Skip to main content

Redox Homeostasis and Cellular Stress Response in Aging and Neurodegeneration

  • Protocol
  • First Online:
Free Radicals and Antioxidant Protocols

Abstract

Decreased expression and/or activity of antioxidant proteins leads to oxidative stress, accelerated aging, and neurodegeneration. While overwhelming levels and uncontrolled/dysregulated actions of reactive oxygen species (ROS) lead to deleterious effects, tighter regulation of those plays an important role in cell signaling. Mutations causing protein misfolding and the overload of toxic products derived from the free radical oxidation of polyunsaturated fatty acids, cholesterol, and glucose contribute to the disruption of the cellular redox homeostasis. Collectively or individually, these effects create pro-oxidant conditions in cells. Oxidative stress can induce neuronal damage, modulate intracellular signaling, and can ultimately lead to neuronal death by apoptosis or necrosis. Emerging evidence indicates that homocysteine (Hcy), a non-protein amino acid naturally present in the plasma, is implicated as a risk factor for numerous diseases. In particular, increased levels of circulating Hcy have been recognized as an independent risk factor for the development of vascular disease(s). Recent findings emphasize a relationship between elevated Hcy levels and neurodegeneration, which can be observed in Alzheimer’s and Parkinson’s diseases. An integrated response exists in the brain to detect and control diverse forms of stress. This is accomplished by a complex network of the so-called longevity assurance processes, which are controlled by several genes termed “vitagenes.” Among these, the heat-shock proteins (HSPs) form a highly conserved system that is responsible for the preservation and repair of the correct protein conformation. Recent studies have shown that the heat-shock response (HSR) contributes to cytoprotection in a number of human diseases including inflammation, cancer, aging, and neurodegenerative disorders. Given the broad cytoprotective properties of the HSR, interest mounts currently among investigators toward discovering and developing pharmacological agents capable of inducing HSR. l-Acetylcarnitine (LAC) is proposed as a therapeutic agent for several neurodegenerative disorders and also current evidence suggests that the compound may play a critical role in the modulation of cellular stress response in health and disease conditions. Here, we review the emerging salient concepts highlighting the pathways of neurodegeneration and the role of LAC in modulating the redox-dependent mechanisms responsible for the upregulation of vitagenes in brain that leads to the enhancement of stress tolerance in brain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Boveris, A., Oshino, N., and Chance, B. (1972) The cellular production of hydrogen peroxide. Biochem. J. 128, 617–630.

    CAS  PubMed  Google Scholar 

  2. McCord, J.M. and Fridovich, I. (1988) Superoxide dismutase: the first twenty years (1968–1988). Free Radic. Biol. Med. 5, 363–369.

    Article  CAS  PubMed  Google Scholar 

  3. Vina, J., Borras, C., Gomez-Cabrera, M.C., and Orr, W.C. (2006) Part of the series: from dietary antioxidants to regulators in cellular signalling and gene expression. Role of reactive oxygen species and (phyto)oestrogens in the modulation of adaptive response to stress. Free Radic. Res. 40, 111–119.

    Article  CAS  PubMed  Google Scholar 

  4. Tabner, B.J., Turnbull, S., El-Agnaf, O., and Allsop, D. (2001) Production of reactive oxygen species from aggregating proteins implicated in Alzheimer’s disease, Parkinson’s disease and other neurodegenerative diseases. Curr. Top. Med. Chem. 1, 507–517.

    Article  CAS  PubMed  Google Scholar 

  5. Zhang, K. and Kaufman, R.J. (2006) The unfolded protein response: a stress signaling pathway critical for health and disease. Neurology 66, S102–S109.

    Article  CAS  PubMed  Google Scholar 

  6. Maines, M.D. (2005) The heme oxygenase system: update 2005. Antioxid. Redox Signal 7, 1761–1766.

    Article  CAS  PubMed  Google Scholar 

  7. Maines, M.D. (2005) New insights into biliverdin reductase functions: linking heme metabolism to cell signaling. Physiology 20, 382–389.

    Article  CAS  PubMed  Google Scholar 

  8. Baranano, D.E., Rao, M., Ferris, C.D., and Snyder, S.H. (2002) Biliverdin reductase: a major physiologic cytoprotectant. Proc. Natl. Acad. Sci. USA 99, 16093–16098.

    Article  CAS  PubMed  Google Scholar 

  9. Ewing, J.F. and Maines, M.D. (2006) Regulation and expression of heme oxygenase enzymes in aged-rat brain: age related depression in HO-1 and HO-2 expression and altered stress-response. J. Neural. Trans. 13, 439–454.

    Article  CAS  Google Scholar 

  10. Maines, M.D., Ewing, J.F., Huang, T.J., and Panahian, N. (2001) Nuclear localization of biliverdin reductase in the rat kidney: response to nephrotoxins that induce heme oxygenase-1. J. Pharmacol. Exp. Ther. 296, 1091–1097.

    CAS  PubMed  Google Scholar 

  11. Kaur, H., Martin, N.H., Collin, J.G., Patrick, N., Roberta, F., and Roberto, M. (2003) Interaction of bilirubin and biliverdin with reactive nitrogen species. FEBS Lett. 543, 113–119.

    Article  CAS  PubMed  Google Scholar 

  12. Mancuso, C., Bonsignore, A., Di Stasio, E., Mordente, A., and Motterlini, R. (2003) Bilirubin and S-nitrosothiols interaction: evidence for a possible role of bilirubin as a scavenger of nitric oxide. Biochem. Pharmacol. 66, 2355–2363.

    Article  CAS  PubMed  Google Scholar 

  13. Mancuso, C., Bonsignore, A., Capone, C., Di Stasio, E., and Pani, G. (2006) Albumin-bound bilirubin interacts with nitric oxide by a redox mechanism. Antioxid. Redox Signal 8, 487–494.

    Article  CAS  PubMed  Google Scholar 

  14. Pappolla, M.A., Chyan, Y.J., Omar, R.A., Hsiao, K., Perry, G., Smoth, M.A., and Bozner, P. (1998) Evidence of oxidative stress and in vivo neurotoxicity of beta-amyloid in a transgenic mouse model of Alzheimer’s disease: a chronic oxidative paradigm for testing antioxidant therapies in vivo. Am. J. Pathol. 152, 871–877.

    CAS  PubMed  Google Scholar 

  15. Smith, M.A., Hirai, K., Hsiao, K., Pappolla, M.A., Harris, P.L., Seidlak, S.I., Tabaton, M., and Perry, G. (1998) Amyloid-beta deposition in Alzheimer transgenic mice is associated with oxidative stress. J. Neurochem. 70, 2212–2215.

    Article  CAS  PubMed  Google Scholar 

  16. Butterfield, D.A., Drake, J., Pocernich, C., and Castegna, A. (2001) Evidence of oxidative damage in Alzheimer’s disease brain: central role for amyloid beta-peptide. Trends Mol. Med. 7, 548–554.

    Article  CAS  PubMed  Google Scholar 

  17. Butterfield, D.A. and Lauderback, C.M. (2002) Lipid peroxidation and protein oxidation in Alzheimer’s disease brain: potential causes and consequences involving amyloid β-peptide-associated free radical oxidative stress. Free Radic. Biol. Med. 32, 1050–1060.

    Article  CAS  PubMed  Google Scholar 

  18. Mattson, M.P. (2004) Pathways towards and away from Alzheimer’s disease. Nature 430, 631–639.

    Article  CAS  PubMed  Google Scholar 

  19. Drew, B. and Leeuwenburgh, C. (2002) Aging and the role of reactive nitrogen species. Ann. NY Acad. Sci. 959, 66–81.

    Article  CAS  PubMed  Google Scholar 

  20. Kroncke, K.D. (2003) Nitrosative stress and transcription. Biol. Chem. 384, 1365–1377.

    Article  PubMed  Google Scholar 

  21. Ridnour, L.A., Thomas, D.D., Maneardi, D., Espey, M.G., Miranda, K.M., et al. (2004) The chemistry of nitrosative stress induced by nitric oxide and reactive nitrogen oxide species. Putting perspective on stressful biological situations. Biol. Chem. 385, 1–10.

    Article  CAS  PubMed  Google Scholar 

  22. Forman, H.J., Fukuto, J.M., and Torres, M. (2004) Redox signaling: thiol chemistry defines which reactive oxygen and nitrogen species can act as second messengers. Am. J. Physiol. Cell Physiol. 287, C246–256.

    Article  CAS  PubMed  Google Scholar 

  23. Maines, M.D. (1988) Heme oxygenase: function, multiplicity, regulatory mechanisms, and clinical applications. FASEB J. 2, 2557–2568.

    CAS  PubMed  Google Scholar 

  24. Prestera, T., Talalay, P., Alam, J., Ahn, Y.I., Lee, P.J., and Choi, A.M. (1995) Parallel induction of heme oxygenase-1 and chemoprotective phase 2 enzymes by electrophiles and antioxidants: regulation by upstream antioxidant-responsive elements (ARE). Mol. Med. 1, 827–837.

    CAS  PubMed  Google Scholar 

  25. Maines, M.D. (Ed.) Heme Oxygenase: Clinical Applications and Functions, CRC Press, Boca Raton, FL, 1992.

    Google Scholar 

  26. Maines, M.D. (1997) The heme oxygenase system: a regulator of second messenger gases. Annu. Rev. Pharmacol. Toxicol. 37, 517–554.

    Article  CAS  PubMed  Google Scholar 

  27. Wang, X., Hauptmann, N., Taylor, E., Foreman, M., Khawli, L.A., and Maines, M.D. (2003) Neotrofin increases heme oxygenase-1 selectively in neurons. Brain Res. 962, 1–14.

    Article  CAS  PubMed  Google Scholar 

  28. Stocker, R., Yamamoto, Y., McDonagh, A.F., Glazer, A.N., and Ames, B.N. (1987) Bilirubin is an antioxidant of possible physiological importance. Science 235, 1043–1046.

    Article  CAS  PubMed  Google Scholar 

  29. Mancuso, C., Tringali, G., Grossman, A., Preziosi, P., and Navarra, P. (1998) The generation of nitric oxide and carbon monoxide produces opposite effects on the release of immunoreactive interleukin-1beta from the rat hypothalamus in vitro: evidence for the involvement of different signaling pathways. Endocrinology 139, 1031–1037.

    Article  CAS  PubMed  Google Scholar 

  30. Otterbein, L.E., Baach, F.H., Allam, J., Soares, M., Lu, H., Wysk, M., Davis, R.J., Flavell, R.A., and Choi, A.M. (2000) Carbon monoxide has anti-inflammatory effects involving the mitogen-activated protein kinase pathway. Nat. Med. 6, 422–428.

    Article  CAS  PubMed  Google Scholar 

  31. Turner, C.P., Panter, S.S., and Sharp, F.R. (1999) Anti-oxidants prevent focal rat brain injury as assessed by induction of heat shock proteins (HSP70, HO-1/HSP32, HSP47) following subarachnoid injections of lysed blood. Brain Res. Mol. Brain Res. 65, 87–102.

    Article  CAS  PubMed  Google Scholar 

  32. Motterlini, R., Forestry, R., Bassi, R., Calabrese, V., Clark, J.F., and Green, C.J. (2000) Endothelial heme oxygenase-1 induction by hypoxia. Modulation by inducible nitric-oxide synthase and S-nitrosothiols. J. Biol. Chem. 275, 13613–13620.

    Article  CAS  PubMed  Google Scholar 

  33. Hill-Kapturczak, N., Sikorski, E., Voakes, C., Garcia, J, Nick, H.S., and Agarwal, A. (2003) An internal enhancer regulates heme and cadmium-mediated induction of human heme oxygenase-1. Am. J. Physiol. Renal Physiol. 285, F515–F523.

    PubMed  Google Scholar 

  34. Sun, J., Hoshino, H., Takaku, K., Nakajima, O., Muto, A., Suzuki, H., et al. (2002) Hemoprotein Bach1 regulates enhancer availability of heme oxygenase-1 gene. EMBO J. 21, 5216–5224.

    Article  CAS  PubMed  Google Scholar 

  35. Stewart, D., Killeen, E., Naquin, R., Alam, S., and Alam, J. (2003). Degradation of transcription factor Nrf2 via the ubiquitin-proteasome pathway and stabilization by cadmium. J. Biol. Chem. 278, 2396–2402.

    Article  CAS  PubMed  Google Scholar 

  36. Scapagnini, G., D’Agata, V., Calabres, V., Pascale, A., Colombrita, C., Alkon, D., and Cavallaro, S. (2002) Gene expression profiles of heme oxygenase isoforms in the rat brain. Brain Res. 954, 51–59.

    Article  CAS  PubMed  Google Scholar 

  37. Balogun, E., Hoque, M., Gong, P., Killeen, E., Green, C.J., et al. (2003) Curcumin activates the haem oxygenase-1 gene via regulation of Nrf2 and the antioxidant-responsive element. Biochem. J. 371, 887–895.

    Article  CAS  PubMed  Google Scholar 

  38. Liu, N., Wang, X., Mc Coubrey, W.K., and Maines, M.D. (2000) Developmentally regulated expression of two transcripts for heme oxygenase-2 with a first exon unique to rat testis: control by corticosterone of the oxygenase protein expression. Gene 241, 175–183.

    Article  CAS  PubMed  Google Scholar 

  39. Raju, V.S., McCoubrey, W.K., and Maines, M.D. (1997) Regulation of heme oxygenase-2 by glucocorticoids in neonatal rat brain: characterization of a functional glucocorticoid response element. Biochim. Biophys. Acta 1351, 89–104.

    CAS  PubMed  Google Scholar 

  40. Simonian, N.A. and Coyle, J.T. (1996) Oxidative stress in neurodegenerative diseases. Annu. Rev. Pharmacol. Toxicol. 36, 83–106.

    Article  CAS  PubMed  Google Scholar 

  41. Sayre, L.M., Smith, M.A., and Perry, G. (2001) Chemistry and biochemistry of oxidative stress in neurodegenerative disease. Curr. Med. Chem. 8, 721–738.

    CAS  PubMed  Google Scholar 

  42. Andersen, J.K. (2004) Oxidative stress in neurodegeneration: cause or consequence? Nat. Med. 10, S18–S25.

    Article  PubMed  Google Scholar 

  43. Mancuso, C. (2004) Heme oxygenase and its products in the nervous system. Antioxid. Redox Signal 6, 878–887.

    CAS  PubMed  Google Scholar 

  44. Calabrese, V., Butterfield, D.A., Scapagini, G., Stella, A.M., and Maines, M.D. (2006) Redox regulation of heat shock protein expression by signaling involving nitric oxide and carbon monoxide: relevance to brain aging, neurodegenerative disorders, and longevity. Antioxid. Redox Signal 8, 444–477.

    Article  CAS  PubMed  Google Scholar 

  45. Panahian, N., Yoshiura, M., and Maines, M.D. (1999) Overexpression of heme oxygenase-1 is neuroprotective in a model of permanent middle cerebral artery occlusion in transgenic mice. J. Neurochem. 72, 1187–1203.

    Article  CAS  PubMed  Google Scholar 

  46. Takeda, A., Perry, G., Abraham, N.G., Dwyer, B.E., Kutty, R.K., Laitinen, J.T.,Petersen, R.B., and Smith, M.A. (2000) Overexpression of heme oxygenase in neuronal cells, the possible interaction with Tau. J. Biol. Chem. 275, 5395–5399.

    Article  CAS  PubMed  Google Scholar 

  47. Premkumar, D.R., Smith, M.A., Richey, P.L., Petersen, R.B., Castellani, R., et al. (1995) Induction of heme oxygenase-1 mRNA and protein in neocortex and cerebral vessels in Alzheimer’s disease. J. Neurochem. 65, 1399–1402.

    Article  CAS  PubMed  Google Scholar 

  48. Schipper, H.M. (2000) Heme oxygenase-1: role in brain aging and neurodegeneration. Exp. Gerontol. 35, 821–830.

    Article  CAS  PubMed  Google Scholar 

  49. Calabrese, V., Butterfield, D.A., and Giuffrida Stella, A.M. (2003) Nutritional antioxidants and the heme oxygenase pathway of stress tolerance: novel targets for neuroprotection in Alzheimer’s disease. Ital. J. Biochem. 52, 72–76.

    Google Scholar 

  50. Scapagnini, G., Foresti, R., Calabrese, V., Giuffrida Stella, A.M., Green, C.J., and Otterlini, R. (2002) Caffeic acid phenethyl ester and curcumin: a novel class of heme oxygenase-1 inducers. Mol. Pharmacol. 61, 554–561.

    Article  CAS  PubMed  Google Scholar 

  51. Scapagnini, G., Butterfield, D.A., Colombrita, C., Sultana, R., Pascale, A., and Calabrese, V. (2004) Ethyl ferulate, a lipophilic polyphenol, induces HO-1 and protects rat neurons against oxidative stress. Antioxid. Redox Signal 6, 811–818.

    CAS  PubMed  Google Scholar 

  52. Butterfield, D., Castegna, A., Pocernich, C., Drake, J., Scapagini, G., and Calabrese, V. (2002) Nutritional approaches to combat oxidative stress in Alzheimer’s disease. J. Nutr. Biochem. 13, 444–461.

    Article  CAS  PubMed  Google Scholar 

  53. Motterlini, R., Foresti, R., Bassi, R., and Green, C.J. (2000) Curcumin, an antioxidant and anti-inflammatory agent, induces heme oxygenase-1 and protects endothelial cells against oxidative stress. Free Radic. Biol. Med. 28, 1303–1312.

    Article  CAS  PubMed  Google Scholar 

  54. Baranano, D.E., Rao, M., Ferris, C.D., and Synder, S.H. (2002) Biliverdin reductase: a major physiologic cytoprotectant. Proc. Natl. Acad. Sci. USA 99, 16093–16098.

    Article  CAS  PubMed  Google Scholar 

  55. Ganguli, M., Chandra, V., Kamboh, M.I., Johnston, J.M., Dodge, H.H., et al. (2000) Apolipoprotein E polymorphism and Alzheimer disease: The Indo-US Cross-National Dementia Study. Arch. Neurol. 57, 824–830.

    Article  CAS  PubMed  Google Scholar 

  56. Lim, G.P., Yang, F., Chu, T., Chen, P., Beech, W., Teter, B., Tran, T., Ubeda, O., et al. (2000) Ibuprofen suppresses plaque pathology and inflammation in a mouse model for Alzheimer’s disease. J. Neurosci. 20, 5709–5714.

    CAS  PubMed  Google Scholar 

  57. Kitamuro, T., Takahashi, K., Ogawa, K., Udono-Fujimori, R., Takeda, K., et al. (2003) Bach1 functions as a hypoxia-inducible repressor for the heme oxygenase-1 gene in human cells. J. Biol. Chem. 278, 9125–9133.

    Article  CAS  PubMed  Google Scholar 

  58. Nakayama, M., Takahashi, K., Kitamuro, T., Yasumoto, K., Katayose, D., et al. (2000) Repression of heme oxygenase-1 by hypoxia in vascular endothelial cells. Biochem. Biophys. Res. Commun. 271, 665–671.

    Article  CAS  PubMed  Google Scholar 

  59. Okinaga, S., Takahashi, K., Tkeda, K., Yoshizawa, M., Fujita, H., Sasaki, H., and Shibahara, S. (1996) Regulation of human heme oxygenase-1 gene expression under thermal stress. Blood 87, 5074–5084.

    CAS  PubMed  Google Scholar 

  60. Takahashi, K., Nakayama, M., Tkeda, K., Fujia, H., and Shibahara, S. (1999) Suppression of heme oxygenase-1 mRNA expression by interferon-gamma in human glioblastoma cells. J. Neurochem. 72, 2356–2361.

    Article  CAS  PubMed  Google Scholar 

  61. Palozza, P., Serini, S., Curro, D., Calviello, G., Igarashi, K., and Mancuso, C. (2006) Beta-Carotene and cigarette smoke condensate regulate heme oxygenase-1 and its repressor factor Bach1: relationship with cell growth. Antioxid. Redox Signal 8, 1069–1080.

    Article  CAS  PubMed  Google Scholar 

  62. Oyake, T., Itoh, K., Motohashi, H., Hyashi, N., Hoshino, H., Nishizawa, M., Yamamoto, M., and Igarashi, K. (1996) Bach proteins belong to a novel family of BTB-basic leucine zipper transcription factors that interact with MafK and regulate transcription through the NF-E2 site. Mol. Cell. Biol. 16, 6083–6095.

    CAS  PubMed  Google Scholar 

  63. Sun, J., Hoshino, H., Takaku, K., Nakajima, O., Muto, A., Suzuki, H., et al. (2002) Hemoprotein Bach1 regulates enhancer availability of heme oxygenase-1 gene. EMBO J. 21, 5216–5224.

    Article  CAS  PubMed  Google Scholar 

  64. Shibahara, S. (2003) The heme oxygenase dilemma in cellular homeostasis: new insights for the feedback regulation of heme catabolism. Tohoku J. Exp. Med. 200, 167–186.

    Article  CAS  PubMed  Google Scholar 

  65. Calabrese, V., Boyd-Kimball, D., Scapagnini, G., and Butterfield, D.A. (2004) Nitric oxide and cellular stress response in brain aging and neurodegenerative disorders: the role of vitagenes. In Vivo 18, 245–268.

    CAS  PubMed  Google Scholar 

  66. Kostoglou-Athanassiou, I., Forsling, M.L., Navarra, P., and Grossman, A.B. (1996) Oxytocin release is inhibited by the generation of carbon monoxide from the rat hypothalamus – further evidence for carbon monoxide as a neuromodulator. Brain Res. Mol. Brain Res. 42, 301–306.

    Article  CAS  PubMed  Google Scholar 

  67. Mancuso, C., Kostoglou-Athanassiou, I., Forsling, M.L., Grossman, A.B., Preziosi, P., Navarra, P., and Minotti, G. (1997) Activation of heme oxygenase and consequent carbon monoxide formation inhibits the release of arginine vasopressin from rat hypothalamic explants. Molecular linkage between heme catabolism and neuroendocrine function. Brain Res. Mol. Brain Res. 50, 267–276.

    Article  CAS  PubMed  Google Scholar 

  68. Mancuso, C., Ragazzoni, E., Trigalli, G., Librale, I., Preziosi, P., Grossman, A., and Navarra, P.(1999) Inhibition of heme oxygenase in the central nervous system potentiates endotoxin-induced vasopressin release in the rat. J. Neuroimmunol. 99, 189–194.

    Article  CAS  PubMed  Google Scholar 

  69. Parkes, D., Kasckow, J., and Vale, W. (1994) Carbon monoxide modulates secretion of corticotropin-releasing factor from rat hypothalamic cell cultures. Brain Res. 646, 315–318.

    Article  CAS  PubMed  Google Scholar 

  70. Pozzoli, G., Mancuso, C., Mirtella, A., Preziozi, P., Grossman, A.B., and Navarra, P. (1994) Carbon monoxide as a novel neuroendocrine modulator: inhibition of stimulated corticotropin-releasing hormone release from acute rat hypothalamic explants. Endocrinology 135, 2314–2317.

    Article  CAS  PubMed  Google Scholar 

  71. Mancuso, C., Pistritto, G., Tringali, G., Grossman, A.B., Preziozi, P., and Navarra, P. (1997) Evidence that carbon monoxide stimulates prostaglandin endoperoxide synthase activity in rat hypothalamic explants and in primary cultures of rat hypothalamic astrocytes. Brain Res. Mol. Brain Res. 45, 294–300.

    Article  CAS  PubMed  Google Scholar 

  72. Jaggar, J.H., Leffler, C.W., Cheranov, S.Y., Techeranova, D, and Cheng, X. (2002) Carbon monoxide dilates cerebral arterioles by enhancing the coupling of Ca2+ sparks to Ca2+-activated K+ channels. Circ. Res. 91, 610–617.

    Article  CAS  PubMed  Google Scholar 

  73. Ryter, S.W., Otterbein, L.E., Morse, D., and Choi, A.M.(2002) Heme oxygenase/carbon monoxide signaling pathways: regulation and functional significance. Mol. Cell. Biochem. 234, 249–263.

    Article  PubMed  Google Scholar 

  74. Calabrese, V., Stella, A.M., Butterfield, D.A., and Scapagnini, G. (2004) Redox regulation in neurodegeneration and longevity: role of the heme oxygenase and Hsp70 systems in brain stress tolerance. Antioxid. Redox Signal 6, 895–913.

    CAS  PubMed  Google Scholar 

  75. Calabrese, V., Scapagnini, G., Ravagna, A., Colombrita, C., Spadaro, F., Butterfield D.A., and Giuffrida Stella, A.M. (2004) Increased expression of heat shock proteins in rat brain during aging: relationship with mitochondrial function and glutathione redox state. Mech. Age Dev. 125, 325–335.

    Article  CAS  Google Scholar 

  76. Calabrese, V., Scapagnini, G., Colombrita, C., Ravagna, A., Pennisi, G., Giuffrida Stella, A.M., Galli, F., and Butterfield, D.A. (2003) Redox regulation of heat shock protein expression in aging and neurodegenerative disorders associated with oxidative stress: A nutritional approach. Amino Acids 25, 437–444.

    Article  CAS  PubMed  Google Scholar 

  77. Yenari, M.A.,Giffard, R.G., Sapolski, R.M., and Steinberg, G.K. (1999) The neuroprotective potential of heat shock protein 70 (HSP70). Mol. Med. Today 5, 525–531.

    Article  CAS  PubMed  Google Scholar 

  78. Yenari, M.A. (2002) Heat shock proteins and neuroprotection. Adv. Exp. Med. Biol. 513, 281–299.

    CAS  PubMed  Google Scholar 

  79. Hata, R., Maeda, K., Hermann, D., Mies, G., and Hossmann, K.A. (2000) Dynamics of regional brain metabolism and gene expression after middle cerebral artery occlusion in mice. J. Cereb. Blood Flow Metab. 20, 306–315.

    Article  CAS  PubMed  Google Scholar 

  80. Perez, N., Sugar, J., Charya, S., Johnson, G., Merril, C., Bierer, L., Perl, D., Haroutunian, V., and Wallace, W. (1991) Increased synthesis and accumulation of heat shock 70 proteins in Alzheimer’s disease. Brain Res. Mol. Brain Res. 1, 249–254.

    Article  Google Scholar 

  81. Yoo, B.C., Seidl, R.,Cairns, N., and Lubee, G. (1999) Heat-shock protein 70 levels in brain of patients with Down syndrome and Alzheimer’s disease. J. Neural. Transm. Suppl. 57, 315–322.

    CAS  PubMed  Google Scholar 

  82. Morrison-Bogorad, M., Zimmerman, A.L., and Pardue, S. (1995) Heat-shock 70 messenger RNA levels in human brain: correlation with agonal fever. J. Neurochem. 64, 235–246.

    Article  CAS  PubMed  Google Scholar 

  83. Kakimura, J., Kitamura, Y., Takata, K., Umeki, M., Suzuki, S., Shibagaki, K., et al. (2002) Microglial activation and amyloid-beta clearance induced by exogenous heat-shock proteins. FASEB J. 16, 601–603.

    CAS  PubMed  Google Scholar 

  84. Calabrese, V., Copani, A., Testa, D., Ravagna, A., Spadaro, F., et al. (2000) Nitric oxide synthase induction in astroglial cell cultures: effect on heat shock protein 70 synthesis and oxidant/antioxidant balance. J. Neurosci. Res. 60, 613–622.

    Article  CAS  PubMed  Google Scholar 

  85. Calabrese, V., Testa, G., Ravagna, A., Bates, T.E., and Stella, A.M. (2000) HSP70 induction in the brain following ethanol administration in the rat: regulation by glutathione redox state. Biochem. Biophys. Res. Commun. 269, 397–400.

    Article  CAS  PubMed  Google Scholar 

  86. Calabrese, V., Bates, T.E., and Giuffrida Stella, A.M. (2000) NO synthase and NO-dependent signal pathways in brain aging and neurodegenerative disorders: the role of oxidant/antioxidant balance. Neurochem. Res. 65, 1315–1341.

    Article  Google Scholar 

  87. Calabrese, V., Scapagnini, G., Stella, A.M., Bates, T.E., and Clark, J.B. (2000) Mitochondrial involvement in brain function and dysfunction: relevance to aging, neurodegenerative disorders and longevity. Neurochem. Res. 26, 739–764.

    Article  Google Scholar 

  88. Iverson, S.L. and Orrenius, S. (2004) The cardiolipin-cytochrome c interaction and the mitochondrial regulation of apoptosis. Arch. Biochem. Biophys. 423, 37–46.

    Article  CAS  PubMed  Google Scholar 

  89. Calabrese, V., Ravagna, A., Colombrita, C., Scapagnini, G., Guagliano, E., et al. (2005) Acetylcarnitine induces heme oxygenase in rat astrocytes and protects against oxidative stress: involvement of the transcription factor Nrf2. J. Neurosci. Res. 79, 509–521.

    Article  CAS  PubMed  Google Scholar 

  90. Rai, G., Wright, G., Scott, L, Beston, B., Rest, J., and Exon-Smth, A.N. (1990) Double-blind, placebo controlled study of acetyl-L-carnitine in patients with Alzheimer’s dementia. Curr. Med. Res. Opin. 11, 638–647.

    CAS  PubMed  Google Scholar 

  91. Patrick, L. (2000) Nutrients and HIV: part three - N-acetylcysteine, alpha-lipoic acid, L-glutamine, and L-carnitine. Altern. Med. Rev. 5, 290–305.

    CAS  PubMed  Google Scholar 

  92. Calabrese, V., Scapagnini, G., Ravagna, A., Bella, R., Butterfield, D.A., Calvani, M., Pennisi, G., and Giuffrida Stella, A.M. (2003) Disruption of thiol homeostasis and nitrosative stress in the cerebrospinal fluid of patients with active multiple sclerosis: evidence for a protective role of acetylcarnitine. Neurochem. Res. 28, 1321–1328.

    Article  CAS  PubMed  Google Scholar 

  93. Albertini, P., Amenta, F., Bossoni, G., Cavellotti, C, Felici, L., Ferrante, F., and Gaviraghi, G. (1989) Effect of acetyl-L-carnitine treatment on the density of muscarinic receptors in the brain of methylazoxymethanol-microencephalic rats. Drugs Exp. Clin. Res. 15, 421–427.

    CAS  PubMed  Google Scholar 

  94. Rao, K.V., Mawal, Y.R., and Qureshi, I.A. (1997) Progressive decrease of cerebral cytochrome C oxidase activity in sparse-fur mice: role of acetyl-L-carnitine in restoring the ammonia-induced cerebral energy depletion. Neurosci. Lett. 224, 83–86.

    Article  CAS  PubMed  Google Scholar 

  95. Carta, A., Calvani, M., Bravi, D., and Bhuachalla, S.N. (1993) Acetyl-L-carnitine and Alzheimer’s disease: pharmacological considerations beyond the cholinergic sphere. Ann. N.Y. Acad. Sci. 695, 324–326.

    Article  CAS  PubMed  Google Scholar 

  96. Ando, S., Kobayashi, S., Waki, H., Kon, K., Fukui, F., Tadenuma, T., et al. (2002) Animal model of dementia induced by entorhinal synaptic damage and partial restoration of cognitive deficits by BDNF and carnitine. J. Neurosci. Res. 70, 519–527.

    Article  CAS  PubMed  Google Scholar 

  97. Chiechio, S., Caricasole, A., Barletta, E., Storto, M., Catania, M.V., et al. (2002) L-Acetylcarnitine induces analgesia by selectively up-regulating mGlu2 metabotropic glutamate receptors. Mol. Pharmacol. 61, 989–996.

    Article  CAS  PubMed  Google Scholar 

  98. Spagnoli, A., Lucca, U., Menasce, G., Bandera, L., Cizza, G., Forloni, G., et al. (1991) Long-term acetyl-L-carnitine treatment in Alzheimer’s disease. Neurology 41, 1726–1732.

    CAS  PubMed  Google Scholar 

  99. Caprioli, A., Markowska, A.L., and Olton, D.S. (1995) Acetyl-L-Carnitine: chronic treatment improves spatial acquisition in a new environment in aged rats. J. Gerontol. 50, 232–236.

    Google Scholar 

  100. Chauhan, N.B. and Siegel, G.J. (2003) Effect of PPF and ALCAR on the induction of NGF- and p75-mRNA and on APP processing in Tg2576 brain. Neurochem. Int. 43, 225–233.

    Article  CAS  PubMed  Google Scholar 

  101. Calabrese, V., Scapagnini, G., Latteri, S., Colombrita, C., Ravagna, A., Catalano, C., et al. (2002) Long-term ethanol administration enhances age-dependent modulation of redox state in different brain regions in the rat: protection by acetyl carnitine. Int. J. Tissue React. 24, 97–104.

    CAS  PubMed  Google Scholar 

  102. Hagen, T.M., Ingersoll, R.T., Wehr, C.M., Lykkesfeldt, J., Vinarsky, V., Bartholomew, J.C., Song, M.H., and Ames, B.N. (1998) Acetyl-L-carnitine fed to old rats partially restores mitochondrial function and ambulatory activity. Proc. Natl. Acad. Sci. USA 95, 9562–9566.

    Article  CAS  PubMed  Google Scholar 

  103. Wolff, R.L., Combe, N.A., and Entressangles, B. (1985) Positional distribution of fatty acids in cardiolipin of mitochondria from 21-day-old rats. Lipids 20, 908–914.

    Article  CAS  PubMed  Google Scholar 

  104. Armeni, T., Principato, G., Quiles, J.L., Pieri, C., Bompadre, S., and Battino, M. (1998) Mitochondrial dysfunctions during aging: vitamin E deficiency or caloric restriction – two different ways of modulating stress. J. Bioenerg. Biomembr. 35, 181–191.

    Article  Google Scholar 

  105. Wheeler, D.S., Dunsmore, K.E., and Wong, H.R. (2003) Intracellular delivery of HSP70 using HIV-1 Tat protein transduction domain. Biochem. Biophys. Res. Commun. 301, 54–59.

    Article  CAS  PubMed  Google Scholar 

  106. Pocernich, C.B., Sultana, R., Hone, E., Turchan, J., Martins, R.N., Calabrese, V., Nath, A., and Butterfiled, D.A. (2004) Effects of apolipoprotein E on the human immunodeficiency virus protein tat in neuronal cultures and synaptosomes. J. Neurosci. Res. 77, 532–539.

    Article  CAS  PubMed  Google Scholar 

  107. Weng, Y.H., Yang, G., Weiss, S., Dennery, P.A., et al. (2003) Interaction between heme oxygenase-1 and 2 proteins. J. Biol. Chem. 278, 50999–61005.

    Article  CAS  PubMed  Google Scholar 

  108. Seshadri, S., Beiser, A., Selhub, J., Jacques, P.E., Rosenberg, I.H., et al. (2002) Plasma homocysteine as a risk factor for dementia and Alzheimer’s disease. N. Engl. J. Med. 346, 476–483.

    Article  CAS  PubMed  Google Scholar 

  109. Postuma, R.B. and Lang, A.E. (2004) Homocysteine and levodopa: should Parkinson disease patients receive preventative therapy? Neurology 63, 886–891.

    CAS  PubMed  Google Scholar 

  110. D’Anna, R., Baviera, G., Corrado, F., Ientile, R., Granese, D., and Stella, N.C. (2004) Plasma homocysteine in early and late pregnancies complicated with preeclampsia and isolated intrauterine growth restriction. Acta Obstet. Gynecol. Scand. 83, 155–158.

    PubMed  Google Scholar 

  111. Russo, G.T., DiBendedetto, A., Giorda, C., Alessi, E., Crisafulli, G., Ientile, R., et al. (2004) Correlates of total homocysteine plasma concentration in type 2 diabetes. Eur. J. Clin. Invest. 34, 197–204.

    Article  CAS  PubMed  Google Scholar 

  112. Morris, M.S. (2003) Homocysteine and Alzheimer’s disease. Lancet Neurol. 2, 425–428.

    Article  CAS  PubMed  Google Scholar 

  113. Schnyder, G., Roffi, M., Flammer, Y., Pin, R., and Hess, O.M. (2002) Effect of homocysteine-lowering therapy with folic acid, vitamin B(12), and vitamin B(6) on clinical outcome after percutaneous coronary intervention: the Swiss Heart study: a randomized controlled trial. JAMA 288, 973–979.

    Article  CAS  PubMed  Google Scholar 

  114. Van Der Put, N.M., Gabreels, F., Stevens, E.M., Smeitink, J.A., Trijebels, F.J., et al. (1998) A second common mutation in the methylenetetrahydrofolate reductase gene: an additional risk factor for neural tube defects? Am. J. Hum. Genet. 62, 1044–1051.

    Article  PubMed  Google Scholar 

  115. Grieve, A., Butcher, S.P., and Griffiths, R. (1992) Synaptosomal plasma membrane transport of excitatory sulphur amino acid transmitter candidates: kinetic characterisation and analysis of carrier specificity. J. Neurosci. Res. 32, 60–68.

    Article  CAS  PubMed  Google Scholar 

  116. Eto, K., Asada, T., Arima, K., Makifuchi, T., and Kimura, H. (2002) Brain hydrogen sulfide is severely decreased in Alzheimer’s disease. Biochem. Biophys. Res. Commun. 293, 1485–1488.

    Article  CAS  PubMed  Google Scholar 

  117. Regland, B., Abrahamsson, L., Blenow, K., Grenfeldt, B., and Gottfries, C.G. (2004) CSF-methionine is elevated in psychotic patients. J. Neural. Transm. 111, 631–640.

    Article  CAS  PubMed  Google Scholar 

  118. Isobe, C., Murata, T., Sato, C., and Terayama, V. (2005) Increase of total homocysteine concentration in cerebrospinal fluid in patients with Alzheimer’s disease and Parkinson’s disease. Life Sci. 77, 1836–1843.

    Article  CAS  PubMed  Google Scholar 

  119. Obeid, R., Schorr, H., Eckert, R., and Herrmann, W. (2004) Vitamin B12 status in the elderly as judged by available biochemical markers. Clin. Chem. 50, 238–241.

    Article  CAS  PubMed  Google Scholar 

  120. Herrmann, W., Quast, S., Ullrich, M., Schultze, H., Bodis, M., and Geisel, J. (1999) Hyperhomocysteinemia in high-aged subjects: relation of B-vitamins, folic acid, renal function and the methylenetetrahydrofolate reductase mutation. Atherosclerosis 144, 91–101.

    Article  CAS  PubMed  Google Scholar 

  121. den Heijer, T., Vermeer, S.E., Clarke, R., Koudstaal, P.J., et al. (2003) Homocysteine and brain atrophy on MRI of non-demented elderly. Brain 126, 170–175.

    Article  CAS  PubMed  Google Scholar 

  122. Kruman, I.I., Culmsee, C., Chan, S.L., Kruman, Y., Guo, Z., et al. (2000) Homocysteine elicits a DNA damage response in neurons that promotes apoptosis and hypersensitivity to excitotoxicity. J. Neurosci. 20, 6920–6926.

    CAS  PubMed  Google Scholar 

  123. Ho, P.I., Collins, S.C., Dhitavat, S., Ortis, D., Ashline, D., Rogers, E., et al. (2001) Homocysteine potentiates beta-amyloid neurotoxicity: role of oxidative stress. J. Neurochem. 78, 249–253.

    Article  CAS  PubMed  Google Scholar 

  124. Kruman, I.I., Kumaravel, T.S., Lohani, A., Pederson, W.A., Cuttler, R.G., Kruman, Y., et al. (2002) Folic acid deficiency and homocysteine impair DNA repair in hippocampal neurons and sensitize them to amyloid toxicity in experimental models of Alzheimer’s disease. J. Neurosci. 22, 1752–1762.

    CAS  PubMed  Google Scholar 

  125. Mattson, M.P. (2000) Emerging neuroprotective strategies for Alzheimer’s disease: dietary restriction, telomerase activation, and stem cell therapy. Exp. Gerontol. 35, 489–502.

    Article  CAS  PubMed  Google Scholar 

  126. Harada, J. and Sugimoto, M. (1999) Activation of caspase-3 in beta-amyloid-induced apoptosis of cultured rat cortical neurons. Brain Res. 842, 311–323.

    Article  CAS  PubMed  Google Scholar 

  127. Love, S., Barber, R., and Wilcock, G.K. (1999) Increased poly(ADP-ribosyl)ation of nuclear proteins in Alzheimer’s disease. Brain 122, 247–253.

    Article  PubMed  Google Scholar 

  128. Smulson, M.E., Simbulan-Rosenthal, C.M., and Boulares, A.H. (2000) Roles of poly(ADP-ribosyl)ation and PARP in apoptosis, DNA repair, genomic stability and functions of p53 and E2F-1. Adv. Enzyme Regul. 40, 183–215.

    Article  CAS  PubMed  Google Scholar 

  129. Culmsee, C., Monning, J., Kemp, B.E., and Matterson, M. (2001) AMP-activated protein kinase is highly expressed in neurons in the developing rat brain and promotes neuronal survival following glucose deprivation. J. Mol. Neurosci. 17, 45–58.

    Article  CAS  PubMed  Google Scholar 

  130. Welch, G.N. and Loscalzo, J. (1998) Homocysteine and atherothrombosis. N. Engl. J. Med. 338, 1042–1050.

    Article  CAS  PubMed  Google Scholar 

  131. de Lau, L.M.L., Koudstaal, P.J., Witteman, J.C.M., Hofman, A., and Breteler, M.M.B. (2006) Dietary folate, vitamin B12, and vitamin B6 and the risk of Parkinson disease. Neurology 67, 315–318.

    Article  PubMed  CAS  Google Scholar 

  132. Stott, D.J., MacIntoswh, G., Lowe, G.D., Rumley, A., McMahaon, A.D., et al. (2005) Randomized controlled trial of homocysteine-lowering vitamin treatment in elderly patients with vascular disease. Am. J. Clin. Nutr. 82, 1320–1326.

    CAS  PubMed  Google Scholar 

  133. Yang, Q., Botto, L.D., Erickson, J.D., Berry, R.J., Sambell, C., Johansen, H., and Friedman, J.M. (2006) Improvement in stroke mortality in Canada and the United States, 1990 to 2002. Circulation 113, 1335–1343.

    Article  PubMed  Google Scholar 

  134. Otterbein, L.E., Zuckerbraun, B.S., Haga, M., Liu, F., Song, R., Usheva, A., et al. (2003) Carbon monoxide suppresses arteriosclerotic lesions associated with chronic graft rejection and with balloon injury. Nat. Med. 9, 183–190.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Calabrese, V., Cornelius, C., Mancuso, C., Lentile, R., Stella, A.G., Butterfield, D.A. (2010). Redox Homeostasis and Cellular Stress Response in Aging and Neurodegeneration. In: Uppu, R., Murthy, S., Pryor, W., Parinandi, N. (eds) Free Radicals and Antioxidant Protocols. Methods in Molecular Biology, vol 610. Humana Press. https://doi.org/10.1007/978-1-60327-029-8_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-029-8_17

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-710-5

  • Online ISBN: 978-1-60327-029-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics