Neuronal Glud1 (glutamate dehydrogenase 1) over-expressing mice: increased glutamate formation and synaptic release, loss of synaptic activity, and adaptive changes in genomic expression. Neurochem Int 59:473–481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Cooper AJL (2012) The role of glutamine synthetase and glutamate dehydrogenase in cerebral ammonia homeostasis. Neurochem Res 37:2439–2455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Palaiologos G, Hertz L, Schousboe A (1988) Evidence that aspartate aminotransferase activity and ketodicarboxylate carrier function are essential for biosynthesis of transmitter glutamate. J Neurochem 51:317–320

    Article  CAS  PubMed  Google Scholar 

  26. Palaiologos G, Hertz L, Schousboe A (1989) Role of aspartate aminotransferase and mitochondrial dicarboxylate transport for release of endogenously and exogenously supplied neurotransmitter in glutamatergic neurons. Neurochem Res 14:359–366

    Article  CAS  PubMed  Google Scholar 

  27. Christensen T, Bruhn T, Diemer NH, Schousboe A (1991) Effect of phenylsuccinate on potassium- and ischemia-induced release of glutamate in rat hippocampus monitored by microdialysis. Neurosci Lett 134:71–74

    Article  CAS  PubMed  Google Scholar 

  28. Calabrese V, Scapagnini G, Latteri S, Colombrita C, Ravagna A, Catalano C, Pennisi G, Calvani M, Butterfield DA (2002) Long-term ethanol administration enhances age-dependent modulation of redox state in different brain regions in the rat: protection by acetyl carnitine. Int J Tissue React 24:97–104

    CAS  PubMed  Google Scholar 

  29. DeCarli LM, Lieber CS (1967) Fatty liver in the rat after prolonged intake of ethanol with a nutritionally adequate new liquid diet. J Nutr 91:331–336

    Article  CAS  PubMed  Google Scholar 

  30. Gruetter R (1993) Automatic, localized invivo adjustment of all 1st-order and 2nd-order shim coils. Magn Reson Med 29:804–811

    Article  CAS  PubMed  Google Scholar 

  31. Mlynarik V, Gambarota G, Frenkel H, Gruetter R (2006) Localized short-echo-time proton MR spectroscopy with full signal-intensity acquisition. Magn Reson Med 56:965–970

    Article  CAS  PubMed  Google Scholar 

  32. Chen G, Cuzon Carlson VC, Wang J, Beck A, Heinz A, Ron D, Lovinger DM, Buck KJ (2011) Striatal involvement in human alcoholism and alcohol consumption, and withdrawal in animal models. Alcohol Clin Exp Res 35:1739–1748

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Dyr W, Siemiatkowski M, Krzascik P, Bidzinski A, Plaznik A, Kostowski W (2002) Neurotransmitter levels and [3H]muscimol binding sites in the brain of rats selectively bred for alcohol preference and non-preference. Pol J Pharmacol 54:225–230

    CAS  PubMed  Google Scholar 

  34. Canales JJ (2013) Deficient plasticity in the hippocampus and the spiral of addiction: focus on adult neurogenesis. Curr Top Behav Neurosci 15:293–312

    Article  PubMed  Google Scholar 

  35. Koob GF, Volkow ND (2010) Neurocircuitry of addiction. Neuropsychopharmacology 35:217–238

    Article  Google Scholar 

  36. Provencher SW (1993) Estimation of metabolite concentrations from localized in-vivo proton Nmr-spectra. Magn Reson Med 30:672–679

    Article  CAS  PubMed  Google Scholar 

  37. Meyer SL (1975) Data analysis for scientists and engineers. Wiley, New York

    Google Scholar 

  38. R Development Core Team (2010) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  39. Carrera I, Kircher PR, Meier D, Richter H, Beckman K, Dennler M (2014) In vivo proton magnetic resonance spectroscopy for the evaluation of hepatic encephalopathy in dogs. Am J Vet Res 75:818–827

    Article  CAS  PubMed  Google Scholar 

  40. Gupta RK, Dhiman RK (2003) Magnetic resonance imaging and spectroscopy in hepatic encephalopathy. Indian J Gastroenterol 22:S45–S49

    PubMed  Google Scholar 

  41. Hassan EA, Abd El-Rehim AS, Seifeldein GS, Shehata GA (2014) Minimal hepatic encephalopathy in patients with liver cirrhosis: magnetic resonance spectroscopic brain findings versus neuropsychological changes. Arab J Gastroenterol 15:108–113

    Article  PubMed  Google Scholar 

  42. Li Y, Mei L, Qiang J, Ju S, Zhao S (2016) Magnetic resonance spectroscopy for evaluating portal-systemic encephalopathy in patients with chronic hepatic Schistosomiasis japonicum. PLoS Negl Trop Dis 10:e0005232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Ross BD, Danielsen ER, Bluml S (1996) Proton magnetic resonance spectroscopy: the new gold standard for diagnosis of clinical and subclinical hepatic encephalopathy? Dig Dis 1:30–39

    Article  Google Scholar 

  44. Duarte JM, Do KQ, Gruetter R (2014) Longitudinal neurochemical modifications in the aging mouse brain measured in vivo by 1H magnetic resonance spectroscopy. Neurobiol Aging 35:1660–1668

    Article  CAS  PubMed  Google Scholar 

  45. Lee MR, Hinton DJ, Wu J, Mishra PK, Port JD, Macura SI, Choi DS (2011) Acamprosate reduces ethanol drinking behaviors and alters the metabolite profile in mice lacking ENT1. Neurosci Lett 490:90–95

    Article  CAS  PubMed  Google Scholar 

  46. Liu H, Zheng W, Yan G, Liu B, Kong L, Ding Y, Shen Z, Tan H, Zhang G (2014) Acute ethanol-induced changes in edema and metabolite concentrations in rat brain. Biomed Res Int 351903:25

    Google Scholar 

  47. Zahr NM, Mayer D, Rohlfing T, Hasak MP, Hsu O, Vinco S, Orduna J, Luong R, Sullivan EV, Pfefferbaum A (2010) Brain injury and recovery following binge ethanol: evidence from in vivo magnetic resonance spectroscopy. Biol Psychiatry 67:846–854

    Article  CAS  PubMed  Google Scholar 

  48. Zahr NM, Mayer D, Vinco S, Orduna J, Luong R, Sullivan EV, Pfefferbaum A (2009) In vivo evidence for alcohol-induced neurochemical changes in rat brain without protracted withdrawal, pronounced thiamine deficiency, or severe liver damage. Neuropsychopharmacology 34:1427–1442

    Article  CAS  PubMed  Google Scholar 

  49. Peel AL, Zolotukhin S, Schrimsher GW, Muzyczka N, Reier PJ (1997) Efficient transduction of green fluorescent protein in spinal cord neurons using adeno-associated virus vectors containing cell type-specific promoters. Gene Ther 4:16–24

    Article  CAS  PubMed  Google Scholar 

  50. Wallimann T, Wyss M, Brdiczka D, Nicolay K, Eppenberger HM (1992) Intracellular compartmentation, structure and function of creatine kinase isoenzymes in tissues with high and fluctuating energy demands: the ‘phosphocreatine circuit’ for cellular energy homeostasis. Biochem J 281(Pt 1):21–40

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Braissant O, Henry H, Villard AM, Zurich MG, Loup M, Eilers B, Parlascino G, Matter E, Boulat O, Honegger P, Bachmann C (2002) Ammonium-induced impairment of axonal growth is prevented through glial creatine. J Neurosci 22:9810–9820

    Article  CAS  PubMed  Google Scholar 

  52. Van Pilsum JF, Stephens GC, Taylor D (1972) Distribution of creatine, guanidinoacetate and the enzymes for their biosynthesis in the animal kingdom. Implications for phylogeny. Biochem J 126:325–345

    Article  PubMed  PubMed Central  Google Scholar 

  53. Denays R, Chao SL, Mathur-Devre R, Jeghers O, Fruhling J, Noel P, Ham HR (1993) Metabolic changes in the rat brain after acute and chronic ethanol intoxication: a 31P NMR spectroscopy study. Magn Reson Med 29:719–723

    Article  CAS  PubMed  Google Scholar 

  54. Choi IY, Lee P, Wang WT, Hui D, Wang X, Brooks WM, Michaelis EK (2014) Metabolism changes during aging in the hippocampus and striatum of glud1 (glutamate dehydrogenase 1) transgenic mice. Neurochem Res 39:446–455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Wood WG, Armbrecht HJ, Wise RW (1982) Ethanol intoxication and withdrawal among three age groups of C57BL/6NNIA mice. Pharmacol Biochem Behav 17:1037–1041

    Article  CAS  PubMed  Google Scholar 

  56. Allen DL, Little RG 2nd, Theotokatos JE, Petersen DR (1982) Ethanol elimination rates in mice: effects of gender, nutrition, and chronic ethanol treatment. Pharmacol Biochem Behav 16:757–760

    Article  CAS  PubMed  Google Scholar 

  57. Fein G, Meyerhoff DJ (2000) Ethanol in human brain by magnetic resonance spectroscopy: correlation with blood and breath levels, relaxation, and magnetization transfer. Alcohol Clin Exp Res 24:1227–1235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Gilpin NW, Smith AD, Cole M, Weiss F, Koob GF, Richardson HN (2009) Operant behavior and alcohol levels in blood and brain of alcohol-dependent rats. Alcohol Clin Exp Res 33:2113–2123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. LeBlanc AE, Kalant H, Gibbins RJ (1975) Acute tolerance to ethanol in the rat. Psychopharmacologia 41:43–46

    Article  CAS  PubMed  Google Scholar 

  60. Larsen M, Langmoen IA (1998) The effect of volatile anaesthetics on synaptic release and uptake of glutamate. Toxicol Lett 101:59–64

    Article  Google Scholar 

  61. Zhu C, Gao J, Karlsson N, Li Q, Zhang Y, Huang Z, Li H, Kuhn HG, Blomgren K (2010) Isoflurane anesthesia induced persistent, progressive memory impairment, caused a loss of neural stem cells, and reduced neurogenesis in young, but not adult, rodents. J Cereb Blood Flow Metab 30:1017–1030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Kulak A, Duarte JM, Do KQ, Gruetter R (2010) Neurochemical profile of the developing mouse cortex determined by in vivo 1H NMR spectroscopy at 14.1 T and the effect of recurrent anaesthesia. J Neurochem 115:1466–1477

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study was funded by National Institute on Aging (AG 12993, AG 035982), Kansas City Area Life Sciences Institute (KCALSI-07-13).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to In-Young Choi.

Additional information

Special issue: In honor of Elias K. Michaelis.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, WT., Lee, P., Hui, D. et al. Effects of Ethanol Exposure on the Neurochemical Profile of a Transgenic Mouse Model with Enhanced Glutamate Release Using In Vivo 1H MRS. Neurochem Res 44, 133–146 (2019). https://doi.org/10.1007/s11064-018-2658-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-018-2658-9

Keywords

Navigation