Skip to main content

Advertisement

Log in

l-3-n-Butylphthalide Activates Akt/mTOR Signaling, Inhibits Neuronal Apoptosis and Autophagy and Improves Cognitive Impairment in Mice with Repeated Cerebral Ischemia–Reperfusion Injury

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

l-3-n-Butylphthalide (l-NBP) exerts neuroprotective effects in animal models of cerebral ischemia, but its potential benefits in repeated cerebral ischemia–reperfusion (RCIR) injury remain unknown. We investigated the effect of l-NBP on cognitive impairment induced by RCIR in mice. Male C57Bl/6 mice received sham surgery or bilateral common carotid artery occlusion (3 times, 20 min each) and were orally administered preoperative l-NBP (30 mg/kg/day, 7 days), postoperative l-NBP (30 or 60 mg/kg/day, 28 days) or postoperative vehicle (28 days). Learning and memory were assessed by the Morris water maze task and step-down passive avoidance test. Nissl staining was used to identify pathologic changes in the hippocampal CA1 region. The expressions of proteins associated with signaling, apoptosis and autophagy were assessed by quantitative PCR and western blot. RCIR induced deficits in learning and memory that were alleviated by preoperative or postoperative l-NBP administration. Pathologic lesions in the hippocampal CA1 region induced by RCIR were less severe in mice treated with l-NBP. Preoperative or postoperative l-NBP administration in mice receiving RCIR promoted hippocampal expression of phospho-Akt and phospho-mTOR (suggesting activation of Akt/mTOR signaling), increased the Bcl-2/Bax ratio (indicating suppression of apoptosis) and reduced the LC3-II/LC3-I ratio (implying inhibition of autophagy). Preoperative or postoperative l-NBP administration also depressed hippocampal levels of beclin-1 mRNA (indicating suppression of autophagy). These findings suggest that the effect of l-NBP to alleviate learning and memory deficits in mice following RCIR may involve activation of Akt/mTOR signaling and regulation of the expressions of proteins related to apoptosis and autophagy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Rockwood K, Wentzel C, Hachinski V, Hogan DB, MacKnight C, McDowell I (2000) Prevalence and outcomes of vascular cognitive impairment. Vascular Cognitive Impairment Investigators of the Canadian Study of Health and Aging. Neurology 54:447–451

    Article  CAS  PubMed  Google Scholar 

  2. Stewart JT (2007) Psychiatric and behavioral manifestations of vascular dementia. Am J Geriatr Cardiol 16:165–170

    Article  PubMed  Google Scholar 

  3. Du SQ, Wang XR, Xiao LY, Tu JF, Zhu W, He T, Liu CZ (2017) Molecular mechanisms of vascular dementia: what can be learned from animal models of chronic cerebral hypoperfusion? Mol Neurobiol 54(5):3670–3682

    Article  CAS  PubMed  Google Scholar 

  4. Venkat P, Chopp M, Chen J (2015) Models and mechanisms of vascular dementia. Exp Neurol 272:97–108

    Article  PubMed  PubMed Central  Google Scholar 

  5. Fang S, Yan B, Wang D, Bi X, Zhang Y, He J, Xu H, Yang Y, Kong J, Wu J, Li XM (2010) Chronic effects of venlafaxine on synaptophysin and neuronal cell adhesion molecule in the hippocampus of cerebral ischemic mice. Biochem Cell Biol 88:655–663

    Article  CAS  PubMed  Google Scholar 

  6. Culmsee C, Plesnila N (2006) Targeting Bid to prevent programmed cell death in neurons. Biochem Soc Trans 34:1334–1340

    Article  CAS  PubMed  Google Scholar 

  7. Fan M, Jin W, Zhao H, Xiao Y, Jia Y, Yin Y, Jiang X, Xu J, Meng N, Lv P (2015) Lithium chloride administration prevents spatial learning and memory impairment in repeated cerebral ischemia-reperfusion mice by depressing apoptosis and increasing BDNF expression in hippocampus. Behav Brain Res 291:399–406

    Article  CAS  PubMed  Google Scholar 

  8. Lockshin RA, Zakeri ZA (2004) Apoptosis, autophagy, and more. Int J Biochem Cell Biol 36:2405–2419

    Article  CAS  PubMed  Google Scholar 

  9. Larsen KE, Sulzer D (2002) Autophagy in neurons: a review. Histol Histopathol 17:897–908

    CAS  PubMed  Google Scholar 

  10. Rami A (2009) Autophagy in neurodegeneration: firefighter and/or incendiarist? Neuropath Appl Neurobiol 35:449–461

    Article  CAS  Google Scholar 

  11. Son JH, Shim JH, Kim KH, Ha JY, Han JY (2012) Neuronal autophagy and neurodegenerative diseases. Exp Mol Med 44:89–98

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Rami A, Langhagen A, Steiger S (2008) Focal cerebral ischemia induces upregulation of beclin 1 and autophagy-like cell death. Neurobiol Dis 29:132–141

    Article  CAS  PubMed  Google Scholar 

  13. Uchiyama Y, Shibata M, Koike M, Yoshimura K, Sasaki M (2008) Autophagy-physiology and pathophysiology. Histochem Cell Biol 129:407–420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Benbrook DM, Long A (2012) Integration of autophagy, proteasomal degradation, unfolded protein response and apoptosis. Exp Oncol 34:286–297

    CAS  PubMed  Google Scholar 

  15. Scheper W, Nijholt DA, Hoozemans JJ (2011) The unfolded protein response and proteostasis in Alzheimer disease: preferential activation of autophagy by endoplasmic reticulum stress. Autophagy 7:910–911

    Article  PubMed  PubMed Central  Google Scholar 

  16. Wang QJ, Ding Y, Kohtz DS, Mizushima N, Cristea IM, Rout MP, Chait BT, Zhong Y, Heintz N, Yue Z (2006) Induction of autophagy in axonal dystrophy and degeneration. J Neurosci 26:8057–8068

    Article  CAS  PubMed  Google Scholar 

  17. Sun B, Chen L, Wei X, Xiang Y, Liu X, Zhang X (2011) The Akt/GSK-3beta pathway mediates flurbiprofen induced neuroprotection against focal cerebral ischemia/reperfusion injury in rats. Biochem Biophys Res Commun 409:808–813

    Article  CAS  PubMed  Google Scholar 

  18. Ma Y, Lu C, Li C, Li R, Zhang Y, Ma H, Zhang X, Ding Z, Liu L (2013) Overexpression of HSPA12B protects against cerebral ischemia/reperfusion injury via a PI3K/Akt-dependent mechanism. Biochim Biophys Acta 1832:57–66

    Article  CAS  PubMed  Google Scholar 

  19. Huang J, Kodithuwakku ND, He W, Zhou Y, Fan W, Fang W, He G, Wu Q, Chu S, Li Y (2015) The neuroprotective effect of a novel agent N2 on rat cerebral ischemia associated with the activation of PI3K/Akt signaling pathway. Neuropharmacology 95:12–21

    Article  CAS  PubMed  Google Scholar 

  20. Perluigi M, Pupo G, Tramutola A, Cini C, Coccia R, Barone E, Head E, Butterfield DA, Di Domenico FN (2014) Neuropathological role of PI3K/Akt/mTOR axis in Down syndrome brain. Biochim Biophys Acta 1842:1144–1153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ma S, Xu S, Liu B, Li J, Feng N, Wang L, Wang X (2009) Long-term treatment of l-3-n-butylphthalide attenuated neurodegenerative changes in aged rats. Naunyn Schmiedebergs Arch Pharmacol 379:565–574

    Article  CAS  PubMed  Google Scholar 

  22. Peng Y, Xing C, Xu S, Lemere CA, Chen G, Liu B, Wang L, Feng Y, Wang X (2009) L-3-n-butylphthalide improves cognitive impairment induced by intracerebroventricular infusion of amyloid-b peptide in rats. Eur J Pharmacol 621:38–45

    Article  CAS  PubMed  Google Scholar 

  23. Xiang J, Pan J, Chen F, Zheng L, Chen Y, Zhang S, Feng W (2014) L-3-n- butylphthalide improves cognitive impairment of APP/PS1 mice by BDNF/TrkB/PI3K/AKT pathway. Int J Clin Exp Med 7:1706–1713

    PubMed  PubMed Central  Google Scholar 

  24. Huang JZ, Chen YZ, Su M, Zheng HF, Yang YP, Chen J, Liu CF (2010) dl-3-n-Butylphthalide prevents oxidative damage and reduces mitochondrial dysfunction in an MPP(+)-induced cellular model of Parkinson’s disease. Neurosci Lett 475:89–94

    Article  CAS  PubMed  Google Scholar 

  25. Xiong N, Huang J, Chen C, Zhao Y, Zhang Z, Jia M, Zhang Z, Hou L, Yang H, Cao X, Liang Z, Zhang Y, Sun S, Lin Z, Wang T (2012) dl-3-n-Butylphthalide, a natural antioxidant, protects dopamine neurons in rotenone models for parkinson’s disease. Neurobiol Aging 33:1777–1791

    Article  CAS  PubMed  Google Scholar 

  26. Hu J, Wen Q, Wu Y, Li B, Gao P (2014) The effect of butylphthalide on the brain edema, blood-brain barrier of rats after focal cerebral infarction and the expression of Rho A. Cell Biochem Biophys 69:363–368

    Article  CAS  PubMed  Google Scholar 

  27. Li J, Li Y, Ogle M, Zhou X, Song M, Yu SP, Wei L (2010) dl-3-n-Butylphthalide prevents neuronal cell death after focal cerebral ischemia in mice via the jnk pathway. Brain Res 1359:216–226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Liao SJ, Lin JW, Pei Z, Liu CL, Zeng JS, Huang RX (2009) Enhanced angiogenesis with dl-3n-butylphthalide treatment after focal cerebral ischemia in RHRSP. Brain Res 1289:69–78

    Article  CAS  PubMed  Google Scholar 

  29. Liu CL, Liao SJ, Zeng JS, Lin JW, Li CX, Xie LC, Shi XG, Huang RX (2007) dl-3n-Butylphthalide prevents stroke via improvement of cerebral microvessels in RHRSP. J Neurol Sci 260:106–113

    Article  CAS  PubMed  Google Scholar 

  30. Peng Y, Xu S, Chen G, Wang L, Feng Y, Wang X (2007) l-3-n-Butylphthalide improves cognitive impairment induced by chronic cerebral hypoperfusion in rats. J Pharmacol Exp Ther 321:902–910

    Article  CAS  PubMed  Google Scholar 

  31. Xu J, Wang Y, Li N, Xu L, Yang H, Yang Z (2012) l-3-n-Butylphthalide improves cognitive deficits in rats with chronic cerebral ischemia. Neuropharmacology 62:2424–2429

    Article  CAS  PubMed  Google Scholar 

  32. Li J, Zhang S, Zhang L, Wang R, Wang M (2015) Effects of L-3-n-butylphthalide on cognitive dysfunction and NR2B expression in hippocampus of streptozotocin (STZ)-induced diabetic rats. Cell Biochem Biophys 71:315–322

    Article  CAS  PubMed  Google Scholar 

  33. Huai Y, Dong Y, Xu J, Meng N, Song C, Li W, Lv P (2013) L-3-n-butylphthalide protects against vascular dementia via activation of the Akt kinase pathway. Neural Regen Res 8:1733–1742

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Jin W, Jia Y, Huang L, Wang T, Wang H, Dong Y, Zhang H, Fan M, Lv P (2014) Lipoxin A4 methyl ester ameliorates cognitive deficits induced by chronic cerebral hypoperfusion through activating ERK/Nrf2 signaling pathway in rats. Pharmacol Biochem Behav 124:145–152

    Article  CAS  PubMed  Google Scholar 

  35. Cory S, Adams JM (2002) The Bcl2 family: regulators of the cellular life-or-death switch. Nat Rev Cancer 2:647–656

    Article  CAS  PubMed  Google Scholar 

  36. Chen L, Wei X, Hou Y, Liu X, Li S, Sun B, Liu X, Liu H (2014) Tetramethylpyrazine analogue CXC195 protects against cerebral ischemia/reperfusion-induced apoptosis through PI3K/Akt/GSK3beta pathway in rats. Neurochem Int 66:27–32

    Article  CAS  PubMed  Google Scholar 

  37. Chen Y, Wu X, Yu S, Fauzee NJ, Wu J, Li L, Zhao J, Zhao Y (2012) Neuroprotective capabilities of Tanshinone IIA against cerebral ischemia/reperfusion injury via anti-apoptotic pathway in rats. Biol Pharm Bull 35:164–170

    Article  CAS  PubMed  Google Scholar 

  38. Sun L, Zhuang W, Xu X, Yang J, Teng J, Zhang F (2013) The effect of injection of EGb 761 into the lateral ventricle on hippocampal cell apoptosis and stem cell stimulation in situ of the ischemic/reperfusion rat model. Neurosci Lett 555:123–128

    Article  CAS  PubMed  Google Scholar 

  39. Wang YG, Li Y, Wang CY, Ai JW, Dong XY, Huang HY, Feng ZY, Pan YM, Lin Y, Wang BX, Yao LL (2014) L-3-n-butylphthalide protects rats’ cardiomyocytes from ischaemia/reperfusion-induced apoptosis by affecting the mitochondrial apoptosis pathway. Acta Physiol 210:524–533

    Article  CAS  Google Scholar 

  40. Lei H, Zhao CY, Liu DM, Zhang Y, Li L, Wang XL, Peng Y (2014) l-3-n-Butylphthalide attenuates beta-amyloid-induced toxicity in neuroblastoma SH-SY5Y cells through regulating mitochondrion-mediated apoptosis and MAPK signaling. J Asian Nat Prod Res 16:854–864

    Article  CAS  PubMed  Google Scholar 

  41. Xilouri M, Stefanis L (2010) Autophagy in the central nervous system: Implications for neurodegenerative disorders. CNS Neurol Disord Drug Targets 9:701–719

    Article  CAS  PubMed  Google Scholar 

  42. Xu LX, Tang XJ, Yang YY, Li M, Jin MF, Miao P, Ding X, Wang Y, Li YH, Sun B, Feng X (2017) Neuroprotective effects of autophagy inhibition on hippocampal glutamate receptor subunits after hypoxia-ischemia-induced brain damage in newborn rats. Neural Regen Res 12:417–424

    Article  PubMed  PubMed Central  Google Scholar 

  43. Li L, Chen J, Sun S, Zhao J, Dong X, Wang J (2017) Effects of estradiol on autophagy and Nrf-2/ARE signals after cerebral ischemia. Cell Physiol Biochem 41:2027–2036

    Article  CAS  PubMed  Google Scholar 

  44. Pengyue Z, Tao G, Hongyun H, Liqiang Y, Yihao D (2017) Breviscapine confers a neuroprotective efficacy against transient focal cerebral ischemia by attenuating neuronal and astrocytic autophagy in the penumbra. Biomed Pharmacother 90:69–76

    Article  PubMed  Google Scholar 

  45. Eisenberg-Lerner A, Bialik S, Simon HU, Kimchi A (2009) Life and death partners: apoptosis, autophagy and the cross-talk between them. Cell Death Differ 16:966–975

    Article  CAS  PubMed  Google Scholar 

  46. Parcellier A, Tintignac LA, Zhuravleva E, Hemmings BA (2008) PKB and the mitochondria: AKTing on apoptosis. Cell Signal 20:21–30

    Article  CAS  PubMed  Google Scholar 

  47. Fan M, Song C, Wang T, Li L, Dong Y, Jin W, Lu P (2015) Protective effects of lithium chloride treatment on repeated cerebral ischemia- reperfusion injury in mice. Neurol Sci 36:315–321

    Article  PubMed  Google Scholar 

  48. Garelick MG, Kennedy BK (2011) TOR on the brain. Exp Gerontol 46:155–163

    Article  CAS  PubMed  Google Scholar 

  49. Li TT, Zhu D, Mou T, Guo Z, Pu JL, Chen QS, Wei XF, Wu ZJ (2017) IL-37 induces autophagy in hepatocellular carcinoma cells by inhibiting the PI3K/AKT/mTOR pathway. Mol Immunol 87:132–140

    Article  CAS  PubMed  Google Scholar 

  50. Zhao D, Wang W, Wang H, Peng H, Liu X, Guo W, Su G, Zhao Z (2017) PKD knockdown inhibits pressure overload-induced cardiac hypertrophy by promoting autophagy via AKT/mTOR pathway. Int J Biol Sci 13:276–285

    Article  PubMed  PubMed Central  Google Scholar 

  51. Chen J, Zhou J, Li F, Zhu Y, Zhang W, Yu X (2017) Delphinidin induces autophagy in HER-2+ breast cancer cells via inhibition of AKT/mTOR pathway. Zhong Nan Da Xue Xue Bao Yi Xue Ban 42:264–270

    PubMed  Google Scholar 

  52. Xue JF, Shi ZM, Zou J, Li XL (2017) Inhibition of PI3K/AKT/mTOR signaling pathway promotes autophagy of articular chondrocytes and attenuates inflammatory response in rats with osteoarthritis. Biomed Pharmacother 89:1252–1261

    Article  CAS  PubMed  Google Scholar 

  53. Liu Q, Guan JZ, Sun Y, Le Z, Zhang P, Yu D, Liu Y (2017) Insulin-like growth factor 1 receptor-mediated cell survival in hypoxia depends on the promotion of autophagy via suppression of the PI3K/Akt/mTOR signaling pathway. Mol Med Rep 15:2136–2142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Kim YC, Guan KL (2015) mTOR: a pharmacologic target for autophagy regulation. J Clin Invest 125:25–32

    Article  PubMed  PubMed Central  Google Scholar 

  55. Lu XL, Luo D, Yao XL, Wang GL, Liu ZY, Li ZX, Li W, Chang FJ, Wen L, Lee SM, Zhang ZJ, Li L, Zeng JS, Huang RX, Pei Z, Ou JS (2012) dl-3n-Butylphthalide promotes angiogenesis via the extracellular signal-regulated kinase 1/2 and phosphatidylinositol 3-kinase/Akt-endothelial nitric oxide synthase signaling pathways. J Cardiovasc Pharmacol 59:352–362

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by the Hebei Province Major Medical Research Project of China (zd2013005) and the Hebei Province Natural Science Foundation of China (H2013307046).

Funding

This study was supported by the Hebei Province Major Medical Research Project of China (zd2013005) and the Hebei Province Natural Science Foundation of China (H2013307046).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peiyuan Lv.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Research Involving Animals

Animal care and the experimental protocol were conducted in strict accordance with the regulations of laboratory animal management promulgated by the Ministry of Science and Technology of the People’s Republic of China [1988] no. 134, which conforms to the internationally recognized National Institutes of Health guidance for care and use of laboratory animals. All animal studies were approved by the Animal Care and Use Committee of Hebei General Hospital, Shijiazhuang, China and performed in accordance with ethical standards.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, J., Huai, Y., Meng, N. et al. l-3-n-Butylphthalide Activates Akt/mTOR Signaling, Inhibits Neuronal Apoptosis and Autophagy and Improves Cognitive Impairment in Mice with Repeated Cerebral Ischemia–Reperfusion Injury. Neurochem Res 42, 2968–2981 (2017). https://doi.org/10.1007/s11064-017-2328-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-017-2328-3

Keywords

Navigation