Skip to main content
Log in

Leucine nutrition in animals and humans: mTOR signaling and beyond

  • Review Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

Macronutrients, such as protein or amino acid, not only supply calories but some components may also play as signaling molecules to affect feeding behavior, energy balance, and fuel efficiency. Leucine, a branched-chain amino acid is a good example. After structural roles are satisfied, the ability of leucine to function as signal and oxidative substrate is based on a sufficient intracellular concentration. Therefore, leucine level must be sufficiently high to play the signaling and metabolic roles. Leucine is not only a substrate for protein synthesis of skeletal muscle, but also plays more roles beyond that. Leucine activates signaling factor of mammalian target of rapamycin (mTOR) to promote protein synthesis in skeletal muscle and in adipose tissue. It is also a major regulator of the mTOR sensitive response of food intake to high protein diet. Meanwhile, leucine regulates blood glucose level by promoting gluconeogenesis and aids in the retention of lean mass in a hypocaloric state. It is beneficial to animal nutrition and clinical application and extrapolation to humans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

AA:

Amino acid

AgRP:

Agouti-related protein

AMPK:

AMP-activated protein kinase

BCAA:

Branched-chain amino acid

BCATm:

Mitochondrial branched-chain aminotransferase

BW:

Body weight

4E-BP1:

Eukaryotic initiation factor 4E binding protein 1

mTOR:

Mammalian target of rapamycin

mTORC1:

mTOR complex 1

NPY:

Neuropeptide Y

PI3K:

Phosphatidylinositol 3-kinase

S6K1:

Ribosomal protein S6 kinase 1

UCP3:

Uncoupling protein 3

References

  • Anthony JC, Yoshizawa F, Gautsch-Anthony T, Vary TC, Jefferson LS, Kimball SR (2000) Leucine stimulates translation initiation in skeletal muscle of postabsorptive rats via a rapamycin-sensitive pathway. J Nutr 130:2413–2419

    PubMed  CAS  Google Scholar 

  • Anthony JC, Lang CH, Crozier SJ, Anthony TG, MacLean DA, Kimball SR, Jefferson LS (2002a) Contribution of insulin to the translational control of protein synthesis in skeletal muscle by leucine. Am J Physiol 282:E1092–E1101

    CAS  Google Scholar 

  • Anthony JC, Reiter AK, Anthony TG, Crozier SJ, Lang CH, MacLean DA, Kimball SR, Jefferson LS (2002b) Orally administered leucine enhances protein synthesis in skeletal muscle of diabetic rats in the absence of increases in 4E-BP1 or S6K1 phosphorylation. Diabetes 51:928–936

    Article  PubMed  CAS  Google Scholar 

  • Balage M, Dupont J, Mothe-Satney I, Tesseraud S, Mosoni L, Dardevet D (2011) Leucine supplementation in rats induced a delay in muscle IR/PI3 K signaling pathway associated with overall impaired glucose tolerance. J Nutr Biochem 22:219–226

    Article  PubMed  CAS  Google Scholar 

  • Ban H, Shigemitsu K, Yamatsuji T, Haisa M, Nakajo T, Takaoka M, Nobuhisa T, Gunduz M, Tanaka N, Naomoto Y (2004) Arginine ad Leucine regulate p70 s6kinase and 4E-BP1 in intestinal epithelial cells. Int J Mol Med 13:537–543

    PubMed  CAS  Google Scholar 

  • Bianchi G, Marzocchi R, Agostini F, Marchesini G (2005) Update on nutritional supplementation with branched-chain amino acids. Curr Opin Clin Nutr Metab Care 8:83–87

    Article  PubMed  CAS  Google Scholar 

  • Chang TW, Goldberg AL (1978) Leucine inhibits oxidation of glucose and pyruvate in skeletal muscle during fasting. J Biol Chem 253:3696–3701

    PubMed  CAS  Google Scholar 

  • Chen LX, Yin YL, Jobgen WS, Jobgen SC, Knabe DA, Hu WX, Wu G (2007) In vitro oxidation of essential amino acids by jejunal mucosal cells of growing pigs. Livest Sci 109:19–23

    Article  Google Scholar 

  • Cota D, Proulx K, Smith KA, Kozma SC, Thomas G, Woods SC, Seeley RJ (2006) Hypothalamic mTOR signaling regulates food intake. Science 312:927–930

    Article  PubMed  CAS  Google Scholar 

  • Desikan V, Mileva I, Garlick J, Lane AH, Wilson TA, McNurlan MA (2010) The effect of oral leucine on protein metabolism in adolescents with type 1 diabetes mellitus. Int J Pediatr Endocrinol 2010:493258

    Article  PubMed  Google Scholar 

  • Donato J Jr, Pedrosa RG, Cruzat VF, Pires IS, Tirapegui J (2006) Effects of leucine supplementation on the body composition and protein status of rats submitted to food restriction. Nutrition 22:520–527

    Article  PubMed  CAS  Google Scholar 

  • Escobar J, Frank JW, Suryawan A, Nguyen HV, Kimball SR, Jefferson LS, Davis TA (2005) Physiological rise in plasma leucine stimulates muscle protein synthesis in neonatal pigs by enhancing translation initiation factor activation. Am J Physiol Endocrinol Metab 288:E914–E921

    Article  PubMed  CAS  Google Scholar 

  • FAO/WHO/UNU (1985) Energy and protein requirements. Report of a joint FAO/WHO/UNU expert consultation. WHO Tech Rep Ser 724:1–206

  • Filiputti E, Ferreira F, Souza KL, Stoppiglia LF, Arantes VC, Boschero AC, Carneiro EM (2008) Impaired insulin secretion and decreased expression of the nutritionally responsive ribosomal kinase protein S6 K–1 in pancreatic islets from malnourished rats. Life Sci 82:542–548

    Article  PubMed  CAS  Google Scholar 

  • Filiputti E, Rafacho A, Araújo EP, Silveira LR, Trevisan A, Batista TM, Curi R, Velloso LA, Quesada I, Boschero AC, Carneiro EM (2010) Augmentation of insulin secretion by leucine supplementation in malnourished rats: possible involvement of the phosphatidylinositol 3-phosphate kinase/mammalian target protein of rapamycin pathway. Metabolism 59:635–644

    Article  PubMed  CAS  Google Scholar 

  • Floyd JC Jr, Fajans SS, Pek S, Thiffault CA, Knopf RF, Conn JW (1970) Synergistic effect of essential amino acids and glucose upon insulin secretion in man. Diabetes 19:109–115

    PubMed  CAS  Google Scholar 

  • Fox HL, Kimball SR, Jefferson LS, Lynch CJ (1998) Amino acids stimulate phosphorylation of p70S6k and organization of rat adipocytes into multicellular clusters. Am J Physiol 274:C206–C213

    PubMed  CAS  Google Scholar 

  • Fraenkel M, Ketzinel-Gilad M, Ariav Y, Pappo O, Karaca M, Castel J, Berthault MF, Magnan C, Cerasi E, Kaiser N, Leibowitz G (2008) mTOR inhibition by rapamycin prevents beta-cell adaptation to hyperglycemia and exacerbates the metabolic state in type 2 diabetes. Diabetes 57:945–957

    Article  PubMed  CAS  Google Scholar 

  • Gordon-Elliott JS, Margolese HC (2006) Weight loss during prolonged branched-chain amino acid treatment for tardive dyskinesia in a patient with schizophrenia. Aust NZ J Psychiatry 40:195

    Article  Google Scholar 

  • Guo K, Yu YH, Hou J, Zhang Y (2010) Chronic leucine supplementation improves glycemic control in etiologically distinct mouse models of obesity and diabetes mellitus. Nutr Metab 7:57

    Article  Google Scholar 

  • Halton TL, Hu FB (2004) The effects of high protein diets on thermogenesis, satiety and weight loss: a critical review. J Am Coll Nutr 23:373–385

    PubMed  Google Scholar 

  • Harper AE, Miller RH, Block KP (1984) Branched-chain amino acid metabolism. Annu Rev Nutr 4:409–454

    Article  PubMed  CAS  Google Scholar 

  • Hay N, Sonenberg N (2004) Upstream and downstream of mTOR. Genes Dev 18:1926–1945

    Article  PubMed  CAS  Google Scholar 

  • Iwanaka N, Egawa T, Satoubu N, Karaike K, Ma X, Masuda S, Hayashi T (2010) Leucine modulates contraction- and insulin-stimulated glucose transport and upstream signaling events in rat skeletal muscle. J Appl Physiol 108:274–282

    Article  PubMed  CAS  Google Scholar 

  • Jousse C, Bruhat A, Fafournoux P (1999) Amino acid regulation of gene expression. Curr Opin Clin Nutr Metab Care 2:297–301

    Article  PubMed  CAS  Google Scholar 

  • Jousse C, Bruhat A, Ferrara M, Fafournoux P (2000) Evidence for multiple signaling pathways in the regulation of gene expression by amino acids in human cell lines. J Nutr 130:1555–1560

    PubMed  CAS  Google Scholar 

  • Kalogeropoulou D, Lafave L, Schweim K, Gannon MC, Nuttall FQ (2008) Leucine, when ingested with glucose, synergistically stimulates insulin secretion and lowers blood glucose. Metabolism 57:1747–1752

    Article  PubMed  CAS  Google Scholar 

  • Kim JA, Wei Y, Sowers JR (2008) Role of mitochondrial dysfunction in insulin resistance. Circ Res 102:401–414

    Article  PubMed  CAS  Google Scholar 

  • Kimball SR, Jefferson LS (2002) Control of protein synthesis by amino acid availability. Curr Opin Clin Nutr Metab Care 5:63–67

    Article  PubMed  CAS  Google Scholar 

  • Kimball SR, Jefferson LS (2006) Signaling pathways and molecular mechanisms through which branched-chain amino acids mediate translational control of protein synthesis. J Nutr 136:227–231

    Google Scholar 

  • Krebs M, Roden M (2004) Nutrient-induced insulin resistance in human skeletal muscle. Curr Medicinal Chem 11:901–908

    Article  CAS  Google Scholar 

  • Krebs M, Krssak M, Bernroider E, Anderwald C, Brehm A, Meyerspeer M, Nowotny P, Roth E, Waldhausl W, Roden M (2002) Mechanism of amino acid-induced skeletal muscle insulin resistance in humans. Diabetes 51:599–605

    Article  PubMed  CAS  Google Scholar 

  • Layman DK (2003) The role of leucine in weight loss diets and glucose homeostasis. J Nutr 133:261–267

    Google Scholar 

  • Layman DK, Baum JI (2004) Dietary protein impact on glycemic control during weight loss. J Nutr 134:968–973

    Google Scholar 

  • Layman DK, Walker DA (2006) Potential importance of leucine in treatment of obesity and the metabolic syndrome. J Nutr 136:319–323

    Google Scholar 

  • Layman DK, Boileau RA, Erickson DJ, Painter JE, Shiue H, Sather C, Christou DD (2003a) A reduced ratio of dietary carbohydrate to protein improves body composition and blood lipid profiles during weight loss in adult women. J Nutr 133:411–417

    PubMed  CAS  Google Scholar 

  • Layman DK, Shiue H, Sather C, Erickson DJ, Baum J (2003b) Increased dietary protein modifies glucose and insulin homeostasis in adult women during weight loss. J Nutr 133:405–410

    PubMed  CAS  Google Scholar 

  • Layman DK, Evans E, Baum JI, Seyler JE, Erickson DJ, Boileau RA (2005) Dietary protein and exercise have additive effects on body composition during weight loss in adult women. J Nutr 135:1903–1910

    PubMed  CAS  Google Scholar 

  • Levy JR, Gyarmati J, Lesko JM, Adler RA, Stevens W (2000) Dual regulation of leptin secretion: intracellular energy and calcium dependence of regulated pathway. Am J Physiol Endocrinol Metab 278:E892–E901

    PubMed  CAS  Google Scholar 

  • Liu L, Chen L, Chung J, Huang S (2008) Rapamycin inhibits F-actin reorganization and phosphorylation of focal adhesion proteins. Oncogene 27:4998–5010

    Article  PubMed  CAS  Google Scholar 

  • Loewith R, Jacinto E, Wullschleger S, Lorberg A, Crespo JL, Bonenfant D, Oppliger W, Jenoe P, Hall MN (2002) Two TOR complexes, only one of which is rapamycin sensitive, have distinct roles in cell growth control. Mol Cell 10:457–468

    Article  PubMed  CAS  Google Scholar 

  • López N, Sánchez J, PicóC PalouA, Serra F (2010) Dietary l-leucine supplementation of lactating rats results in a tendency to increase lean/fat ratio associated to lower orexigenic neuropeptide expression in hypothalamus. Peptides 31:1361–1367

    Article  PubMed  Google Scholar 

  • Lynch CJ (2001) Role of leucine in the regulation of mTOR by amino acids: revelations from structure-activity studies. J Nutr 131:861S–865S

    PubMed  CAS  Google Scholar 

  • Lynch CJ, Hutson SM J, Patson B, Vaval A, Vary TC (2002a) Tissue specific effects of chronic dietary leucine and norleucine supplementation on protein synthesis in rats. Am J Physiol Endocrinol Metab 283:E824–E835

    PubMed  CAS  Google Scholar 

  • Lynch CJ, Patson BJ, Anthony J, Vaval A, Jefferson LS, Vary TC (2002b) Leucine is a direct-acting nutrient signal that regulates protein synthesis in adipose tissue. Am J Physiol Endocrinol Metab 283:E503–E513

    PubMed  CAS  Google Scholar 

  • Lynch CJ, Halle B, Fujii H, Vary TC, Wallin R, Damuni Z, Hutson SM (2003) Potential role of leucine metabolism in the leucine-signaling pathway involving mTOR. Am J Physiol Endocrinol Metab 285:E854–E863

    PubMed  CAS  Google Scholar 

  • Lynch CJ, Gern B, Lloyd C, Hutson SM, Eicher R, Vary TC (2006) Leucine in food mediates some of the postprandial rise in plasma leptin concentrations. Am J Physiol Endocrinol Metab 291:E621–E630

    Article  PubMed  CAS  Google Scholar 

  • MacDonald MJ, Fahien LA, Brown LJ, Hasan NM, Buss JD, Kendrick MA (2005) Perspective: emerging evidence for signaling roles of mitochondrial anaplerotic products in insulin secretion. Am J Physiol Endocrinol Metab 288:E1–E15

    Article  PubMed  CAS  Google Scholar 

  • Macdonald MJ, Hasan NM, Longacre MJ (2008) Studies with leucine, betahydroxybutyrate and ATP citrate lyase-deficient beta cells support the acetoacetate pathway of insulin secretion. Biochim Biophys Acta 1780:966–972

    PubMed  CAS  Google Scholar 

  • Marc Rhoads J, Wu G (2009) Glutamine, arginine, and leucine signaling in the intestine. Amino Acids 37:111–122

    Article  PubMed  CAS  Google Scholar 

  • Mourier A, Bigard AX, Kerviler E, Roger B, Legrand H, Guezennec CY (1997) Combined effects of caloric restriction and branchedchain amino acid supplementation on body composition and exercise performance in elite wrestlers. Int J Sports Med 18:47–55

    Article  PubMed  CAS  Google Scholar 

  • Mueller WM, Gregoire FM, Stanhope KL, Mobbs CV, Mizuno TM, Warden CH, Stern JS, Havel PJ (1998) Evidence that glucose metabolism regulates leptin secretion from cultured rat adipocytes. Endocrinology 139:551–558

    Article  PubMed  CAS  Google Scholar 

  • Newgard CB, An J, Bain JR, Muehlbauer MJ, Stevens RD, Lien LF, Haqq AM, Shah SH, Arlotto M, Slentz CA, Rochon J, Gallup D, Ilkayeva O, Wenner BR, Yancy WS Jr, Eisenson H, Musante G, Surwit RS, Millington DS, Butler MD, Svetkey LP (2009) A branchedchain amino acid-related metabolic signature that differentiates obese and lean humans and contributes to insulin resistance. Cell Metab 9:311–326

    Article  PubMed  CAS  Google Scholar 

  • Parker B, Noakes M, Luscombe N, Clifton P (2002) Effect of a high protein, high monounsaturated fat weight loss diet on glycemic control and lipid levels in type 2 diabetes. Diabetes Care 25:425–430

    Article  PubMed  Google Scholar 

  • Patterson BW, Horowitz JF, Wu G, Watford M, Coppack SW, Klein S (2002) Regional muscle and adipose tissue amino acid metabolism in lean and obese women. Am J Physiol Endocrinol Metab 282:E931–E936

    PubMed  CAS  Google Scholar 

  • Patti ME, Brambilla E, Luzi L, Landaker EJ, Kahn CR (1998) Bidirectional modulation of insulin action by amino acids. J Clin Invest 101:1519–1529

    Article  PubMed  CAS  Google Scholar 

  • Polak P (2008) Regulation of adipogenesis and adipose maintenance by the mammalian TOR complex 1. Dissertation, University of Basel

  • Promintzer M, Krebs M (2006) Effects of dietary protein on glucose homeostasis. Curr Opin Clin Nutr Metab Care 9:463–468

    Article  PubMed  CAS  Google Scholar 

  • Rafecas I, Esteve M, Remesar X, Alemany M (1991) Plasma amino acids of lean and obese Zucker rats subjected to a cafeteria diet after weaning. Biochem Int 25:797–806

    PubMed  CAS  Google Scholar 

  • Raught B, Gingras AC, Sonenberg N (2001) The target of rapamycin (TOR) proteins. Proc Natl Acad Sci USA 98:7037–7044

    Article  PubMed  CAS  Google Scholar 

  • Reeves PG, Nielsen FH, Fahey GC (1993) AIN-93 purified diets for laboratory rodents: final report of the American Institute of Nutrition ad hoc writing committee on the reformulation of the AIN-76A rodent diet. J Nutr 123:1939–1951

    PubMed  CAS  Google Scholar 

  • Roh C, Han J, Tzatsos A, Kandror KV (2003) Nutrient-sensing mTOR-mediated pathway regulates leptin production in isolated rat adipocytes. Am J Physiol Endocrinol Metab 284:E322–E330

    PubMed  CAS  Google Scholar 

  • Rohde J, Heitman J, Cardenas ME (2001) The TOR kinases link nutrient sensing to cell growth. J Biol Chem 276:9583–9586

    Article  PubMed  CAS  Google Scholar 

  • Schmelzle T, Hall MN (2000) TOR, a central controller of cell growth. Cell 103:253–262

    Article  PubMed  CAS  Google Scholar 

  • Schrauwen-Hinderling VB, Roden M, Kooi ME, Hesselink MK, Schrauwen P (2007) Muscular mitochondrial dysfunction and type 2 diabetes mellitus. Curr Opin Clin Nutr Metab Care 10:698–703

    Article  PubMed  CAS  Google Scholar 

  • She P, Reid TM, Bronson SK, Vary TC, Hajnal A, Lynch CJ, Hutson SM (2007) Disruption of BCATm in mice leads to increased energy expenditure associated with the activation of a futile protein turnover cycle. Cell Metab 6:181–194

    Article  PubMed  CAS  Google Scholar 

  • Sun X, Zemel MB (2007) Leucine and calcium regulate fat metabolism and energy partitioning in murine adipocytes and muscle cells. Lipids 42:297–305

    Article  PubMed  CAS  Google Scholar 

  • Sun X, Zemel MB (2009) Leucine modulation of mitochondrial mass and oxygen consumption in skeletal muscle cells and adipocytes. Nutr Metab 6:26

    Article  Google Scholar 

  • Tan BE, Yin YL, Liu ZQ, Li XG, Xu HJ, Kong XF, Huang RL, Tang WJ, Shinzato I, Smith SB, Wu GY (2009) Dietary l-arginine supplementation increases muscle gain and reduces body fat mass in growing-finishing pigs. Amino Acids 37:169–175

    Article  PubMed  CAS  Google Scholar 

  • Tan BE, Yin YL, Kong XF, Li P, Li XL, Gao HJ, Li XG, Huang RL, Wu GY (2010) l-Arginine stimulates proliferation and prevents endotoxin-induced death of intestinal cells. Amino Acids 38:1227–1235

    Article  PubMed  CAS  Google Scholar 

  • Tan BE, Yin YL, Liu ZQ, Tang WJ, Xu HJ, Konga XF, Li XG, Yao K, Gu WT, Smith SB, Wu GY (2011) Dietary l-arginine supplementation differentially regulates expression of fat-metabolic genes in porcine adipose tissue and skeletal muscle. J Nutr Bioch 22:441–445

    Article  CAS  Google Scholar 

  • Tang H, Hornstein E, Stolovich M, Levy G, Livingstone M, Templeton D, Avruch J, Meyuhas O (2001) Amino acid-induced translation of TOP mRNAs is fully dependent on phosphatidylinositol 3-kinase-mediated signaling, is partially inhibited by rapamycin, and is independent of S6K1 and rpS6 phosphorylation. Mol Cell Biol 21:8671–8683

    Article  PubMed  CAS  Google Scholar 

  • Tremblay F, Marette A (2001) Amino acid and insulin signaling via the mTOR/p70 S6 kinase pathway: a negative feedback mechanism leading to insulin resistance in skeletal muscle cells. J Biol Chem 276:38052–38060

    PubMed  CAS  Google Scholar 

  • Tremblay F, Jacques H, Marette A (2005a) Modulation of insulin action by dietary proteins and amino acids: role of the mammalian target of rapamycin nutrient sensing pathway. Curr Opin Clin Nutr Metab Care 8:457–462

    Article  PubMed  CAS  Google Scholar 

  • Tremblay F, Krebs M, Dombrowski L, Brehm A, Bernroider E, Roth E, Nowotny P, Waldhäusl W, Marette A, Roden M (2005b) Overactivation of S6 kinase 1 as a cause of human insulin resistance during increased amino acid availability. Diabetes 54:2674–2684

    Article  PubMed  CAS  Google Scholar 

  • Tremblay F, Lavigne C, Jacques H, Marette A (2007) Role of dietary proteins and amino acids in the pathogenesis of insulin resistance. Annu Rev Nutr 27:293–310

    Article  PubMed  CAS  Google Scholar 

  • Tsukiyama-Kohara K, Poulin F, Kohara M, DeMaria CT, Cheng A, Wu Z, Gingras AC, Katsume A, Elchebly M, Spiegelman BM, Harper ME, Tremblay ML, Sonenberg N (2001) Adipose tissue reduction in mice lacking the translational inhibitor 4E-BP1. Nat Med 7:1128–1132

    Article  PubMed  CAS  Google Scholar 

  • Um SH, Frigerio F, Watanabe M, Picard F, Joaquin M, Sticker M, Fumagalli S, Allegrini PR, Kozma SC, Auwerx J, Thomas G (2004) Absence of S6K1 protects against age- and diet-induced obesity while enhancing insulin sensitivity. Nature 431:200–205

    Article  PubMed  CAS  Google Scholar 

  • Um SH, D’Alessio D, Thomas G (2006) Nutrient overload, insulin resistance, and ribosomal protein S6 kinase 1, S6K1. Cell Metabolism 3:393–402

    Article  PubMed  CAS  Google Scholar 

  • Ventrucci G, Silva LGR, Mello MAR, Marcondes MCG (2004) Effects of a leucine-rich diet on body composition during nutritional recovery in rats. Nutrition 20:213–217

    Article  PubMed  CAS  Google Scholar 

  • Wahren J, Felig P, Hagenfeldt L (1976) Effect of protein ingestion on splanchnic and leg metabolism in normal man and in patients with diabetes mellitus. J Clin Invest 57:987–999

    Article  PubMed  CAS  Google Scholar 

  • Wu G (1998) Intestinal mucosal amino acid catabolism. J Nutr 128:1249–1252

    PubMed  CAS  Google Scholar 

  • Wu GY, Bazer FW, Davis TA, Kim SW, Li P, Rhoads JM, Satterfield MC, Smith SB, Spencer TE, Yin YL (2009) Arginine metabolism and nutrition in growth, health and disease. Amino Acids 37:169–175

    Article  PubMed  Google Scholar 

  • Xu GG, Gao ZY, Borge PD, Wolf BA (1999) Insulin receptor substrate 1–induced inhibition of endoplasmic reticulum Ca2+ uptake in beta-cells. Autocrine regulation of intracellular Ca2+ homeostasis and insulin secretion. J Biol Chem 274:18067–18074

    Article  PubMed  CAS  Google Scholar 

  • Xu GG, Gao ZY, Borge PD Jr, Jegier PA, Young RA, Wolf BA (2000) Insulin regulation of beta-cell function involves a feedback loop on SERCA gene expression, Ca(2+) homeostasis, and insulin expression and secretion. Biochemistry 39:14912–14919

    Article  PubMed  CAS  Google Scholar 

  • Xu G, Kwon G, Cruz WS, Marshall CA, McDaniel ML (2001) Metabolic regulation by leucine of translation initiation through the mTOR signaling pathway by pancreatic beta-cells. Diabetes 50:353–360

    Article  PubMed  CAS  Google Scholar 

  • Yao K, Yin YL, Chu WY, Liu ZQ, Dun D, Li TJ, Huang RL, Zhang JS, Bie Tan, Wang WC, Wu GY (2008) Dietary arginine supplementation increases mTOR signaling activity in skeletal muscle of neonatal pigs. J Nutr 138:867–872

    PubMed  CAS  Google Scholar 

  • Yin YL, Zhong HY, Huang RL, Chen CM, Li TJ, Pai YF (1993) Nutritive value of feedstuffs and diets for pigs. I. Chemical composition, apparent ileal and fecal digestibility. Anim Feed Sci Tech 44:1–27

    Article  CAS  Google Scholar 

  • Yin Y, Yao K, Liu Z, Gong M, Ruan Z, Deng D, Tan B, Liu Z, Wu G (2010a) Supplementing l-leucine to a low-protein diet increases tissue protein synthesis in weanling pigs. Amino Acids 39:1477–1486

    Article  PubMed  CAS  Google Scholar 

  • Yin YL, Huang RL, Li TJ, Ruan Z, Xie MY, Deng ZY, Hou YQ, Wu GY (2010b) Amino acid metabolism in the portal-drained viscera of young pigs: effects of dietary supplementation with chitosan and pea hull. Amino Acids 39:1581–1587

    Article  PubMed  CAS  Google Scholar 

  • Zemel MB (2004) Role of calcium and dairy products in energy partitioning and weight management. Am J Clin Nutr 79:907S–912S

    PubMed  CAS  Google Scholar 

  • Zhang Y, Proenca R, Maffei M, Barone M, Leopold L, Friedman JM (1994) Positional cloning of the mouse obese gene and its human homologue. Nature 372:425–432

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y, Guo K, LeBlanc RE, Loh D, Schwartz GJ, Yu YH (2007) Increasing dietary leucine intake reduces diet-induced obesity and improves glucose and cholesterol metabolism in mice via multimechanisms. Diabetes 56:1647–1654

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This study was jointly supported by the Chinese Academy of Sciences and Knowledge Innovation Project (KZCX2-EW-412; Y022042020; KSCX2-YW-N-0221; KSCX2-SW-323; KZCX2-YW-T07; KZCX2-EW-QN411); National Basic Research Program of China (2009CB118800); NSFC (31001015; 31001016 and 31072042; 30901040; 30901041; 30928018) and the Project of Institute of Subtropical Agriculture, the Chinese Academy of Sciences (ISACX-LYQY-QN-1104).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yulong Yin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, F., Yin, Y., Tan, B. et al. Leucine nutrition in animals and humans: mTOR signaling and beyond. Amino Acids 41, 1185–1193 (2011). https://doi.org/10.1007/s00726-011-0983-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-011-0983-2

Keywords

Navigation