Skip to main content

Advertisement

Log in

The GABA Synapse as a Target for Antiepileptic Drugs: A Historical Overview Focused on GABA Transporters

  • Overview
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

It is clear that normal neuronal function relies on a tight balance between excitatory and inhibitory neurotransmission. Inhibitory signaling through the GABAergic system can be tightly regulated at the level of GABA uptake via GABA transporters (GAT). As such, selectively modulating the GABA uptake process through pharmacological agents has been an area of active investigation over several decades. These studies have demonstrated that inhibition of astroglial, but not neuronal, GATs may be preferred for anticonvulsant action. To date, four distinct GAT subtypes have been identified and efforts to selectively target these transporters have led to the proliferation of pharmacological agents aimed at augmenting extrasynaptic GABA levels. These pharmacological tools have provided novel and informative insight into the role of GABA and GABAergic signaling in the brain, but have also provided critical information concerning the regulation of CNS disorders associated with an imbalance in inhibitory tone, such as epilepsy. One such compound with notable inhibitory effects at GATs, tiagabine, has demonstrated clinical anticonvulsant efficacy, and is, to date, the only approved GAT inhibitor for clinical use. Thus, efforts to identify and develop GAT subtype-specific compounds continue to be an area of active investigation for the management of epilepsy and other CNS disorders. Herein, the historical efforts to elucidate the role of GABA in the synapse, as well as the role of GAT inhibitors as anticonvulsants, are described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Roberts E, Frankel S (1950) Gamma-aminobutyric acid in brain: its formation from glutamic acid. J Biol Chem 187(1):55–63

    PubMed  CAS  Google Scholar 

  2. Schousboe A, Bak LK, Madsen KK, Waagepetersen HS (2013) Amino acid neurotransmitter synthesis and removal. In: Kettenmann H, Ransom BR (eds) Neuroglia, 3rd edn. Oxford University Press, New York, pp 443–456

    Google Scholar 

  3. Saito K, Barber R, Wu J, Matsuda T, Roberts E, Vaughn JE (1974) Immunohistochemical localization of glutamate decarboxylase in rat cerebellum. Proc Natl Acad Sci USA 71(2):269–273

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  4. Norenberg MD, Martinez-Hernandez A (1979) Fine structural localization of glutamine synthetase in astrocytes of rat brain. Brain Res 161(2):303–310

    Article  PubMed  CAS  Google Scholar 

  5. Yu AC, Drejer J, Hertz L, Schousboe A (1983) Pyruvate carboxylase activity in primary cultures of astrocytes and neurons. J Neurochem 41(5):1484–1487

    Article  PubMed  CAS  Google Scholar 

  6. Rowley NM, Madsen KK, Schousboe A, White HS (2012) Glutamate and GABA synthesis, release, transport and metabolism as targets for seizure control. Neurochem Int 61(4):546–558. doi:10.1016/j.neuint.2012.02.013

    Article  PubMed  CAS  Google Scholar 

  7. Schousboe A, Bak LK, Waagepetersen HS (2013) Astrocytic control of biosynthesis and turnover of the neurotransmitters glutamate and GABA. Front Endocrinol (Lausanne), vol 4. doi:10.3389/fendo.2013.00102

  8. McIntire SL, Reimer RJ, Schuske K, Edwards RH, Jorgensen EM (1997) Identification and characterization of the vesicular GABA transporter. Nature 389(6653):870–876. doi:10.1038/39908

    Article  PubMed  CAS  Google Scholar 

  9. Eiden LE (2000) The vesicular neurotransmitter transporters: current perspectives and future prospects. FASEB J 14(15):2396–2400. doi:10.1096/fj.00-0817rev

    Article  PubMed  CAS  Google Scholar 

  10. Minelli A, Alonso-Nanclares L, Edwards RH, DeFelipe J, Conti F (2003) Postnatal development of the vesicular GABA transporter in rat cerebral cortex. Neuroscience 117(2):337–346

    Article  PubMed  CAS  Google Scholar 

  11. Gram L, Larsson OM, Johnsen AH, Schousboe A (1988) Effects of valproate, vigabatrin and aminooxyacetic acid on release of endogenous and exogenous GABA from cultured neurons. Epilepsy Res 2(2):87–95

    Article  PubMed  CAS  Google Scholar 

  12. Elliott KA, Van Gelder NM (1958) Occlusion and metabolism of gamma-aminobutyric acid by brain tissue. J Neurochem 3(1):28–40

    Article  PubMed  CAS  Google Scholar 

  13. Iversen LL, Neal MJ (1968) The uptake of [3H]GABA by slices of rat cerebral cortex. J Neurochem 15(10):1141–1149

    Article  PubMed  CAS  Google Scholar 

  14. Schousboe A (1981) Transport and metabolism of glutamate and GABA in neurons are glial cells. Int Rev Neurobiol 22:1–45

    Article  PubMed  CAS  Google Scholar 

  15. Madsen KK, White HS, Clausen RP, Frolund B, Larsson OM, Krogsgaard-Larsen P, Schousboe A (2007) Functional and pharmacological aspects of GABA transporters. In: Lajtha A, Reith MEA (eds) Handbook of neurochemistry and molecular neurobiology, 3rd edn. Springer, New York, pp 286–303

    Google Scholar 

  16. Borden LA, Smith KE, Gustafson EL, Branchek TA, Weinshank RL (1995) Cloning and expression of a betaine/GABA transporter from human brain. J Neurochem 64(3):977–984

    Article  PubMed  CAS  Google Scholar 

  17. Soudijn W, van Wijngaarden I (2000) The GABA transporter and its inhibitors. Curr Med Chem 7(10):1063–1079

    Article  PubMed  CAS  Google Scholar 

  18. Schousboe A (2000) Pharmacological and functional characterization of astrocytic GABA transport: a short review. Neurochem Res 25(9–10):1241–1244

    Article  PubMed  CAS  Google Scholar 

  19. Van Liefferinge J, Massie A, Portelli J, Di Giovanni G, Smolders I (2013) Are vesicular neurotransmitter transporters potential treatment targets for temporal lobe epilepsy? Front Cell Neurosci 7:139. doi:10.3389/fncel.2013.00139

    PubMed  PubMed Central  Google Scholar 

  20. Curtis DR, Watkins JC (1960) The excitation and depression of spinal neurones by structurally related amino acids. J Neurochem 6:117–141

    Article  PubMed  CAS  Google Scholar 

  21. Zukin SR, Young AB, Snyder SH (1974) Gamma-aminobutyric acid binding to receptor sites in the rat central nervous system. Proc Natl Acad Sci USA 71(12):4802–4807

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  22. Enna SJ, Snyder SH (1975) Properties of gamma-aminobutyric acid (GABA) receptor binding in rat brain synaptic membrane fractions. Brain Res 100(1):81–97

    Article  PubMed  CAS  Google Scholar 

  23. Sieghart W (2006) Structure, pharmacology, and function of GABAA receptor subtypes. Adv Pharmacol 54:231–263

    Article  PubMed  CAS  Google Scholar 

  24. Bettler B, Brauner-Osborne H (2004) The GABAB receptor: from cloning to knockout mice. In: Schousboe A, Brauner-Osborne H (eds) molecular neuropharmacology. Humana Press, New York, pp 129–144

    Chapter  Google Scholar 

  25. Krogsgaard-Larsen P, Johnston GA, Lodge D, Curtis DR (1977) A new class of GABA agonist. Nature 268(5615):53–55

    Article  PubMed  CAS  Google Scholar 

  26. Krogsgaard-Larsen P, Johnston GA, Curtis DR, Game CJ, McCulloch RM (1975) Structure and biological activity of a series of conformationally restricted analogues of GABA. J Neurochem 25(6):803–809

    Article  PubMed  CAS  Google Scholar 

  27. Krogsgaard-Larsen P, Johnston GA (1975) Inhibition of GABA uptake in rat brain slices by nipecotic acid, various isoxazoles and related compounds. J Neurochem 25(6):797–802

    Article  PubMed  CAS  Google Scholar 

  28. Beart PM, Johnston GA, Uhr ML (1972) Competitive inhibition of GABA uptake in rat brain slices by some GABA analogues of restricted conformation. J Neurochem 19(8):1855–1861

    Article  PubMed  CAS  Google Scholar 

  29. Johnston GA, Kennedy SM, Lodge D (1978) Muscimol uptake, release and binding in rat brain slices. J Neurochem 31(6):1519–1523

    Article  PubMed  CAS  Google Scholar 

  30. Johnston GA, Krogsgaard-Larsen P, Stephanson A (1975) Betel nut constituents as inhibitors of gamma-aminobutyric acid uptake. Nature 258(5536):627–628

    Article  PubMed  CAS  Google Scholar 

  31. Schousboe A, Larsson OM, Hertz L, Krogsgaard-Larsen P (1981) Heterocyclic GABA analogues as selective inhibitors of astroglial GABA uptake. Adv Biochem Psychopharmacol 29:135–141

    PubMed  CAS  Google Scholar 

  32. Schousboe A, Thorbek P, Hertz L, Krogsgaard-Larsen P (1979) Effects of GABA analogues of restricted conformation on GABA transport in astrocytes and brain cortex slices and on GABA receptor binding. J Neurochem 33(1):181–189

    Article  PubMed  CAS  Google Scholar 

  33. Hokfelt T, Ljungdahl A (1972) Autoradiographic identification of cerebral and cerebellar cortical neurons accumulating labeled gamma-aminobutyric acid ([3 H]-GABA). Exp Brain Res 14(4):354–362

    Article  PubMed  CAS  Google Scholar 

  34. Iversen LL, Bloom FE (1972) Studies of the uptake of (3 H)-GABA and (3 H)-glycine in slices and homogenates of rat brain and spinal cord by electron microscopic autoradiography. Brain Res 41(1):131–143

    Article  PubMed  CAS  Google Scholar 

  35. Hosli E, Ljungdahl A, Hokfelt T, Hosli L (1972) Spinal cord tissue cultures—a model for autoradiographic studies on uptake of putative neurotransmitters such as glycine and GABA. Experientia 28(11):1342–1344

    Article  PubMed  CAS  Google Scholar 

  36. Schon F, Kelly JS (1975) Selective uptake of (3H)beta-alanine by glia: association with glial uptake system for GABA. Brain Res 86(2):243–257

    Article  PubMed  CAS  Google Scholar 

  37. Kelly JS, Dick F, Schon F (1975) The autoradiographic localization of the GABA-releasing nerve terminals in cerebellar glomeruli. Brain Res 85(2):255–259

    Article  PubMed  CAS  Google Scholar 

  38. Kelly JS, Dick F (1976) Differential labeling of glial cells and GABA-inhibitory interneurons and nerve terminals following the microinjection of (beta-3H)alanine, (3H)DABA and (3H)GABA into single folia of the cerebellum. Cold Spring Harb Symp Quant Biol 40:93–106

    Article  PubMed  CAS  Google Scholar 

  39. Henn FA, Hamberger A (1971) Glial cell function: uptake of transmitter substances. Proc Natl Acad Sci USA 68(11):2686–2690

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  40. Lasher RS (1975) Uptake of GABA by neuronal and nonneuronal cells in dispersed cell cultures of postnatal rat cerebellum. J Neurobiol 6(6):597–608. doi:10.1002/neu.480060606

    Article  PubMed  CAS  Google Scholar 

  41. Schousboe A, Hertz L, Svenneby G (1977) Uptake and metabolism of GABA in astrocytes cultured from dissociated mouse brain hemispheres. Neurochem Res 2(2):217–229. doi:10.1007/BF00964098

    Article  PubMed  CAS  Google Scholar 

  42. Hog S, Greenwood JR, Madsen KB, Larsson OM, Frolund B, Schousboe A, Krogsgaard-Larsen P, Clausen RP (2006) Structure-activity relationships of selective GABA uptake inhibitors. Curr Top Med Chem 6(17):1861–1882

    Article  PubMed  Google Scholar 

  43. Vogensen SB, Jorgensen L, Madsen KK, Borkar N, Wellendorph P, Skovgaard-Petersen J, Schousboe A, White HS, Krogsgaard-Larsen P, Clausen RP (2013) Selective mGAT2 (BGT-1) GABA uptake inhibitors: design, synthesis, and pharmacological characterization. J Med Chem 56(5):2160–2164. doi:10.1021/jm301872x

    Article  PubMed  CAS  Google Scholar 

  44. Meldrum BS (1975) Epilepsy and gamma-aminobutyric acid-mediated inhibition. Int Rev Neurobiol 17:1–36

    Article  PubMed  CAS  Google Scholar 

  45. Meldrum BS (1989) GABAergic mechanisms in the pathogenesis and treatment of epilepsy. Br J Clin Pharmacol 27(Suppl 1):3S–11S

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  46. Grabenstatter HL, Russek SJ, Brooks-Kayal AR (2012) Molecular pathways controlling inhibitory receptor expression. Epilepsia 53(Suppl 9):71–78. doi:10.1111/epi.12036

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  47. Horton RW, Collins JF, Anlezark GM, Meldrum BS (1979) Convulsant and anticonvulsant actions in DBA/2 mice of compounds blocking the reuptake of GABA. Eur J Pharmacol 59(1–2):75–83

    Article  PubMed  CAS  Google Scholar 

  48. Frey HH, Popp C, Loscher W (1979) Influence of inhibitors of the high affinity GABA uptake on seizure thresholds in mice. Neuropharmacology 18(7):581–590

    Article  PubMed  CAS  Google Scholar 

  49. Croucher MJ, Meldrum BS, Krogsgaard-Larsen P (1983) Anticonvulsant activity of GABA uptake inhibitors and their prodrugs following central or systemic administration. Eur J Pharmacol 89(3–4):217–228

    Article  PubMed  CAS  Google Scholar 

  50. Gonsalves SF, Twitchell B, Harbaugh RE, Krogsgaard-Larsen P, Schousboe A (1989) Anticonvulsant activity of intracerebroventricularly administered glial GABA uptake inhibitors and other GABAmimetics in chemical seizure models. Epilepsy Res 4(1):34–41

    Article  PubMed  CAS  Google Scholar 

  51. Wood JD, Johnson DD, Krogsgaard-Larsen P, Schousboe A (1983) Anticonvulsant activity of the glial-selective GABA uptake inhibitor, THPO. Neuropharmacology 22(1):139–142

    Article  PubMed  CAS  Google Scholar 

  52. Schousboe A, Larsson OM, Wood JD, Krogsgaard-Larsen P (1983) Transport and metabolism of gamma-aminobutyric acid in neurons and glia: implications for epilepsy. Epilepsia 24(5):531–538

    Article  PubMed  CAS  Google Scholar 

  53. White HS, Hunt J, Wolf HH, Swinyard EA, Falch E, Krogsgaard-Larsen P, Schousboe A (1993) Anticonvulsant activity of the gamma-aminobutyric acid uptake inhibitor N-4,4-diphenyl-3-butenyl-4,5,6,7-tetrahydroisoxazolo[4,5-c]pyridin-3-ol. Eur J Pharmacol 236(1):147–149

    Article  PubMed  CAS  Google Scholar 

  54. Krogsgaard-Larsen P, Labouta J, Meldrum BS, Croucher MJ, Schousboe A (1981) GABA uptake inhibitors as experimental tools and potential drugs in epilepsy research. In: Morselli PL, Lloyd KG, Löscher W, Meldrum BS, Reynolds EM (eds) Neurotransmitters. Seizures and Epilepsy, Raven Press, New York, pp 23–33

    Google Scholar 

  55. Meldrum BS, Croucher MJ, Krogsgaard-Larsen P (1982) GABA-uptake inhibitors as anticonvulsant agents. In: Okada Y, Roberts E (eds) Problems in GABA Research: from brain to bacteria. Elsevier, Amsterdam, pp 182–191

    Google Scholar 

  56. Wood JD, Schousboe A, Krogsgaard-Larsen P (1980) In vivo changes in the GABA content of nerve endings (synaptosomes) induced by inhibitors of GABA uptake. Neuropharmacology 19(11):1149–1152

    Article  PubMed  CAS  Google Scholar 

  57. Sutton I, Simmonds MA (1974) The selective blockade by diaminobutyric acid of neuronal uptake of (3H)GABA in rat brain in vivo. J Neurochem 23(1):273–274

    Article  PubMed  CAS  Google Scholar 

  58. Bowery NG, Dray A (1976) Barbiturate reversal of amino acid antagonism produced by convulsant agents. Nature 264(5583):276–278

    Article  PubMed  CAS  Google Scholar 

  59. White HS, Sarup A, Bolvig T, Kristensen AS, Petersen G, Nelson N, Pickering DS, Larsson OM, Frolund B, Krogsgaard-Larsen P, Schousboe A (2002) Correlation between anticonvulsant activity and inhibitory action on glial gamma-aminobutyric acid uptake of the highly selective mouse gamma-aminobutyric acid transporter 1 inhibitor 3-hydroxy-4-amino-4,5,6,7-tetrahydro-1,2-benzisoxazole and its N-alkylated analogs. J Pharmacol Exp Ther 302(2):636–644

    Article  PubMed  CAS  Google Scholar 

  60. Yunger LM, Fowler PJ, Zarevics P, Setler PE (1984) Novel inhibitors of gamma-aminobutyric acid (GABA) uptake: anticonvulsant actions in rats and mice. J Pharmacol Exp Ther 228(1):109–115

    PubMed  CAS  Google Scholar 

  61. Ali FE, Bondinell WE, Dandridge PA, Frazee JS, Garvey E, Girard GR, Kaiser C, Ku TW, Lafferty JJ, Moonsammy GI et al (1985) Orally active and potent inhibitors of gamma-aminobutyric acid uptake. J Med Chem 28(5):653–660

    Article  PubMed  CAS  Google Scholar 

  62. Larsson OM, Falch E, Krogsgaard-Larsen P, Schousboe A (1988) Kinetic characterization of inhibition of gamma-aminobutyric acid uptake into cultured neurons and astrocytes by 4,4-diphenyl-3-butenyl derivatives of nipecotic acid and guvacine. J Neurochem 50(3):818–823

    Article  PubMed  CAS  Google Scholar 

  63. Braestrup C, Nielsen EB, Sonnewald U, Knutsen LJ, Andersen KE, Jansen JA, Frederiksen K, Andersen PH, Mortensen A, Suzdak PD (1990) (R)-N-[4,4-bis(3-methyl-2-thienyl)but-3-en-1-yl]nipecotic acid binds with high affinity to the brain gamma-aminobutyric acid uptake carrier. J Neurochem 54(2):639–647

    Article  PubMed  CAS  Google Scholar 

  64. Suzdak PD, Jansen JA (1995) A review of the preclinical pharmacology of tiagabine: a potent and selective anticonvulsant GABA uptake inhibitor. Epilepsia 36(6):612–626

    Article  PubMed  CAS  Google Scholar 

  65. Schousboe A, White HS (2009) Glial modulation of excitability via glutamate and GABA transporters. In: Schwartzkroin PA (ed) Encyclopedia of basic epilepsy research. Academic Press, Oxford, pp 397–401

    Chapter  Google Scholar 

  66. Thomsen C, Sorensen PO, Egebjerg J (1997) 1-(3-(9H-carbazol-9-yl)-1-propyl)-4-(2-methoxyphenyl)-4-piperidinol, a novel subtype selective inhibitor of the mouse type II GABA-transporter. Br J Pharmacol 120(6):983–985. doi:10.1038/sj.bjp.0700957

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  67. Borden LA, Dhar TG, Smith KE, Branchek TA, Gluchowski C, Weinshank RL (1994) Cloning of the human homologue of the GABA transporter GAT-3 and identification of a novel inhibitor with selectivity for this site. Recept Channels 2(3):207–213

    PubMed  CAS  Google Scholar 

  68. Clausen RP, Moltzen EK, Perregaard J, Lenz SM, Sanchez C, Falch E, Frolund B, Bolvig T, Sarup A, Larsson OM, Schousboe A, Krogsgaard-Larsen P (2005) Selective inhibitors of GABA uptake: synthesis and molecular pharmacology of 4-N-methylamino-4,5,6,7-tetrahydrobenzo[d]isoxazol-3-ol analogues. Bioorg Med Chem 13(3):895–908. doi:10.1016/j.bmc.2004.10.029

    Article  PubMed  CAS  Google Scholar 

  69. White HS, Watson WP, Hansen SL, Slough S, Perregaard J, Sarup A, Bolvig T, Petersen G, Larsson OM, Clausen RP, Frolund B, Falch E, Krogsgaard-Larsen P, Schousboe A (2005) First demonstration of a functional role for central nervous system betaine/g-aminobutyric acid transporter (mGAT2) based on synergistic anticonvulsant action among inhibitors of mGAT1 and mGAT2. J Pharmacol Exp Ther 312(2):866–874

    Article  PubMed  CAS  Google Scholar 

  70. Lehre AC, Rowley NM, Zhou Y, Holmseth S, Guo C, Holen T, Hua R, Laake P, Olofsson AM, Poblete-Naredo I, Rusakov DA, Madsen KK, Clausen RP, Schousboe A, White HS, Danbolt NC (2011) Deletion of the betaine-GABA transporter (BGT1; slc6a12) gene does not affect seizure thresholds of adult mice. Epilepsy Res 95(1–2):70–81. doi:10.1016/j.eplepsyres.2011.02.014

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  71. Madsen KK, White HS, Schousboe A (2010) Neuronal and non-neuronal GABA transporters as targets for antiepileptic drugs. Pharmacol Ther 125(3):394–401. doi:10.1016/j.pharmthera.2009.11.007

    Article  PubMed  CAS  Google Scholar 

  72. Madsen KK, Clausen RP, Larsson OM, Krogsgaard-Larsen P, Schousboe A, White HS (2009) Synaptic and extrasynaptic GABA transporters as targets for anti-epileptic drugs. J Neurochem 109(Suppl 1):139–144

    Article  PubMed  CAS  Google Scholar 

  73. Christensen AV, Larsen JJ (1982) Antinociceptive and anticonvulsive effect of THIP, a pure GABA agonist. Pol J Pharmacol Pharm 34(1–3):127–134

    PubMed  CAS  Google Scholar 

  74. Chandra D, Jia F, Liang J, Peng Z, Suryanarayanan A, Werner DF, Spigelman I, Houser CR, Olsen RW, Harrison NL, Homanics GE (2006) GABAA receptor alpha 4 subunits mediate extrasynaptic inhibition in thalamus and dentate gyrus and the action of gaboxadol. Proc Natl Acad Sci USA 103(41):15230–15235. doi:10.1073/pnas.0604304103

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  75. Wafford KA, Ebert B (2006) Gaboxadol–a new awakening in sleep. Curr Opin Pharmacol 6(1):30–36. doi:10.1016/j.coph.2005.10.004

    Article  PubMed  CAS  Google Scholar 

  76. Dalby NO (2000) GABA-level increasing and anticonvulsant effects of three different GABA uptake inhibitors. Neuropharmacology 39(12):2399–2407

    Article  PubMed  CAS  Google Scholar 

  77. Juhasz G, Kekesi KA, Nyitrai G, Dobolyi A, Krogsgaard-Larsen P, Schousboe A (1997) Differential effects of nipecotic acid and 4,5,6,7-tetrahydroisoxazolo[4,5-c]pyridin-3-ol on extracellular gamma-aminobutyrate levels in rat thalamus. Eur J Pharmacol 331(2–3):139–144

    Article  PubMed  CAS  Google Scholar 

  78. Madsen KK, Ebert B, Clausen RP, Krogsgaard-Larsen P, Schousboe A, White HS (2011) Selective GABA transporter inhibitors tiagabine and EF1502 exhibit mechanistic differences in their ability to modulate the ataxia and anticonvulsant action of the extrasynaptic GABAA receptor agonist gaboxadol. J Pharmacol Exp Ther 338(1):214–219. doi:10.1124/jpet.111.179671

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  79. Pfeiffer M, Draguhn A, Meierkord H, Heinemann U (1996) Effects of gamma-aminobutyric acid (GABA) agonists and GABA uptake inhibitors on pharmacosensitive and pharmacoresistant epileptiform activity in vitro. Br J Pharmacol 119(3):569–577

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  80. Kragholm B, Kvist T, Madsen KK, Jorgensen L, Vogensen SB, Schousboe A, Clausen RP, Jensen AA, Brauner-Osborne H (2013) Discovery of a subtype selective inhibitor of the human betaine/GABA transporter 1 (BGT-1) with a non-competitive pharmacological profile. Biochem Pharmacol 86(4):521–528. doi:10.1016/j.bcp.2013.06.007

    Article  PubMed  CAS  Google Scholar 

  81. Chiron C (2005) Stiripentol. Expert Opin Investig Drugs 14(7):905–911. doi:10.1517/13543784.14.7.905

    Article  PubMed  CAS  Google Scholar 

  82. Fisher JL (2011) The effects of stiripentol on GABAA receptors. Epilepsia 52(Suppl 2):76–78. doi:10.1111/j.1528-1167.2011.03008.x

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  83. Quilichini PP, Chiron C, Ben-Ari Y, Gozlan H (2006) Stiripentol, a putative antiepileptic drug, enhances the duration of opening of GABAA receptor channels. Epilepsia 47(4):704–716. doi:10.1111/j.1528-1167.2006.00497.x

    Article  PubMed  CAS  Google Scholar 

  84. Fisher JL (2009) The anti-convulsant stiripentol acts directly on the GABAA receptor as a positive allosteric modulator. Neuropharmacology 56(1):190–197. doi:10.1016/j.neuropharm.2008.06.004

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  85. Fisher JL (2011) Interactions between modulators of the GABAA receptor: stiripentol and benzodiazepines. Eur J Pharmacol 654(2):160–165. doi:10.1016/j.ejphar.2010.12.037

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  86. Wirrell EC, Laux L, Franz DN, Sullivan J, Saneto RP, Morse RP, Devinsky O, Chugani H, Hernandez A, Hamiwka L, Mikati MA, Valencia I, Le Guern ME, Chancharme L, de Menezes MS (2013) Stiripentol in dravet syndrome: results of a retrospective US study. Epilepsia 54(9):1595–1604. doi:10.1111/epi.12303

    Article  PubMed  CAS  Google Scholar 

  87. May TW, Boor R, Mayer T, Jurgens U, Rambeck B, Holert N, Korn-Merker E, Brandt C (2012) Concentrations of stiripentol in children and adults with epilepsy: the influence of dose, age, and comedication. Ther Drug Monit 34(4):390–397. doi:10.1097/FTD.0b013e31825dc4a6

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Steve White.

Additional information

Special Issue: In honor of Krogsgaard-Larsen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schousboe, A., Madsen, K.K., Barker-Haliski, M.L. et al. The GABA Synapse as a Target for Antiepileptic Drugs: A Historical Overview Focused on GABA Transporters. Neurochem Res 39, 1980–1987 (2014). https://doi.org/10.1007/s11064-014-1263-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-014-1263-9

Keywords

Navigation