Skip to main content
Log in

Twenty-seven Years of Cerebral Pyruvate Recycling

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Cerebral pyruvate recycling is a metabolic pathway deriving carbon skeletons and reducing equivalents from mitochondrial oxaloacetate and malate, to the synthesis of mitochondrial and cytosolic pyruvate, lactate and alanine. The pathway allows both, to provide the tricarboxylic acid cycle with pyruvate molecules produced from alternative substrates to glucose and, to generate reducing equivalents necessary for the operation of NADPH requiring processes. At the cellular level, pyruvate recycling involves the activity of malic enzyme, or the combined activities of phosphoenolpyruvate carboxykinase and pyruvate kinase, as well as of those transporters of the inner mitochondrial membrane exchanging the corresponding intermediates. Its cellular localization between the neuronal or astrocytic compartments of the in vivo brain has been controversial, with evidences favoring either a primarily neuronal or glial localizations, more recently accepted to occur in both environments. This review provides a brief history on the detection and characterization of the pathway, its relations with the early developments of cerebral high resolution 13C NMR, and its potential neuroprotective functions under hypoglycemic conditions or ischemic redox stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

α-KG:

α-ketoglutarate

Lac:

Lactate

LDH:

Lactate dehydrogenase

NMR:

Nuclear magnetic resonance

ME:

Malic enzyme (E.C. 1.1.1.40)

MRS:

Magnetic resonance spectroscopy

Mal:

Malate

OAA:

Oxaloacetate

PDH:

Pyruvate dehydrogenase (E.C. 1.2.4.1., 1.8.1.4., 2.3.4.12)

PEPCK:

Phosphoenolpyruvate carboxykinase (E.C. 4.1.1.1.32)

PK:

Pyruvate kinase (E.C. 2.7.1.40)

TCA:

Tricarboxylic acid cycle

References

  1. Eakin RT, Morgan LO, Gregg CT, Matwiyoff NA (1972) Carbon-13 nuclear magnetic resonance spectroscopy of living cells and their metabolism of a specifically labeled 13C substrate. FEBS Lett 28:259–264

    Article  CAS  PubMed  Google Scholar 

  2. Rodrigues TB, Valette J, Bouzier-Sore AK (2013) (13)C NMR spectroscopy applications to brain energy metabolism. Front Neuroenerg 5:1–16

    Article  Google Scholar 

  3. Shulman RG, Rothman DL (2001) 13C NMR of intermediary metabolism: implications for systemic physiology. Annu Rev Physiol 63:15–48

    Article  CAS  PubMed  Google Scholar 

  4. Shulman RG, Rothman DL (eds) (2005) Metabolomics by in vivo NMR. Wiley, Chichester, UK

    Google Scholar 

  5. Cerdan S, Seelig J (1990) NMR studies of metabolism. Ann Rev Biophys Biophys Chem 19:43–67

    Article  CAS  Google Scholar 

  6. Kunnecke B, Cerdan S (1989) Multilabeled 13C substrates as probes in in vivo 13C and 1H NMR spectroscopy. NMR Biomed 2:274–277

    Article  CAS  PubMed  Google Scholar 

  7. Rodrigues TB, Cerdán S (2005) 13C NMR: an outstanding tool for metabolic studies. Concepts Magn Reson Part A 27A(1):1–16

    Article  CAS  Google Scholar 

  8. Cerdan S, Kunnecke B, Seelig J (1990) Cerebral metabolism of [1,2-13C2]acetate as detected by in vivo and in vitro 13C NMR. J Biol Chem 265:12916–12926

    CAS  PubMed  Google Scholar 

  9. Rodrigues TB, Cerdán S (2007) The Cerebral Tricarboxylic Acid ycles. In: Lajhta A (ed) Handbook of neurochemistry and moleculart neurobiology:brain energetics, integration of molecular and cellular processes, 3rd edn. Springer, New York, pp 485

    Google Scholar 

  10. van den Berg CJ, Garfinkel D (1971) A simulation study of brain compartments. Metabolism of glutamate and related substances in mouse brain. Biochem J 123:211–218

    Article  PubMed  Google Scholar 

  11. Berls S, Clarke DD (1969) Compartmentation of aminoacid metabolism. Plenum Press, New York

    Google Scholar 

  12. Garfinkel D (1966) A simulation study of the metabolism and compartmentation in brain of glutamate, aspartate, the Krebs cycle, and related metabolites. J Biol Chem 241:3918–3929

    CAS  PubMed  Google Scholar 

  13. Garfinkel D (1970) A simulation study of brain compartments. I. Fuel sources, and GABA metabolism. Brain Res 23:387–406

    Article  CAS  PubMed  Google Scholar 

  14. Waniewski RA, Martin DL (1998) Preferential utilization of acetate by astrocytes is attributable to transport. J Neurosci 18:5225–5233

    CAS  PubMed  Google Scholar 

  15. Lebon V, Petersen KF, Cline GW, Shen J, Mason GF, Dufour S, Behar KL, Shulman GI, Rothman DL (2002) Astroglial contribution to brain energy metabolism in humans revealed by 13C nuclear magnetic resonance spectroscopy: elucidation of the dominant pathway for neurotransmitter glutamate repletion and measurement of astrocytic oxidative metabolism. J Neurosci 22:1523–1531

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Martinez-Hernandez A, Bell KP, Norenberg MD (1977) Glutamine synthetase: glial localization in brain. Science 195:1356–1358

    Article  CAS  PubMed  Google Scholar 

  17. Cruz F, Scott SR, Barroso I, Santisteban P, Cerdan S (1998) Ontogeny and cellular localization of the pyruvate recycling system in rat brain. J Neurochem 70:2613–2619

    Article  CAS  PubMed  Google Scholar 

  18. Kunnecke B, Cerdan S, Seelig J (1993) Cerebral metabolism of [1,2-13C2]glucose and [U-13C4]3-hydroxybutyrate in rat brain as detected by 13C NMR spectroscopy. NMR Biomed 6:264–277

    Article  CAS  PubMed  Google Scholar 

  19. Sonnewald U, Westergaard N, Jones P, Taylor A, Bachelard HS, Schousboe A (1996) Metabolism of [U-13C5] glutamine in cultured astrocytes studied by NMR spectroscopy: first evidence of astrocytic pyruvate recycling. J Neurochem 67:2566–2572

    Article  CAS  PubMed  Google Scholar 

  20. Hassel B, Sonnewald U (1995) Glial formation of pyruvate and lactate from TCA cycle intermediates: implications for the inactivation of transmitter amino acids? J Neurochem 65:2227–2234

    Article  CAS  PubMed  Google Scholar 

  21. Rodrigues TB, Sierra A, Ballesteros P, Cerdán S (2011) Pyruvate Transport and Metabolism in the Central Nervous System. In: Choi I-Y, Gruetter R (eds) Neural metabolism in vivo (advances in neurobiology 4), Springer, New York, pp 715–753

    Google Scholar 

  22. Vogel R, Jennemann G, Seitz J, Wiesinger H, Hamprecht B (1998) Mitochondrial malic enzyme: purification from bovine brain, generation of an antiserum, and immunocytochemical localization in neurons of rat brain. J Neurochem 71:844–852

    Article  CAS  PubMed  Google Scholar 

  23. Vogel R, Hamprecht B, Wiesinger H (1998) Malic enzyme isoforms in astrocytes: comparative study on activities in rat brain tissue and astroglia-rich primary cultures. Neurosci Lett 247:123–126

    Article  CAS  PubMed  Google Scholar 

  24. McKenna MC, Stevenson JH, Huang X, Tildon JT, Zielke CL, Hopkins IB (2000) Mitochondrial malic enzyme activity is much higher in mitochondria from cortical synaptic terminals compared with mitochondria from primary cultures of cortical neurons or cerebellar granule cells. Neurochem Int 36:451–459

    Article  CAS  PubMed  Google Scholar 

  25. Ottersen OP, Storm-Mathisen J, Bramham C, Torp R, Laake J, Gundersen V (1990) A quantitative electron microscopic immunocytochemical study of the distribution and synaptic handling of glutamate in rat hippocampus. Prog Brain Res 83:99–114

    Article  CAS  PubMed  Google Scholar 

  26. Storm-Mathisen J, Leknes AK, Bore AT, Vaaland JL, Edminson P, Haug FM, Ottersen OP (1983) First visualization of glutamate and GABA in neurones by immunocytochemistry. Nature 301:517–520

    Article  CAS  PubMed  Google Scholar 

  27. Chapa F, Cruz F, Garcia-Martin ML, Garcia-Espinosa MA, Cerdan S (2000) Metabolism of (1-(13)C) glucose and (2-(13)C, 2-(2)H(3)) acetate in the neuronal and glial compartments of the adult rat brain as detected by [(13)C, (2)H] NMR spectroscopy. Neurochem Int 37:217–228

    Article  CAS  PubMed  Google Scholar 

  28. Scafidi S, Fiskum G, Lindauer SL, Bamford P, Shi D, Hopkins I, McKenna MC (2010) Metabolism of acetyl-L-carnitine for energy and neurotransmitter synthesis in the immature rat brain. J Neurochem 114:820–831

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Serres S, Bezancon E, Franconi JM, Merle M (2007) Brain pyruvate recycling and peripheral metabolism: an NMR analysis ex vivo of acetate and glucose metabolism in the rat. J Neurochem 101:1428–1440

    Article  CAS  PubMed  Google Scholar 

  30. Amaral AI, Teixeira AP, Sonnewald U, Alves PM (2011) Estimation of intracellular fluxes in cerebellar neurons after hypoglycemia: importance of the pyruvate recycling pathway and glutamine oxidation. J Neurosci Res 89:700–710

    Article  CAS  PubMed  Google Scholar 

  31. Olstad E, Olsen GM, Qu H, Sonnewald U (2007) Pyruvate recycling in cultured neurons from cerebellum. J Neurosci Res 85:3318–3325

    Article  CAS  PubMed  Google Scholar 

  32. Waagepetersen HS, Qu H, Hertz L, Sonnewald U, Schousboe A (2002) Demonstration of pyruvate recycling in primary cultures of neocortical astrocytes but not in neurons. Neurochem Res 27:1431–1437

    Article  CAS  PubMed  Google Scholar 

  33. Haberg A, Qu H, Bakken IJ, Sande LM, White LR, Haraldseth O, Unsgard G, Aasly J, Sonnewald U (1998) In vitro and ex vivo 13C-NMR spectroscopy studies of pyruvate recycling in brain. Dev Neurosci 20:389–398

    Article  CAS  PubMed  Google Scholar 

  34. Sonnewald U, Westergaard N, Hassel B, Muller TB, Unsgard G, Fonnum F, Hertz L, Schousboe A, Petersen SB (1993) NMR spectroscopic studies of 13C acetate and 13C glucose metabolism in neocortical astrocytes: evidence for mitochondrial heterogeneity. Dev Neurosci 15:351–358

    Article  CAS  PubMed  Google Scholar 

  35. Hassel B, Sonnewald U, Fonnum F (1995) Glial-neuronal interactions as studied by cerebral metabolism of [2-13C]acetate and [1-13C]glucose: an ex vivo 13C NMR spectroscopic study. J Neurochem 64:2773–2782

    Article  CAS  PubMed  Google Scholar 

  36. Pascual JM, Carceller F, Roda JM, Cerdan S (1998) Glutamate, glutamine, and GABA as substrates for the neuronal and glial compartments after focal cerebral ischemia in rats. Stroke 29:1048–1056; discussion 1056–1047

    Article  CAS  PubMed  Google Scholar 

  37. Morken TS, Brekke E, Haberg A, Wideroe M, Brubakk AM, Sonnewald U (2014) Altered astrocyte-neuronal interactions after hypoxia-ischemia in the neonatal brain in female and male rats. Stroke 45:2777–2785

    Article  PubMed  Google Scholar 

  38. Harlow DE, Honce JM, Miravalle AA (2015) Remyelination Therapy in Multiple Sclerosis. Front Neurol 6:257

    Article  PubMed  PubMed Central  Google Scholar 

  39. Franklin RJ, Ffrench-Constant C (2008) Remyelination in the CNS: from biology to therapy. Nature Rev Neurosci 9:839–855

    Article  CAS  Google Scholar 

  40. Calabrese V, Cornelius C, Mancuso C, Lentile R, Stella AM, Butterfield DA (2010) Redox homeostasis and cellular stress response in aging and neurodegeneration. Methods Mol Biol 610:285–308

    Article  CAS  PubMed  Google Scholar 

  41. Shaafi S, Mahmoudi J, Pashapour A, Farhoudi M, Sadigh-Eteghad S, Akbari H (2014) Ketogenic diet provides neuroprotective effects against ischemic stroke neuronal damages. Adv Pharm Bull 4:479–481

    PubMed  PubMed Central  Google Scholar 

  42. Noh HS, Kim YS, Choi WS (2008) Neuroprotective effects of the ketogenic diet. Epilepsia 49(Suppl 8):120–123

    Article  CAS  PubMed  Google Scholar 

  43. Ruiz F, Alvarez G, Pereira R, Hernandez M, Villalba M, Cruz F, Cerdan S, Bogonez E, Satrustegui J (1998) Protection by pyruvate and malate against glutamate-mediated neurotoxicity. Neuroreport 9:1277–1282

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The author is deeply indebted to many generations of students, post-docs and technicians that contributed time and effort to the experiments outlined above. The contribution of Prof. Paloma Ballesteros UNED and Mr. Javier Pérez CSIC providing careful reading of the manuscript and professional drafting of the illustrations is gratefully acknowledged.

Funding

This work was supported in part by Grants SAF2014-53739-R and S2010/BMD-2349 to SC. Funding sources were not involved in the design of the study, in the collection, analysis and interpretation of data, in the writing of the report nor in the decision to submit the article for publication.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sebastián Cerdán.

Additional information

Special Issue: Dedicated to Prof. Ursula Sonnewald.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cerdán, S. Twenty-seven Years of Cerebral Pyruvate Recycling. Neurochem Res 42, 1621–1628 (2017). https://doi.org/10.1007/s11064-017-2173-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-017-2173-4

Keywords

Navigation