Skip to main content

Advertisement

Log in

In Vivo 13C Magnetic Resonance Spectroscopy for Assessing Brain Biochemistry in Health and Disease

  • Review
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Magnetic resonance spectroscopy (MRS) is a non-invasive technique that contributes to the elucidation of brain biochemistry. 13C MRS enables the detection of specific neurochemicals and their neuroenergetic correlation with neuronal function. The synergistic outcome of 13C MRS and the infusion of 13C-labeled substrates provide an understanding of neurometabolism and the role of glutamate/gamma-aminobutyric acid (GABA) neurotransmission in diseases, such as Alzheimer’s disease, schizophrenia, and bipolar disorder. Moreover, 13C MRS provides a window into the altered flux rate of different pathways, including the tricarboxylic acid cycle (TCA) and the glutamate/glutamine/GABA cycle, in health and in various diseases. Notably, the metabolic flux rate of the TCA cycle often decreases in neurodegenerative diseases. Additionally, 13C MRS can be used to investigate several psychiatric and neurological disorders as it directly reflects the real-time production and alterations of key brain metabolites. This review aims to highlight the chronology, the technological advancements, and the applications of 13C MRS in various brain diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

reproduced with permission from the publisher [56], in c and voxel placements for the figures were performed for illustration purpose only

Fig. 4
Fig. 5

reproduced with permission from the publisher [24]

Fig. 6

reproduced with permission from the publisher [24]

Fig. 7

reproduced with permission from the publisher [56]

Fig. 8

reproduced with permission from the publisher [49]

Fig. 9
Fig. 10
Fig. 11

reproduced with permission from publisher [14, 16]

Fig. 12

reproduced with permission from the publisher [128]

Similar content being viewed by others

References

  1. Tognarelli JM, Dawood M, Shariff MI, Grover VP, Crossey MM, Cox IJ, Taylor-Robinson SD, McPhail MJ (2015) Magnetic resonance spectroscopy: principles and techniques: lessons for clinicians. J Clin Exp Hepatol 5:320–328

    Article  PubMed  PubMed Central  Google Scholar 

  2. Gujar SK, Maheshwari S, Bjorkman-Burtscher I, Sundgren PC (2005) Magnetic resonance spectroscopy. J Neuroophthalmol 25:217–226

    Article  PubMed  Google Scholar 

  3. Cady EB, Costello AM, Dawson MJ, Delpy DT, Hope PL, Reynolds EO, Tofts PS, Wilkie DR (1983) Non-invasive investigation of cerebral metabolism in newborn infants by phosphorus nuclear magnetic resonance spectroscopy. Lancet 1:1059–1062

    Article  CAS  PubMed  Google Scholar 

  4. Duncan JS (1996) Magnetic resonance spectroscopy. Epilepsia 37:598–605

    Article  CAS  PubMed  Google Scholar 

  5. Ross B, Lin A, Harris K, Bhattacharya P, Schweinsburg B (2003) Clinical experience with 13C MRS in vivo. NMR Biomed 16:358–369

    Article  CAS  PubMed  Google Scholar 

  6. Kurhanewicz J, Bok R, Nelson SJ, Vigneron DB (2008) Current and potential applications of clinical 13C MR spectroscopy. J Nucl Med 49:341–344

    Article  CAS  PubMed  Google Scholar 

  7. Morris P, Bachelard H (2003) Reflections on the application of 13C-MRS to research on brain metabolism. NMR Biomed 16:303–312

    Article  CAS  PubMed  Google Scholar 

  8. Phelps ME, Huang SC, Hoffman EJ, Selin C, Sokoloff L, Kuhl DE (1979) Tomographic measurement of local cerebral glucose metabolic rate in humans with (F-18)2-fluoro-2-deoxy-D-glucose: validation of method. Ann Neurol 6:371–388

    Article  CAS  PubMed  Google Scholar 

  9. Reivich M, Kuhl D, Wolf A, Greenberg J, Phelps M, Ido T, Casella V, Fowler J, Hoffman E, Alavi A, Som P, Sokoloff L (1979) The [18F]fluorodeoxyglucose method for the measurement of local cerebral glucose utilization in man. Circ Res 44:127–137

    Article  CAS  PubMed  Google Scholar 

  10. Sokoloff L, Reivich M, Kennedy C, Des Rosiers MH, Patlak CS, Pettigrew KD, Sakurada O, Shinohara M (1977) The [14C]deoxyglucose method for the measurement of local cerebral glucose utilization: theory, procedure, and normal values in the conscious and anesthetized albino rat. J Neurochem 28:897–916

    Article  CAS  PubMed  Google Scholar 

  11. Raichle ME, Larson KB, Phelps ME, Grubb RL Jr, welch MJ, Ter-Pogossian MM, (1975) In vivo measurement of brain glucose transport and metabolism employing glucose- -11C. Am J Physiol 228:1936–1948

    Article  CAS  PubMed  Google Scholar 

  12. Faghihi R, Zeinali-Rafsanjani B, Mosleh-Shirazi MA, Saeedi-Moghadam M, Lotfi M, Jalli R, Iravani V (2017) Magnetic resonance spectroscopy and its clinical applications: a review. J Med Imaging Radiat Sci 48:233–253

    Article  PubMed  Google Scholar 

  13. Weiner MW, Hetherington HP (1989) The power of the proton. Radiology 172:318–320

    Article  CAS  PubMed  Google Scholar 

  14. Bluml S, Moreno-Torres A, Ross BD (2001) [1-13C]glucose MRS in chronic hepatic encephalopathy in man. Magn Reson Med 45:981–993

    Article  CAS  PubMed  Google Scholar 

  15. Lin AP, Shic F, Enriquez C, Ross BD (2003) Reduced glutamate neurotransmission in patients with Alzheimer’s disease – an in vivo (13)C magnetic resonance spectroscopy study. MAGMA 16:29–42

    Article  CAS  PubMed  Google Scholar 

  16. Wijnen JP, Van der Graaf M, Scheenen TW, Klomp DW, de Galan BE, Idema AJ, Heerschap A (2010) In vivo 13C magnetic resonance spectroscopy of a human brain tumor after application of 13C-1-enriched glucose. Magn Reson Imaging 28:690–697

    Article  CAS  PubMed  Google Scholar 

  17. Rodrigues TB, Cerdan S (2005) 13C MRS: an outstanding tool for metabolic studies. Concepts Magnet. Resonance 27A(1):1–16

    Article  CAS  Google Scholar 

  18. Li N, Li S, Shen J (2017) High field in vivo (13)C magnetic resonance spectroscopy of brain by random radiofrequency heteronuclear decoupling and data undersampling. Front Phys 5

  19. van Zijl PC, Rothman D (1995) NMR studies of brain 13C-glucose uptake and metabolism: present status. Magn Reson Imaging 13:1213–1221

    Article  PubMed  Google Scholar 

  20. Rothman DL, de Graaf RA, Hyder F, Mason GF, Behar KL, De Feyter HM (2019) In vivo (13) C and (1) H-[(13) C] MRS studies of neuroenergetics and neurotransmitter cycling, applications to neurological and psychiatric disease and brain cancer. NMR Biomed 32:e4172

  21. Abdallah CG, Jiang L, De Feyter HM, Fasula M, Krystal JH, Rothman DL, Mason GF, Sanacora G (2014) Glutamate metabolism in major depressive disorder. Am J Psychiatry 171:1320–1327

    Article  PubMed  PubMed Central  Google Scholar 

  22. Beckmann N, Muller S (1991) Natural-abundance 13C spectroscopic imaging applied to humans. J Magn Reson 93:186–194

    CAS  Google Scholar 

  23. Avison MJ, Rothman DL, Nadel E, Shulman RG (1988) Detection of human muscle glycogen by natural abundance 13C NMR. Proc Natl Acad Sci USA 85:1634–1636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Rothman DL, De Feyter HM, de Graaf RA, Mason GF, Behar KL (2011) 13C MRS studies of neuroenergetics and neurotransmitter cycling in humans. NMR Biomed 24:943–957

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Beckmann N, Turkalj I, Seelig J, Keller U (1991) 13C NMR for the assessment of human brain glucose metabolism in vivo. Biochemistry 30:6362–6366

    Article  CAS  PubMed  Google Scholar 

  26. Ordidce RJ, ConnellyB. LJA, A (1986) Image-selected in viva spectroscopy (ISIS). A New Technique for Spatially Selective NMR Spectroscopy J Magn Reson 66:283–294

    Google Scholar 

  27. Gruetter R, Novotny EJ, Boulware SD, Rothman DL, Mason GF, Shulman GI, Shulman RG, Tamborlane WV (1992) Direct measurement of brain glucose concentrations in humans by 13C NMR spectroscopy. Proc Natl Acad Sci USA 89:1109–1112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Shaka. AJ, Reeler. J, Freeman R (1983) An improved sequence for broadband decoupling: WALTZ-16. J Magn Reson 52:335–338

  29. Gruetter R, Adriany G, Merkle H, Andersen PM (1996) Broadband decoupled, 1H-localized 13C MRS of the human brain at 4 Tesla. Magn Reson Med 36:659–664

    Article  CAS  PubMed  Google Scholar 

  30. Gruetter R, Seaquist ER, Kim S, Ugurbil K (1998) Localized in vivo 13C-NMR of glutamate metabolism in the human brain: initial results at 4 tesla. Dev Neurosci 20:380–388

    Article  CAS  PubMed  Google Scholar 

  31. Watanabe H, Umeda M, Ishihara Y, Okamoto K, Oshio K, Kanamatsu T, Tsukada Y (2000) Human brain glucose metabolism mapping using multislice 2D (1)H-(13)C correlation HSQC spectroscopy. Magn Reson Med 43:525–533

    Article  CAS  PubMed  Google Scholar 

  32. Klomp DW, Renema WK, van der Graaf M, de Galan BE, Kentgens AP, Heerschap A (2006) Sensitivity-enhanced 13C MR spectroscopy of the human brain at 3 Tesla. Magn Reson Med 55:271–278

    Article  CAS  PubMed  Google Scholar 

  33. Li S, An L, Yu S, Ferraris Araneta M, Johnson CS, Wang S, Shen J (2016) (13)C MRS of human brain at 7 Tesla using [2-(13)C]glucose infusion and low power broadband stochastic proton decoupling. Magn Reson Med 75:954–961

    Article  CAS  PubMed  Google Scholar 

  34. Sanchez-Heredia JD, Olin RB, McLean MA, Laustsen C, Hansen AE, Hanson LG, Ardenkjaer-Larsen JH (2020) Multi-site benchmarking of clinical (13)C RF coils at 3T. J Magn Reson 318:106798

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Mandal PK, Shukla D (2020) KALPANA: advanced spectroscopic signal processing platform for improved accuracy to aid in early diagnosis of brain disorders in clinical setting. J Alzheimers Dis 75:397–402

    Article  PubMed  Google Scholar 

  36. Goluch S, Frass-Kriegl R, Meyerspeer M, Pichler M, Sieg J, Gajdošík M, Krššák M, Laistler E (2018) Proton-decoupled carbon magnetic resonance spectroscopy in human calf muscles at 7 T using a multi-channel radiofrequency coil. Sci Rep 8:6211

    Article  PubMed  PubMed Central  Google Scholar 

  37. Camandola S, Mattson MP (2017) Brain metabolism in health, aging, and neurodegeneration. EMBO J 36:1474–1492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Carluccio G, Collins CM (2019) Optimization of the order and spacing of sequences in an MRI exam to reduce the maximum temperature and thermal dose. Magn Reson Med 81:2161–2166

    Article  PubMed  Google Scholar 

  39. Allison J, Yanasak N (2015) What MRI sequences produce the highest specific absorption rate (SAR), and is there something we should be doing to reduce the SAR during standard examinations? AJR Am J Roentgenol 205:W140

    Article  PubMed  Google Scholar 

  40. Valette J, Tiret B, Boumezbeur F (2017) Experimental strategies for in vivo(13)C NMR spectroscopy. Anal Biochem 529:216–228

    Article  CAS  PubMed  Google Scholar 

  41. Kreis R (2004) Issues of spectral quality in clinical 1H-magnetic resonance spectroscopy and a gallery of artifacts. NMR Biomed 17:361–381

    Article  CAS  PubMed  Google Scholar 

  42. Kumaragamage C, De Feyter HM, Brown P, McIntyre S, Nixon TW, de Graaf RA (2020) Robust outer volume suppression utilizing elliptical pulsed second order fields (ECLIPSE) for human brain proton MRSI. Magn Reson Med 83:1539–1552

    Article  CAS  PubMed  Google Scholar 

  43. Boer VO, van de Lindt T, Luijten PR, Klomp DW (2015) Lipid suppression for brain MRI and MRSI by means of a dedicated crusher coil. Magn Reson Med 73:2062–2068

    Article  CAS  PubMed  Google Scholar 

  44. Sonnay S, Gruetter R, Duarte JMN (2017) How energy metabolism supports cerebral function: insights from (13)C magnetic resonance studies in vivo. Front Neurosci 11:288

    Article  PubMed  PubMed Central  Google Scholar 

  45. de Graaf RA, Mason GF, Patel AB, Behar KL, Rothman DL (2003) In vivo 1H-[13C]-NMR spectroscopy of cerebral metabolism. NMR Biomed 16:339–357

    Article  PubMed  Google Scholar 

  46. de Graaf RA, Rothman DL, Behar KL (2011) State of the art direct 13C and indirect 1H-[13C] NMR spectroscopy in vivo A practical guide. NMR Biomed 24:958–972

    Article  PubMed  PubMed Central  Google Scholar 

  47. Rodrigues TB, Valette J, Bouzier-Sore AK (2013) (13)C NMR spectroscopy applications to brain energy metabolism. Front Neuroenergetics 5:9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Mason GF, Rothman DL, Behar KL, Shulman RG (1992) NMR determination of the TCA cycle rate and alpha-ketoglutarate/glutamate exchange rate in rat brain. J Cereb Blood Flow Metab 12:434–447

    Article  CAS  PubMed  Google Scholar 

  49. Badar-Goffer RS, Bachelard HS, Morris PG (1990) Cerebral metabolism of acetate and glucose studied by 13C-n.m.r. spectroscopy. A technique for investigating metabolic compartmentation in the brain. Biochem J 266:133–139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Cerdan S, Kunnecke B, Seelig J (1990) Cerebral metabolism of [1,2–13C2]acetate as detected by in vivo and in vitro 13C NMR. J Biol Chem 265:12916–12926

    Article  CAS  PubMed  Google Scholar 

  51. Deelchand DK, Nelson C, Shestov AA, Ugurbil K, Henry PG (2009) Simultaneous measurement of neuronal and glial metabolism in rat brain in vivo using co-infusion of [1,6–13C2]glucose and [1,2–13C2]acetate. J Magn Reson 196:157–163

    Article  CAS  PubMed  Google Scholar 

  52. Kunnecke B, Cerdan S, Seelig J (1993) Cerebral metabolism of [1,2–13C2]glucose and [U-13C4]3-hydroxybutyrate in rat brain as detected by 13C NMR spectroscopy. NMR Biomed 6:264–277

    Article  CAS  PubMed  Google Scholar 

  53. Wyss MT, Jolivet R, Buck A, Magistretti PJ, Weber B (2011) In vivo evidence for lactate as a neuronal energy source. J Neurosci 31:7477–7485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Pan JW, Mason GF, Vaughan JT, Chu WJ, Zhang Y, Hetherington HP (1997) 13C editing of glutamate in human brain using J-refocused coherence transfer spectroscopy at 4.1 T. Magn Reson Med 37:355–358

    Article  CAS  PubMed  Google Scholar 

  55. Webb GA (2008) Modern magnetic resonance. Springer, London

    Google Scholar 

  56. Mason GF, Falk Petersen K, de Graaf RA, Kanamatsu T, Otsuki T, Shulman GI, Rothman DL (2003) A comparison of (13)C NMR measurements of the rates of glutamine synthesis and the tricarboxylic acid cycle during oral and intravenous administration of [1-(13)C]glucose. Brain Res Protoc 10:181–190

    Article  CAS  Google Scholar 

  57. Hyder F, Patel AB, Gjedde A, Rothman DL, Behar KL, Shulman RG (2006) Neuronal-glial glucose oxidation and glutamatergic-GABAergic function. J Cereb Blood Flow Metab 26:865–877

    Article  CAS  PubMed  Google Scholar 

  58. Zhou Y, Danbolt NC (2014) Glutamate as a neurotransmitter in the healthy brain. J Neural Transm (Vienna) 121:799–817

    Article  CAS  Google Scholar 

  59. Sibson NR, Dhankhar A, Mason GF, Behar KL, Rothman DL, Shulman RG (1997) In vivo 13C NMR measurements of cerebral glutamine synthesis as evidence for glutamate-glutamine cycling. Proc Natl Acad Sci USA 94:2699–2704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Sibson NR, Dhankhar A, Mason GF, Rothman DL, Behar KL, Shulman RG (1998) Stoichiometric coupling of brain glucose metabolism and glutamatergic neuronal activity. Proc Natl Acad Sci USA 95:316–321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Plitman E, Nakajima S, de la Fuente-Sandoval C, Gerretsen P, Chakravarty MM, Kobylianskii J, Chung JK, Caravaggio F, Iwata Y, Remington G, Graff-Guerrero A (2014) Glutamate-mediated excitotoxicity in schizophrenia: a review. Eur Neuropsychopharmacol 24:1591–1605

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Patel AB, de Graaf RA, Mason GF, Rothman DL, Shulman RG, Behar KL (2005) The contribution of GABA to glutamate/glutamine cycling and energy metabolism in the rat cortex in vivo. Proc Natl Acad Sci USA 102:5588–5593

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Bahadur Patel A, Veeraiah P, Shameem M, Mahesh Kumar J, Saba K (2021) Impaired GABAergic and glutamatergic neurometabolic activity in aged mice brain as measured by (1) H-[(13) C]-NMR spectroscopy. FASEB J 35:e21321

    Article  CAS  PubMed  Google Scholar 

  64. Lanz B, Gruetter R, Duarte JM (2013) Metabolic flux and compartmentation analysis in the brain in vivo. Front Endocrinol (Lausanne) 4:156

    Article  Google Scholar 

  65. Henry PG, Adriany G, Deelchand D, Gruetter R, Marjanska M, Oz G, Seaquist ER, Shestov A, Ugurbil K (2006) In vivo 13C NMR spectroscopy and metabolic modeling in the brain: a practical perspective. Magn Reson Imaging 24:527–539

    Article  CAS  PubMed  Google Scholar 

  66. Berl S, Lajtha A, Waelsch H (1961) Amino acid and protein metabolism-VI cerebral compartments of glutamic acid metabolism. J Neurochem 7:186–197

    Article  CAS  Google Scholar 

  67. Cruz F, Cerdan S (1999) Quantitative 13C NMR studies of metabolic compartmentation in the adult mammalian brain. NMR Biomed 12:451–462

    Article  CAS  PubMed  Google Scholar 

  68. Hertz L (2004) Intercellular metabolic compartmentation in the brain: past, present and future. Neurochem Int 45:285–296

    Article  CAS  PubMed  Google Scholar 

  69. Bluml S, Moreno-Torres A, Shic F, Nguy CH, Ross BD (2002) Tricarboxylic acid cycle of glia in the in vivo human brain. NMR Biomed 15:1–5

    Article  CAS  PubMed  Google Scholar 

  70. Badar-Goffer RS, Ben-Yoseph O, Bachelard HS, Morris PG (1992) Neuronal-glial metabolism under depolarizing conditions. A 13C-n.m.r. study. Biochem J 282 (Pt 1):225–230

  71. Duarte JM, Lanz B, Gruetter R (2011) Compartmentalized Cerebral Metabolism of [1,6-(13)C]Glucose Determined by in vivo (13)C NMR Spectroscopy at 14.1 T. Front Neuroenerget 3:3

  72. Lai M, Lanz B, Poitry-Yamate C, Romero JF, Berset CM, Cudalbu C, Gruetter R (2018) In vivo (13)C MRS in the mouse brain at 14.1 Tesla and metabolic flux quantification under infusion of [1,6-(13)C2]glucose. J Cereb Blood Flow Metab 38:1701–1714

    Article  CAS  PubMed  Google Scholar 

  73. Duarte JM, Gruetter R (2013) Glutamatergic and GABAergic energy metabolism measured in the rat brain by (13) C NMR spectroscopy at 14.1 T. J Neurochem 126:579–590

    Article  CAS  PubMed  Google Scholar 

  74. Otsuki T, Nakama H, Kanamatsu T, Tsukada Y (2005) Glutamate metabolism in epilepsy: 13C-magnetic resonance spectroscopy observation in the human brain. NeuroReport 16:2057–2060

    Article  CAS  PubMed  Google Scholar 

  75. Gropman AL, Sailasuta N, Harris KC, Abulseoud O, Ross BD (2009) Ornithine transcarbamylase deficiency with persistent abnormality in cerebral glutamate metabolism in adults. Radiology 252:833–841

    Article  PubMed  PubMed Central  Google Scholar 

  76. Najac C, Ronen SM (2016) MR molecular imaging of brain cancer metabolism using hyperpolarized 13C magnetic resonance spectroscopy. Top Magn Reson Imaging 25:187–196

    Article  PubMed  PubMed Central  Google Scholar 

  77. Bluml S, Hwang JH, Moreno A, Ross BD (2000) Novel peak assignments of in vivo (13)C MRS in human brain at 1.5 T. J Magn Reson 143:292–298

    Article  CAS  PubMed  Google Scholar 

  78. Gruber S, Frey R, Mlynarik V, Stadlbauer A, Heiden A, Kasper S, Kemp GJ, Moser E (2003) Quantification of metabolic differences in the frontal brain of depressive patients and controls obtained by 1H-MRS at 3 Tesla. Invest Radiol 38:403–408

    Article  CAS  PubMed  Google Scholar 

  79. Novotny EJ Jr, Hyder F, Shevell M, Rothman DL (1999) GABA changes with vigabatrin in the developing human brain. Epilepsia 40:462–466

    Article  CAS  PubMed  Google Scholar 

  80. Lee JH, Seo DW, Lee YS, Kim ST, Mun CW, Lim TH, Min YI, Suh DJ (1999) Proton magnetic resonance spectroscopy (1H-MRS) findings for the brain in patients with liver cirrhosis reflect the hepatic functional reserve. Am J Gastroenterol 94:2206–2213

    Article  CAS  PubMed  Google Scholar 

  81. Martin WR (2007) MR spectroscopy in neurodegenerative disease. Mol Imaging Biol 9:196–203

    Article  PubMed  Google Scholar 

  82. Rivenzon-Segal D, Margalit R, Degani H (2002) Glycolysis as a metabolic marker in orthotopic breast cancer, monitored by in vivo (13)C MRS. Am J Physiol Endocrinol Metab 283:E623-630

    Article  CAS  PubMed  Google Scholar 

  83. Mark LP, Prost RW, Ulmer JL, Smith MM, Daniels DL, Strottmann JM, Brown WD, Hacein-Bey L (2001) Pictorial review of glutamate excitotoxicity: fundamental concepts for neuroimaging. AJNR Am J Neuroradiol 22:1813–1824

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Kato T (2007) Mitochondrial dysfunction as the molecular basis of bipolar disorder: therapeutic implications. CNS Drugs 21:1–11

    Article  CAS  PubMed  Google Scholar 

  85. Burmeister M, McInnis MG, Zollner S (2008) Psychiatric genetics: progress amid controversy. Nat Rev Genet 9:527–540

    Article  CAS  PubMed  Google Scholar 

  86. Duarte JMN, Xin L (2019) Magnetic resonance spectroscopy in schizophrenia: evidence for glutamatergic dysfunction and impaired energy metabolism. Neurochem Res 44:102–116

    Article  CAS  PubMed  Google Scholar 

  87. Dong XX, Wang Y, Qin ZH (2009) Molecular mechanisms of excitotoxicity and their relevance to pathogenesis of neurodegenerative diseases. Acta Pharmacol Sin 30:379–387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Gigante AD, Bond DJ, Lafer B, Lam RW, Young LT, Yatham LN (2012) Brain glutamate levels measured by magnetic resonance spectroscopy in patients with bipolar disorder: a meta-analysis. Bipolar Disord 14:478–487

    Article  CAS  PubMed  Google Scholar 

  89. Hamakawa H, Murashita J, Yamada N, Inubushi T, Kato N, Kato T (2004) Reduced intracellular pH in the basal ganglia and whole brain measured by 31P-MRS in bipolar disorder. Psychiatry Clin Neurosci 58:82–88

    Article  CAS  PubMed  Google Scholar 

  90. Yildiz-Yesiloglu A, Ankerst DP (2006) Neurochemical alterations of the brain in bipolar disorder and their implications for pathophysiology: a systematic review of the in vivo proton magnetic resonance spectroscopy findings. Prog Neuropsychopharmacol Biol Psychiatry 30:969–995

    Article  CAS  PubMed  Google Scholar 

  91. Chu WJ, Delbello MP, Jarvis KB, Norris MM, Kim MJ, Weber W, Lee JH, Strakowski SM, Adler CM (2013) Magnetic resonance spectroscopy imaging of lactate in patients with bipolar disorder. Psychiatry Res 213:230–234

    Article  CAS  PubMed  Google Scholar 

  92. Kay SR, Sevy S (1990) Pyramidical model of schizophrenia. Schizophr Bull 16:537–545

    Article  CAS  PubMed  Google Scholar 

  93. Madeira C, Alheira FV, Calcia MA, Silva TCS, Tannos FM, Vargas-Lopes C, Fisher M, Goldenstein N, Brasil MA, Vinogradov S, Ferreira ST, Panizzutti R (2018) Blood levels of glutamate and glutamine in recent onset and chronic schizophrenia. Front Psychiatry 9:713

    Article  PubMed  PubMed Central  Google Scholar 

  94. Kirkpatrick B, Fenton WS, Carpenter WT Jr, Marder SR (2006) The NIMH-MATRICS consensus statement on negative symptoms. Schizophr Bull 32:214–219

    Article  PubMed  PubMed Central  Google Scholar 

  95. (2014) Diagnostic and Statistical Manual of Mental Disorders: DSM-5 (5th edition). Reference Reviews 28:36–37

  96. Mitra S, Mahintamani T, Kavoor AR, Nizamie SH (2016) Negative symptoms in schizophrenia. Ind Psychiatry J 25:135–144

    Article  PubMed  PubMed Central  Google Scholar 

  97. Bowie CR, Harvey PD (2006) Cognitive deficits and functional outcome in schizophrenia. Neuropsychiatr Dis Treat 2:531–536

    Article  PubMed  PubMed Central  Google Scholar 

  98. Health NIoM (2018) Depression.

  99. Organisation WH (2020) Depression.

  100. Pandya M, Altinay M, Malone DA Jr, Anand A (2012) Where in the brain is depression? Curr Psychiatry Rep 14:634–642

    Article  PubMed  PubMed Central  Google Scholar 

  101. Luscher B, Shen Q, Sahir N (2011) The GABAergic deficit hypothesis of major depressive disorder. Mol Psychiatry 16:383–406

    Article  CAS  PubMed  Google Scholar 

  102. Manji H, Kato T, Di Prospero NA, Ness S, Beal MF, Krams M, Chen G (2012) Impaired mitochondrial function in psychiatric disorders. Nat Rev Neurosci 13:293–307

    Article  CAS  PubMed  Google Scholar 

  103. Gerhard DM, Duman RS (2018) Rapid-acting antidepressants: mechanistic insights and future directions. Curr Behav Neurosci Rep 5:36–47

    Article  PubMed  PubMed Central  Google Scholar 

  104. Krystal JH, Karper LP, Seibyl JP, Freeman GK, Delaney R, Bremner JD, Heninger GR, Bowers MB Jr, Charney DS (1994) Subanesthetic effects of the noncompetitive NMDA antagonist, ketamine, in humans. Psychotomimetic, perceptual, cognitive, and neuroendocrine responses. Arch Gen Psychiatry 51:199–214

    Article  CAS  PubMed  Google Scholar 

  105. Zanos P, Gould TD (2018) Mechanisms of ketamine action as an antidepressant. Mol Psychiatry 23:801–811

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Matveychuk D, Thomas RK, Swainson J, Khullar A, MacKay MA, Baker GB, Dursun SM (2020) Ketamine as an antidepressant: overview of its mechanisms of action and potential predictive biomarkers. Ther Adv Psychopharmacol 10:2045125320916657

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Zhou W, Wang N, Yang C, Li XM, Zhou ZQ, Yang JJ (2014) Ketamine-induced antidepressant effects are associated with AMPA receptors-mediated upregulation of mTOR and BDNF in rat hippocampus and prefrontal cortex. Eur Psychiatry 29:419–423

    Article  CAS  PubMed  Google Scholar 

  108. Abdallah CG, De Feyter HM, Averill LA, Jiang L, Averill CL, Chowdhury GMI, Purohit P, de Graaf RA, Esterlis I, Juchem C, Pittman BP, Krystal JH, Rothman DL, Sanacora G, Mason GF (2018) The effects of ketamine on prefrontal glutamate neurotransmission in healthy and depressed subjects. Neuropsychopharmacology 43:2154–2160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Malgorzata P, Pawel K, Iwona ML, Brzostek T, Andrzej P (2020) Glutamatergic dysregulation in mood disorders: opportunities for the discovery of novel drug targets. Expert Opin Ther Targets 24:1187–1209

    Article  CAS  PubMed  Google Scholar 

  110. Liu PP, Xie Y, Meng XY, Kang JS (2019) History and progress of hypotheses and clinical trials for Alzheimer’s disease. Signal Transduct Target Ther 4:29

    Article  PubMed  PubMed Central  Google Scholar 

  111. Terry AV Jr, Buccafusco JJ (2003) The cholinergic hypothesis of age and Alzheimer’s disease-related cognitive deficits: recent challenges and their implications for novel drug development. J Pharmacol Exp Ther 306:821–827

    Article  CAS  PubMed  Google Scholar 

  112. Hardy J, Selkoe DJ (2002) The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science 297:353–356

    Article  CAS  PubMed  Google Scholar 

  113. Lewis J, Dickson DW (2016) Propagation of tau pathology: hypotheses, discoveries, and yet unresolved questions from experimental and human brain studies. Acta Neuropathol 131:27–48

    Article  CAS  PubMed  Google Scholar 

  114. Lin MT, Beal MF (2006) Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature 443:787–795

    Article  CAS  PubMed  Google Scholar 

  115. Rapoport SI (1999) Functional brain imaging in the resting state and during activation in Alzheimer’s disease. Implications for disease mechanisms involving oxidative phosphorylation. Ann N Y Acad Sci 893:138–153

    Article  CAS  PubMed  Google Scholar 

  116. Boumezbeur F, Mason GF, de Graaf RA, Behar KL, Cline GW, Shulman GI, Rothman DL, Petersen KF (2010) Altered brain mitochondrial metabolism in healthy aging as assessed by in vivo magnetic resonance spectroscopy. J Cereb Blood Flow Metab 30:211–221

    Article  CAS  PubMed  Google Scholar 

  117. DeAngelis LM (2001) Brain tumors. N Engl J Med 344:114–123

    Article  CAS  PubMed  Google Scholar 

  118. Sjobakk TE, Lundgren S, Kristoffersen A, Singstad T, Svarliaunet AJ, Sonnewald U, Gribbestad IS (2006) Clinical 1H magnetic resonance spectroscopy of brain metastases at 1.5T and 3T. Acta Radiol 47:501–508

    Article  CAS  PubMed  Google Scholar 

  119. Calvar JA, Meli FJ, Romero C, Calcagno ML, Yanez P, Martinez AR, Lambre H, Taratuto AL, Sevlever G (2005) Characterization of brain tumors by MRS, DWI and Ki-67 labeling index. J Neurooncol 72:273–280

    Article  CAS  PubMed  Google Scholar 

  120. Maher EA, Marin-Valencia I, Bachoo RM, Mashimo T, Raisanen J, Hatanpaa KJ, Jindal A, Jeffrey FM, Choi C, Madden C, Mathews D, Pascual JM, Mickey BE, Malloy CR, DeBerardinis RJ (2012) Metabolism of [U-13 C]glucose in human brain tumors in vivo. NMR Biomed 25:1234–1244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Brender JR, Kishimoto S, Merkle H, Reed G, Hurd RE, Chen AP, Ardenkjaer-Larsen JH, Munasinghe J, Saito K, Seki T, Oshima N, Yamamoto K, Choyke PL, Mitchell J, Krishna MC (2019) Dynamic imaging of glucose and lactate metabolism by (13)C-MRS without hyperpolarization. Sci Rep 9:3410

    Article  PubMed  PubMed Central  Google Scholar 

  122. Kreis R, Ross BD, Farrow NA, Ackerman Z (1992) Metabolic disorders of the brain in chronic hepatic encephalopathy detected with H-1 MR spectroscopy. Radiology 182:19–27

    Article  CAS  PubMed  Google Scholar 

  123. Haussinger D, Laubenberger J, vom Dahl S, Ernst T, Bayer S, Langer M, Gerok W, Hennig J (1994) Proton magnetic resonance spectroscopy studies on human brain myo-inositol in hypo-osmolarity and hepatic encephalopathy. Gastroenterology 107:1475–1480

    Article  CAS  PubMed  Google Scholar 

  124. Ross BD, Jacobson S, Villamil F, Korula J, Kreis R, Ernst T, Shonk T, Moats RA (1994) Subclinical hepatic encephalopathy: proton MR spectroscopic abnormalities. Radiology 193:457–463

    Article  CAS  PubMed  Google Scholar 

  125. Bluml S, Zuckerman E, Tan J, Ross BD (1998) Proton-decoupled 31P magnetic resonance spectroscopy reveals osmotic and metabolic disturbances in human hepatic encephalopathy. J Neurochem 71:1564–1576

    Article  CAS  PubMed  Google Scholar 

  126. Ardenkjaer-Larsen JH, Fridlund B, Gram A, Hansson G, Hansson L, Lerche MH, Servin R, Thaning M, Golman K (2003) Increase in signal-to-noise ratio of > 10,000 times in liquid-state NMR. Proc Natl Acad Sci USA 100:10158–10163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Grist JT, Miller JJ, Zaccagna F, McLean MA, Riemer F, Matys T, Tyler DJ, Laustsen C, Coles AJ, Gallagher FA (2020) Hyperpolarized (13)C MRI: a novel approach for probing cerebral metabolism in health and neurological disease. J Cereb Blood Flow Metab 40:1137–1147

    Article  PubMed  PubMed Central  Google Scholar 

  128. Wang ZJ, Ohliger MA, Larson PEZ, Gordon JW, Bok RA, Slater J, Villanueva-Meyer JE, Hess CP, Kurhanewicz J, Vigneron DB (2019) Hyperpolarized (13)C MRI: state of the art and future directions. Radiology 291:273–284

    Article  PubMed  Google Scholar 

  129. Le Page LM, Guglielmetti C, Taglang C, Chaumeil MM (2020) Imaging brain metabolism using hyperpolarized (13)c magnetic resonance spectroscopy. Trends Neurosci 43:343–354

    Article  PubMed  PubMed Central  Google Scholar 

  130. Josan S, Hurd R, Billingsley K, Senadheera L, Park JM, Yen YF, Pfefferbaum A, Spielman D, Mayer D (2013) Effects of isoflurane anesthesia on hyperpolarized (13)C metabolic measurements in rat brain. Magn Reson Med 70:1117–1124

    Article  CAS  PubMed  Google Scholar 

  131. Chaumeil MM, Larson PE, Woods SM, Cai L, Eriksson P, Robinson AE, Lupo JM, Vigneron DB, Nelson SJ, Pieper RO, Phillips JJ, Ronen SM (2014) Hyperpolarized [1-13C] glutamate: a metabolic imaging biomarker of IDH1 mutational status in glioma. Cancer Res 74:4247–4257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Takado Y, Cheng T, Bastiaansen JAM, Yoshihara HAI, Lanz B, Mishkovsky M, Lengacher S, Comment A (2018) Hyperpolarized (13)C magnetic resonance spectroscopy reveals the rate-limiting role of the blood-brain barrier in the cerebral uptake and metabolism of l-lactate in vivo. ACS Chem Neurosci 9:2554–2562

    Article  CAS  PubMed  Google Scholar 

  133. Miloushev VZ, Granlund KL, Boltyanskiy R, Lyashchenko SK, DeAngelis LM, Mellinghoff IK, Brennan CW, Tabar V, Yang TJ, Holodny AI, Sosa RE, Guo YW, Chen AP, Tropp J, Robb F, Keshari KR (2018) Metabolic imaging of the human brain with hyperpolarized (13)C pyruvate demonstrates (13)C lactate production in brain tumor patients. Cancer Res 78:3755–3760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Nelson SJ, Kurhanewicz J, Vigneron DB, Larson PE, Harzstark AL, Ferrone M, van Criekinge M, Chang JW, Bok R, Park I, Reed G, Carvajal L, Small EJ, Munster P, Weinberg VK, Ardenkjaer-Larsen JH, Chen AP, Hurd RE, Odegardstuen LI, Robb FJ, Tropp J, Murray JA (2013) Metabolic imaging of patients with prostate cancer using hyperpolarized [1-(1)(3)C]pyruvate. Sci Transl Med 5:198ra108

    Article  PubMed  PubMed Central  Google Scholar 

  135. Gallagher FA, Woitek R, McLean MA, Gill AB, Manzano Garcia R, Provenzano E, Riemer F, Kaggie J, Chhabra A, Ursprung S, Grist JT, Daniels CJ, Zaccagna F, Laurent MC, Locke M, Hilborne S, Frary A, Torheim T, Boursnell C, Schiller A, Patterson I, Slough R, Carmo B, Kane J, Biggs H, Harrison E, Deen SS, Patterson A, Lanz T, Kingsbury Z, Ross M, Basu B, Baird R, Lomas DJ, Sala E, Wason J, Rueda OM, Chin SF, Wilkinson IB, Graves MJ, Abraham JE, Gilbert FJ, Caldas C, Brindle KM (2020) Imaging breast cancer using hyperpolarized carbon-13 MRI. Proc Natl Acad Sci USA 117:2092–2098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Tiwari V, Ambadipudi S, Patel AB (2013) Glutamatergic and GABAergic TCA cycle and neurotransmitter cycling fluxes in different regions of mouse brain. J Cereb Blood Flow Metab 33:1523–1531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Delamillieure P, Constans JM, Fernandez J, Brazo P, Benali K, Courthéoux P, Thibaut F, Petit M, Dollfus S (2002) Proton magnetic resonance spectroscopy (1H MRS) in Schizophrenia: investigation of the right and left hippocampus, thalamus, and prefrontal cortex. Schizophr Bull 28:329–339

    Article  PubMed  Google Scholar 

  138. Bowen BC, Pattany PM, Bradley WG, Murdoch JB, Rotta F, Younis AA, Duncan RC, Quencer RM (2000) MR imaging and localized proton spectroscopy of the precentral gyrus in amyotrophic lateral sclerosis. Am J Neuroradiol 21:647

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Bednařík P, Moheet A, Deelchand DK, Emir UE, Eberly LE, Bareš M, Seaquist ER, Öz G (2015) Feasibility and reproducibility of neurochemical profile quantification in the human hippocampus at 3 T. NMR Biomed 28:685–693

    Article  PubMed  PubMed Central  Google Scholar 

  140. Mangia S, Kumar AF, Moheet AA, Roberts RJ, Eberly LE, Seaquist ER, Tkáč I (2013) Neurochemical profile of patients with type 1 diabetes measured by 1H-MRS at 4 T. J Cereb Blood Flow Metab 33:754–759

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Wolfgang Staffen MD, Harald Zauner PhD, Aldis Mair MD, Andrea Kutzelnigg MD, Peter Kapeller MD, Hilde Stangl MD, Edith Raffer MD, Helmut Niederhofer MD, Gunther Ladurner MD (2005) Magnetic resonance spectroscopy of memory and frontal brain region in early multiple sclerosis. J Neuropsychiatry Clin Neurosci 17:357–363

    Article  PubMed  Google Scholar 

  142. Pavia DL, Lampman GM, Kriz GS (1979) Introduction to spectroscopy: a guide for students of organic chemistry. W.B. Saunders Co, Philadelphia

    Google Scholar 

Download references

Acknowledgements

Professor Pravat K. Mandal (Principal Investigator) thanks for partial financial support from various agencies: Tata Innovation Fellow (Department of Biotechnology, Ministry of Science and Technology, Government of India) (Award No. BT/HRD/01/05/2015 to PKM), Indo Australian grant strategic funding to PKM, (Grant No. BT/Indo-Aus/10/31/2016 to PKM), and the ministry of information technology (Grant No. 4(5)/201-ITEA to PKM). Additionally, we would also like to extend our gratitude to the reviewers whose valuable suggestions enabled us to improve and enrich the manuscript to the greatest degree.

Funding

Prof. Pravat K. Mandal (Principal Investigator) thanks for partial financial support from various agencies: Tata Innovation Fellowship (Department of Biotechnology, Ministry of Science and Technology, Government of India) (Award No. BT/HRD/01/05/2015), Indo Australian grant strategic funding to PKM, (Grant No. BT/Indo-Aus/10/31/2016), and the Ministry of Information Technology (Grant No. 4(5)/201-ITEA).

Author information

Authors and Affiliations

Authors

Contributions

Prof. PKM (Principal Investigator) was involved in idea conceptualization, literature review, data review, and writing and editing the manuscript. Ms. As and Ms. RGR were involved in literature search, figure preparation, and writing the manuscript. Dr. JM and Dr YA were involved in discussion and writing the manuscript.

Corresponding author

Correspondence to Pravat K. Mandal.

Ethics declarations

Conflict of interest

There are no conflicts of interest.

Data Availability

Not Applicable.

Code Availability

Not Applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mandal, P.K., Guha Roy, R., Samkaria, A. et al. In Vivo 13C Magnetic Resonance Spectroscopy for Assessing Brain Biochemistry in Health and Disease. Neurochem Res 47, 1183–1201 (2022). https://doi.org/10.1007/s11064-022-03538-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-022-03538-8

Keywords

Navigation