Skip to main content

The GABAB Receptor

From Cloning to Knockout Mice

  • Chapter
Molecular Neuropharmacology

Abstract

γ-Aminobutyric acid (GABA) is the prevalent inhibitory neurotransmitter in the brain. It exerts it action through ligand-gated Cl- channel (GABAA and GABAC receptors) and G protein coupled receptors (GPCR) that inhibit adenylate cyclase (GABAB receptors) (1–3). GABAB receptors were first identified in the early 1980s on the basis of pharmacological responses to the agonist baclofen (Fig. 1) and insensitivity to the GABAA antagonist bicuculline (4,5), but resisted cloning until the late 1990s. Several groups made unsuccessful attempts to isolate the receptor protein by affinity chromatography (6,7) or to expression clone the receptor in Xenopus oocytes using electrophysiology (8–10). Eventually, medicinal chemistry efforts produced the highly potent radiolabeled GABAB antagonists [125I]CGP64213 and [125I]CGP71872 (Fig. 1) and provided the necessary tools for expression cloning (11). After screening of two million rat brain cDNA clones using a radioligand binding assay the first GABAB(l) receptor clone was isolated (12). Cloning of the GABAB(l) cDNA was a major milestone in the field as it paved the way for studies on the structure, function, and pharmacology of GABAB receptors at the molecular level.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Wojcik, W. J. and Neff, N. H. (1984) Gamma-aminobutyric acid B receptors are negatively coupled to adenylate cyclase in brain and in the cerebellum these receptors may be associated with granule cells. Mol. Pharmacol. 25, 24–28.

    PubMed  CAS  Google Scholar 

  2. Hill, D. R. (1985) GABAB receptor modulation of adenylate cyclase activity in rat brain slices. Br. J. Pharmacol. 84, 249–257.

    PubMed  CAS  Google Scholar 

  3. Karbon, E. W. and Enna, S. J. (1985.) Characterization of the relationship between gammaaminobutyric acid B agonists and transmitter-coupled cyclic nucleotide-generating systems in rat brain. Mol. Pharmacol. 27, 53–59.

    Google Scholar 

  4. Bowery, N. G., Hill, D. R., Hudson, A. L., Doble, A., Middlemiss, D. N., Shaw, J. and Turnbull, M. J. (1980) (—)Baclofen decreases neurotransmitter release in the mammalian CNS by an action at a novel GABA receptor. Nature 283, 92–94.

    Article  Google Scholar 

  5. Hill, D. R. and Bowery, N. G. (1981) 3H-Baclofen and 3H-GABA bind to bicuculline-insensitive GABAB sites in rat brain. Nature 290, 149–152.

    Article  PubMed  CAS  Google Scholar 

  6. Nakayasu, H., Nishikawa, M., Mizutani, H., Kimura, H., and Kuriyama, K. (1993) Immunoaffinity purification and characterization of gamma-aminobutyric acid (GABA)B receptor from bovine cerebral cortex. J. Biol. Chem. 268, 8658–8664.

    PubMed  CAS  Google Scholar 

  7. Facklam, M. and Bowery, N. G. (1993) Solubilization and characterization of GABAB receptor binding sites from porcine brain synaptic membranes. Br. J. Pharmacol. 110, 1291–1296.

    Article  PubMed  CAS  Google Scholar 

  8. Sekiguchi, M., Sakuta, H., Okamoto, K., and Sakai, Y. (1990) GABAB receptors expressed in Xenopus oocytes by guinea pig cerebral mRNA are functionally coupled with Cat+-dependent Cl-channels and with K+ channels, through GTP-binding proteins. Brain Res. Mol. Brain Res. 8, 301–309.

    Article  PubMed  CAS  Google Scholar 

  9. Taniyama, K., Takeda, K., Ando, H., Kuno, T., and Tanaka, C. (1991) Expression of the GABAB receptor in Xenopus oocytes and inhibition of the response by activation of protein kinase C. FEBS Len. 278, 222–224.

    Article  CAS  Google Scholar 

  10. Woodward, R. M. and Miledi, R. (1992) Sensitivity of Xenopus oocytes to changes in extra-cellular pH: possible relevance to proposed expression of atypical mammalian GABAB receptors. Mol. Brain Res. 16, 204–210.

    Article  PubMed  CAS  Google Scholar 

  11. Froestl, W., Bettler, B., Bittiger, H., Heid, J., Kaupmann, K., Mickel, S. J. and Strub, D. (2001) Ligands for expression cloning and isolation of GABAB receptors. Farmaco 56, 101–105.

    Article  PubMed  CAS  Google Scholar 

  12. Kaupmann, K., Huggel, K., Heid, J., et al. (1997) Expression cloning of GABAB receptors uncovers similarity to metabotropic glutamate receptors. Nature 386, 239–246.

    Article  PubMed  CAS  Google Scholar 

  13. Couve, A., Filippov, A. K., Connolly, C. N., Bettler, B., Brown, D. A., and Moss, S. J. (1998) Intracellular retention of recombinant GABAB receptors. J. Biol. Chem. 273, 26361–26367.

    Article  PubMed  CAS  Google Scholar 

  14. Kaupmann, K., Malitschek, B., Schuler, V., et al. (1998) GABAB-receptor subtypes assemble into functional heteromeric complexes. Nature 396, 683–687.

    Article  PubMed  CAS  Google Scholar 

  15. Jones, K. A., Borowsky, B., Tamm, J. A., et al. (1998) GABAB receptors function as a heteromeric assembly of the subunits GABABR1 and GABABR2. Nature 396, 674–679.

    Article  PubMed  CAS  Google Scholar 

  16. White, J. H., Wise, A., Main, M. J., et al. (1998) Heterodimerization is required for the formation of a functional GABAB receptor. Nature 396, 679–682.

    Article  PubMed  CAS  Google Scholar 

  17. Kuner, R., Kohr, G., Grunewald, S., Eisenhardt, G., Bach, A., and Kornau, H. C. (1999) Role of heteromer formation in GABAB receptor function. Science 283, 74–77.

    Article  PubMed  CAS  Google Scholar 

  18. Bräuner-Osborne, H. and Krogsgaard-Larsen, P. (1999) Functional pharmacology of cloned heteromeric GABAB receptors expressed in mammalian cells. Br. J. Pharmacol. 128, 1370–1374.

    Article  PubMed  Google Scholar 

  19. Malitschek, B., Rüegg, D., Heid, J., et al. (1998) Developmental changes in agonist affinity at GABABR1 receptor variants in rat brain. Mol. Cell. Neurosci. 12, 56–64.

    Article  PubMed  CAS  Google Scholar 

  20. Kaupmann, K., Schuler, V., Mosbacher, J., et al. (1998) Human GABAB receptors are differentially expressed and regulate inwardly rectifying K+ channels. Proc. Natl. Acad. Sci. USA 95, 14991–14996.

    Article  PubMed  CAS  Google Scholar 

  21. Ng, G. Y., Bertrand, S., Sullivan, R., et al. (2001) Gamma-aminobutyric acid type B receptors with specific heterodimer composition and postsynaptic actions in hippocampal neurons are targets of anticonvulsant gabapentin action. Mol. Pharmacol. 59, 144–152.

    PubMed  CAS  Google Scholar 

  22. Bertrand, S., Ng, G. Y., Purisai, M. G., et al. (2001) The anticonvulsant, antihyperalgesic agent gabapentin is an agonist at brain gamma-aminobutyric acid type B receptors negatively coupled to voltage-dependent calcium channels. J. Pharmacol. Exp. Ther. 298, 15–24.

    PubMed  CAS  Google Scholar 

  23. Jensen, A. A., Mosbacher, J., Elg, S., et al. (2002) The anticonvulsant gabapentin (neuron-tin) does not act through gamma-aminobutyric acid-B receptors. Mol. Pharmacol. 61, 1377–1384.

    Article  PubMed  CAS  Google Scholar 

  24. Lanneau, C., Green, A., Hirst, W. D., Wise, A., Brown, J. T., Donnier, E., et al. (2001) Gabapentin is not a GABAB receptor agonist. Neuropharmacology 41, 965–975.

    Article  PubMed  CAS  Google Scholar 

  25. Calver, A. R., Davies, C. H., and Pangalos, M. (2002) GABAB receptors: from monogamy to promiscuity. Neurosignals 11, 299–314.

    Article  PubMed  CAS  Google Scholar 

  26. Malitschek, B., Schweizer, C., Keir, M., et al. (1999) The N-terminal domain of gammaaminobutyric acids receptors is sufficient to specify agonist and antagonist binding. Mol. Pharmacol. 56, 448–454.

    PubMed  CAS  Google Scholar 

  27. Galvez, T., Parmentier, M. L., Joly, C., et al. (1999) Mutagenesis and modeling of the GABAB receptor extracellular domain support a venus flytrap mechanism for ligand binding. J. Biol. Chem. 274, 13362–13369.

    Article  PubMed  CAS  Google Scholar 

  28. Galvez, T., Prezeau, L., Milioti, G., et al. (2000) Mapping the agonist-binding site of GABAB type 1 subunit sheds light on the activation process of GABAB receptors. J. Biol. Chem. 275, 41166–41174.

    Article  PubMed  CAS  Google Scholar 

  29. Bernard, P., Guedin, D., and Hibert, M. (2001) Molecular modeling of the GABA/GABAB receptor complex. J. Med. Chem. 44, 27–35.

    Article  PubMed  CAS  Google Scholar 

  30. Kniazeff, J., Galvez, T., Labesse, G., and Pin, J. P. (2002) No ligand binding in the GB2 subunit of the GABAB receptor is required for activation and allosteric interaction between the subunits. J. Neurosci. 22, 7352–7361.

    PubMed  CAS  Google Scholar 

  31. Jensen, A. A., Madsen, B. E., Krogsgaard-Larsen, P., and Brüuner-Osborne, H. (2001) Pharmacological characterization of homobaclofen on wild type and mutant GABAB lb receptors coexpressed with the GABAB2 receptor. Eur. J. Pharmacol. 417, 177–180.

    Article  PubMed  CAS  Google Scholar 

  32. Galvez, T., Urwyler, S., Prezeau, L., et al. (2000) Cat+ requirement for high-affinity gammaaminobutyric acid (GABA) binding at GABAB receptors: involvement of serine 269 of the GABABR1 subunit. Mol. Pharmacol. 57, 419–426.

    PubMed  CAS  Google Scholar 

  33. Pin, J. P., Parmentier, M. L., and Prezeau, L. (2001) Positive allosteric modulators for gamma-aminobutyric acidB receptors open new routes for the development of drugs targeting family 3 G protein-coupled receptors. Mol. Pharmacol. 60, 881–884.

    PubMed  CAS  Google Scholar 

  34. Urwyler, S., Mosbacher, J., Lingenhoehl, K., et al. (2001) Positive allosteric modulation of native and recombinant gamma-aminobutyric acids receptors by 2,6-di-tert-butyl-4-(3hydroxy-2,2-dimethyl-propyl)-phenol (CGP7930) and its aldehyde analog CGP13501. Mol. Pharmacol. 60, 963–971.

    PubMed  CAS  Google Scholar 

  35. Knoflach, F., Mutel, V., Jolidon, S., et al. (2001) Positive allosteric modulators of metabotropic glutamate 1 receptor: characterization, mechanism of action, and binding site. Proc. Natl. Acad. Sci. USA 98, 13402–13407.

    Article  PubMed  CAS  Google Scholar 

  36. Hauache, O. M., Hu, J., Ray, K., Xie, R., Jacobson, K. A., and Spiegel, A. M. (2000) Effects of a calcimimetic compound and naturally activating mutations on the human Cat+ receptor and on Cat+ receptor/metabotropic glutamate chimeric receptors. Endocrinology 141, 4156–4163.

    Article  PubMed  CAS  Google Scholar 

  37. Jensen, A. A., Greenwood, J. R., and Bräuner-Osborne, H. (2002) The dance of the clams: twists and turns in the family C GPCR homodimer. Trends Pharmacol. Sci. 23, 491–493.

    Article  PubMed  CAS  Google Scholar 

  38. Galvez, T., Duthey, B., Kniazeff, J., et al. (2001) Allosteric interactions between GB1 and GB2 subunits are required for optimal GABAB receptor function. EMBO J. 20, 2152–2159.

    Article  PubMed  CAS  Google Scholar 

  39. Margeta-Mitrovic, M., Jan, Y. N., and Jan, L. Y. (2001) Function of GB1 and GB2 subunits in G protein coupling of GABAB receptors. Proc. Natl. Acad. Sci. USA 98, 14649–14654.

    Article  PubMed  CAS  Google Scholar 

  40. Havlickova, M., Prezeau, L., Duthey, B., Bettler, B., Pin, J. P., and Blahos, J. (2002) The intracellular loops of the GB2 subunit are crucial for G protein coupling of the heteromeric y-aminobutyrate B receptor. Mol. Pharmacol. 62, 343–350.

    Article  PubMed  CAS  Google Scholar 

  41. Duthey, B., Caudron, S., Perroy, J., Bettler, B., Fagni, L., Pin, J. P., and Prezeau, L. (2002) A single subunit (GB2) is required for G protein activation by the heteromeric GABAB receptor. J. Biol. Chem. 277, 3236–3241.

    Article  PubMed  CAS  Google Scholar 

  42. Robbins, M. J., Calver, A. R., Filippov, A. K., Hirst, W. D., Russell, R. B., Wood, M. D., et al. (2001) GABAB2 is essential for G protein coupling of the GABAB receptor heterodimer. J. Neurosci. 21, 8043–8052.

    PubMed  CAS  Google Scholar 

  43. Margeta-Mitrovic, M., Jan, Y. N., and Jan, L. Y. (2000) A trafficking checkpoint controls GABAB receptor heterodimerization. Neuron 27, 97–106.

    Article  PubMed  CAS  Google Scholar 

  44. Pagano, A., Rovelli, G., Mosbacher, J., et al. (2001) C-terminal interaction is essential for surface trafficking but not for heteromeric assembly of GABAB receptors. J. Neurosci. 21, 1189–1202.

    PubMed  CAS  Google Scholar 

  45. Calver, A. R., Robbins, M. J., Cosio, C., et al. (2001) The C-terminal domains of the GABAB receptor subunits mediate intracellular trafficking but are not required for receptor signaling. J. Neurosci. 21, 1203–1210.

    PubMed  CAS  Google Scholar 

  46. Couve, A., Thomas, P., Calver, A. R., et al. (2002) Cyclic AMP-dependent protein kinase phosphorylation facilitates GABAB receptor-effector coupling. Nat. Neurosci. 25, 25.

    Google Scholar 

  47. Couve, A., Kittler, J. T., Uren, J. M., Calver, A. R., Pangalos, M. N., Walsh, F. S., and Moss, S. J. (2001) Association of GABAB receptors and members of the 14–3–3 family of signaling proteins. Mol. Cell. Neurosci. 17, 317 – 328.

    Article  PubMed  CAS  Google Scholar 

  48. Nehring, R. B., Horikawa, H. P., El Far, O., Kneussel, M., Brandstatter, J. H., Stamm, S., et al. (2000) The metabotropic GABAB receptor directly interacts with the activating transcription factor 4. J. Biol. Chem. 275, 35185–35191.

    Article  PubMed  CAS  Google Scholar 

  49. White, J. H., Mclllhinney, R. A., Wise, A., Ciruela, F., Chan, W. Y., Emson, P. C., et al. (2000) The GABAB receptor interacts directly with the related transcription factors CREB2 and ATFx. Proc. Natl. Acad. Sci. USA 97, 13967–13972.

    Article  PubMed  CAS  Google Scholar 

  50. Vernon, E., Meyer, G., Pickard, L., Dev, K., Molnar, E., Collingridge, G. L., and Henley, J. M. (2001) GABAB receptors couple directly to the transcription factor ATF4. Mol. Cell. Neurosci. 17, 637–645.

    Article  PubMed  CAS  Google Scholar 

  51. Bonanno, G. and Raiteri, M. (1993) Multiple GABAB receptors. Trends Pharmacol. Sci. 14, 259–261.

    Article  PubMed  CAS  Google Scholar 

  52. Billinton, A., Ige, A. O., Bolam, J. P, White, J. H., Marshall, F. H., and Emson, P. C. (2001) Advances in the molecular understanding of GABAB receptors. Trends Neurosci. 24, 277–282.

    Article  PubMed  CAS  Google Scholar 

  53. Leaney, J. L. and Tinker, A. (2000) The role of members of the pertussis toxin-sensitive family of G proteins in coupling receptors to the activation of the G protein-gated inwardly rectifying potassium channel. Proc. Natl. Acad. Sci. USA 97, 5651–5656.

    Article  PubMed  CAS  Google Scholar 

  54. Robbins, M. J., Charles, K. J., Harrison, D. C., and Pangalos, M. N. (2002) Localisation of the GPRC5B receptor in the rat brain and spinal cord. Brain Res. Mol. Brain Res. 106, 136.

    Article  PubMed  CAS  Google Scholar 

  55. Bischoff, S., Leonhard, N., Reymann, N., Schuler, V., Kaupmann, K., and Bettler, B. (1997) Distribution of the GABABR1 mRNA in rat brain. Comparison with the GABAB binding sites. Soc. Neurosci. 23, 954.

    Google Scholar 

  56. Marshall, F. H., Jones, K. A., Kaupmann, K., and Bettler, B. (1999) GABAB receptors: the first 7TM heterodimers. Trends Pharmacol. Sci. 20, 396–399.

    Article  PubMed  CAS  Google Scholar 

  57. Schuler, V., Luscher, C., Blanchet, C., et al. (2001) Epilepsy, hyperalgesia, impaired memory, and loss of pre-and postsynaptic GABAB responses in mice lacking GABAB(1). Neuron 31, 47–58.

    Article  PubMed  CAS  Google Scholar 

  58. Prosser, H. M., Gill, C. H., Hirst, W. D., et al. (2001) Epileptogenesis and enhanced pre-pulse inhibition in GABABI-deficient mice. Mol. Cell. Neurosci. 17, 1059–1070.

    Article  PubMed  CAS  Google Scholar 

  59. Mitchell, K. J., Pinson, K. I., Kelly, O. G., et al. (2001) Functional analysis of secreted and transmembrane proteins critical to mouse development. Nat. Genet. 28, 241–249.

    Article  PubMed  CAS  Google Scholar 

  60. Pearson, H. (2002) Surviving a knockout blow. Nature 415, 8–9.

    Article  PubMed  CAS  Google Scholar 

  61. Benke, D., Honer, M., Michel, C., Bettler, B., and Mohler, H. (1999) Gamma-aminobutyric acid type B receptor splice variant proteins GBR1a and GBR1b are both associated with GBR2 in situ and display differential regional and subcellular distribution. J. Biol. Chem. 274, 27323–27330.

    Article  PubMed  CAS  Google Scholar 

  62. Waldmeier, R. C., Wicki, P., Feldtrauer, J. J., Mickel, S. J., Bittiger, H., and Baumann, P. A. (1994) GABA and glutamate release affected by GABAB receptor antagonists with similar potency: no evidence for pharmacologically different presynaptic receptors. Br. J. Pharmacol. 113, 1515–1521.

    Article  PubMed  CAS  Google Scholar 

  63. Spielewoy, C., Biala, G., Roubert, C., Hamon, M., Betancur, C., and Giros, B. (2001) Hypolocomotor effects of acute and daily d-amphetamine in mice lacking the dopamine transporter. Psychopharmacology 159, 2–9.

    Article  PubMed  CAS  Google Scholar 

  64. Viggiano, D., Grammatikopoulos, G., and Sadile, A. G. (2002) A morphometric evidence for a hyperfunctioning mesolimbic system in an animal model of ADHD. Behay. Brain Res. 130, 181–189.

    Article  CAS  Google Scholar 

  65. Waldmeier, P. C. (1991) The GABAB antagonist, CGP 35348, antagonizes the effects of baclofen, gamma-butyrolactone and HA 966 on rat striatal dopamine synthesis. Naunyn Schmiedebergs Arch. Pharmacol. 343, 173–178.

    Article  PubMed  CAS  Google Scholar 

  66. Sanger, G. J., Munonyara, M. L., Dass, N., Prosser, H., Pangalos, M. N., and Parsons, M. E. (2002) GABAB receptor function in the ileum and urinary bladder of wildtype and GABAB 1 subunit null mice. Auton. Autacoid Pharmacol. 22, 147–154.

    Article  PubMed  CAS  Google Scholar 

  67. Kerr, D. I., Ong, J., Puspawati, N. M., and Prager, R. H. (2002) Arylalkylamines are a novel class of positive allosteric modulators at GABAB receptors in rat neocortex. Eur. J. Pharmacol. 451, 69–77.

    Article  PubMed  CAS  Google Scholar 

  68. Bernasconi, R., Mathivet, P., Bischoff, S., and Marescaux, C. (1999) Gamma-hydroxybutyric acid: an endogenous neuromodulator with abuse potential? Trends Pharmacol. Sci. 20, 135–141.

    Article  PubMed  CAS  Google Scholar 

  69. Maitre, M., Andriamampandry, C., Kemmel, V., Schmidt, C., Hode, Y., Hechler, V., and Gobaille, S. (2000) Gamma-hydroxybutyric acid as a signaling molecule in brain. Alcohol 20, 277–283.

    Article  PubMed  CAS  Google Scholar 

  70. Nicholson, K. L. and Balster, R. L. (2001) GHB: a new and novel drug of abuse. Drug Alcohol. Depend. 63, 1–22.

    Article  PubMed  CAS  Google Scholar 

  71. Galloway, G. P., Frederick, S. L., Staggers, F. E., Jr., Gonzales, M., Stalcup, S. A., and Smith, D. E. (1997) Gamma-hydroxybutyrate: an emerging drug of abuse that causes physical dependence. Addiction 92, 89–96.

    Article  PubMed  CAS  Google Scholar 

  72. Schwartz, R. H., Milteer, R., and LeBeau, M. A. (2000) Drug-facilitated sexual assault (`date rape’). South Med. J. 93, 558–561.

    PubMed  CAS  Google Scholar 

  73. Tunnicliff, G. and Raess, B. U. (2002) Gamma-hydroxybutyrate (orphan medical). Curr. Opin. Invest. Drugs 3, 278–283.

    CAS  Google Scholar 

  74. Gallimberti, L., Spella, M. R., Soncini, C. A., and Gessa, G. L. (2000) Gamma-hydroxybutyric acid in the treatment of alcohol and heroin dependence. Alcohol 20, 257–262.

    Article  PubMed  CAS  Google Scholar 

  75. Lingenhoehl, K., Brom, R., Heid, J., Beck, P., Froestl, W., Kaupmann, K., Bettler, B., and Mosbacher, J. (1999) Gamma-hydroxybutyrate is a weak agonist at recombinant GABAB receptors. Neuropharmacology 38, 1667–1673.

    Article  PubMed  CAS  Google Scholar 

  76. Castelli, M. P., Mocci, I., Pistis, M., et al. (2002) Stereoselectivity of NCS-382 binding to gamma-hydroxybutyrate receptor in the rat brain. Eur. J. Pharmacol. 446, 1–5.

    Article  PubMed  CAS  Google Scholar 

  77. Mehta, A. K., Muschaweck, N. M., Maeda, D. Y., Coop, A., and Ticku, M. K. (2001) Binding characteristics of the gamma-hydroxybutyric acid receptor antagonist [3H](2E)-(5hydroxy-5,7,8,9-tetrahydro-6H-benzo[a][7]annulen-6-ylidene) ethanoic acid in the rat brain. J. Pharmacol. Exp. Ther. 299, 1148–1153.

    PubMed  CAS  Google Scholar 

  78. Jensen, K. and Mody, I. (2001) GHB depresses fast excitatory and inhibitory synaptic transmission via GABAB receptors in mouse neocortical neurons. Cereb. Cortex 11, 424–429.

    Article  PubMed  CAS  Google Scholar 

  79. Bernasconi, R., Mathivet, P., Otten, U., Bettler, B., Bischoff, S., and Marescaux, C. (2002) Part of gamma-hydroxybutyrate pharmacological actions are mediated by GABAB receptors, in Gamma-Hydroxybutyrate: Pharmacological and Functional Aspects ( Tunnicliff, G. and Cash, C. D., eds), Taylor & Francis, New York, pp. 28–63.

    Chapter  Google Scholar 

  80. Snead, O. C., 3rd. (2000) Evidence for a G protein-coupled gamma-hydroxybutyric acid receptor. J. Neurochem. 75, 1986–1996.

    Article  PubMed  CAS  Google Scholar 

  81. Ratomponirina, C., Hode, Y., Hechler, V., and Maitre, M. (1995) Gamma-hydroxybutyrate receptor binding in rat brain is inhibited by guanyl nucleotides and pertussis toxin. Neurosci. Lett. 189, 51–53.

    Article  PubMed  CAS  Google Scholar 

  82. Kemmel, V., Taleb, O., Perard, A., Andriamampandry, C., Siffert, J. C., Mark, J., and Maitre, M. (1998) Neurochemical and electrophysiological evidence for the existence of a functional gamma-hydroxybutyrate system in NCB-20 neurons. Neuroscience 86, 989–1000.

    Article  PubMed  CAS  Google Scholar 

  83. Gupta, M., Greven, R., Jansen, E. E., et al. (2002) Therapeutic intervention in mice deficient for succinate semialdehyde dehydrogenase (gamma-hydroxybutyric aciduria). J. Pharmacol. Exp. Ther. 302, 180–187.

    Article  PubMed  CAS  Google Scholar 

  84. Snead, O. C., 3rd. (1996) Relation of the [3H]gamma-hydroxybutyric acid (GHB) binding site to the gamma-aminobutyric acidB (GABAB) receptor in rat brain. Biochem. Pharmacol. 52, 1235–1243.

    Article  PubMed  CAS  Google Scholar 

  85. Angers, S., Salahpour, A., and Bouvier, M. (2002) Dimerization: an emerging concept for G protein-coupled receptor ontogeny and function. Annu. Rev. Pharmacol. Toxicol. 42, 409–435.

    Article  PubMed  CAS  Google Scholar 

  86. Hechler, V., Ratomponirina, C., and Maitre, M. (1997) Gamma-hydroxybutyrate conversion into GABA induces displacement of GABAB binding that is blocked by valproate and ethosuximide. J. Pharmacol. Exp. Ther. 281, 753–760.

    PubMed  CAS  Google Scholar 

  87. Gobaille, S., Hechler, V., Andriamampandry, C., Kemmel, V., and Maitre, M. (1999) Gamma-hydroxybutyrate modulates synthesis and extracellular concentration of gammaaminobutyric acid in discrete rat brain regions in vivo. J. Pharmacol. Exp. Ther. 290, 303–309.

    PubMed  CAS  Google Scholar 

  88. Cousins, M. S., Roberts, D. C., and de Wit, H. (2002) GABAB receptor agonists for the treatment of drug addiction: a review of recent findings. Drug Alcohol. Depend. 65, 209–220.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this chapter

Cite this chapter

Bettler, B., Bräuner-Osborne, H. (2004). The GABAB Receptor. In: Schousboe, A., Bräuner-Osborne, H. (eds) Molecular Neuropharmacology. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-672-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-672-0_7

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-384-8

  • Online ISBN: 978-1-59259-672-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics