Skip to main content
Log in

The metabolism of malate by cultured rat brain astrocytes

  • Original Articles
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Since malate is known to play an important role in a variety of functions in the brain including energy metabolism, the transfer of reducing equivalents and possibly metabolic trafficking between different cell types; a series of biochemical determinations were initiated to evaluate the rate of14CO2 production froml-[U-14C]malate in primary cultures of rat brain astrocytes. The14CO2 production from labeled malate was almost totally suppressed by the metabolic inhibitors rotenone and antimycin A suggesting that most of malate metabolism was coupled to the electron transport system. A double reciprocal plot of the14CO2 production from the metabolism of labeled malate revealed biphasic kinetics with two apparent Km and Vmax values suggesting the presence of more than one mechanism of malate metabolism in these cells. Subsequent experiments were carried out using 0.01 mM and 0.5 mM malate to determine whether the addition of effectors would differentially alter the metabolism of high and low concentrations of malate. Effectors studied included compounds which could be endogenous regulators of malate metabolism and metabolic inhibitors which would provide information regarding the mechanisms regulating malate metabolism. Both lactate and aspartate decreased14CO2 production from 0.01 mM and 0.5 mM malate equally. However, a number of effectors were identified which selectively altered the metabolism of 0.01 mM malate including aminooxyacetate, furosemide, N-acetylaspartate, oxaloacetate, pyruvate and glucose, but had little or no effect on the metabolism of 0.5 mM malate. In addition, α-ketoglutarate and succinate decreased14CO2 production from 0.01 mM malate much more than from 0.5 mM malate. In contrast, a number of effectors altered the metabolism of 0.5 mM malate more than 0.01 mM. These included methionine sulfoximine, glutamate, malonate, α-cyano-4-hydroxycinnamate and ouabain. Both the biphasic kinetics and the differential action of many of the effectors on the14CO2 production from 0.01 mM and 0.5 mM malate provide evidence for the presence of more than one pool of malate metabolism in cultured rat brain astrocytes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Shank, R. P., and Campbell, G. LeM. 1984. α-ketoglutarate and malate uptake and metabolism by synaptosomes: Further evidence for an astrocyte-to-neuron metabolic shuttle. J. Neurochem. 42:1153–1161.

    Google Scholar 

  2. Shank, R. P., and Campbell, G. LeM. 1984. Amino acid uptake, content and metabolism by neuronal and glial enriched cellular fractions from mouse cerebellum. J. Neurosci. 4:58–69.

    Google Scholar 

  3. Yu, A. C., Hertz, E., Schousboe, A., and Hertz, L. 1984. Uptake and metabolism of malate in cultures of astrocytes and neurons. Transact. Am. Soc. Neurochem. 15:A216.

    Google Scholar 

  4. Hawkins, R. A., and Mans, A. M. 1983. Intermediary metabolism of carbohydrates and other fuels. Pages 259–294, in Lajtha, A. (ed.), Handbook of Neurochemistry, Vol. 3 Second Edition, Plenum Press, New York.

    Google Scholar 

  5. Hindfelt, B., Plum, F., and Duffy, T. E. 1977. Effect of acute ammonia intoxication on cerebral metabolism in rats with portacaval shunts. J. Clin. Invest. 59:386–396.

    Google Scholar 

  6. Ozand, P. T., Stevenson, J. H., Tildon, J. T., and Cornblath, M. 1975. The effects of hyperketonemia on glutamate and glutamine metabolism in developing rat brain. J. Neurochem. 25:67–71.

    Google Scholar 

  7. Shank, R. P., Schneider, C. R., and Tighe, J. J. 1987. Ion dependence of neurotransmitter uptake: inhibitory effects of ion substitutes. J. Neurochem. 49:381–388.

    Google Scholar 

  8. Salganicoff, L., and Koeppe, R. E. 1968. Subcellular distribution of pyruvate carboxylase, diphosphopyridine nucleotide and triphosphopyridine nucleotide isocitrate dehydrogenases, and malate enzyme in rat brain. J. Biol. Chem. 243:3416–3420.

    Google Scholar 

  9. Dennis, S. C., and Clark, J. B. 1978. The regulation of glutamate metabolism by tricarboxylic acid-cycle activity in rat brain mitochondria. Biochem. J. 172:155–162.

    Google Scholar 

  10. Fitzpatrick, S. M., Cooper, A. J. L., and Duffy, T. E. 1983. Use of β-methylene-D, L-aspartate to assess the role of aspartate aminotransferase in cerebral oxidative metabolism. J. Neurochem. 41:1370–1383.

    Google Scholar 

  11. Murthy, Ch. R. K., and Hertz, L. 1988. Pyruvate decarboxylation in astrocytes and in neurons in primary cultures in the presence and the absence of ammonia. Neurochem. Res. 13:57–61.

    Google Scholar 

  12. Lai, J. C. K., Murthy, Ch. R. K., Cooper, A. J. L., Hertz, E., and Hertz, L. 1989. Differential effects of ammonia and β-methylene-D, L-aspartate on metabolism of glutamate and related amino acids by astrocytes and neurons in primary culture. Neurochem. Res. 14:377–389.

    Google Scholar 

  13. Sokoloff, L., Fitzgerald, G. G., and Kaufman, E. E. 1977. Cerebral nutrition and energy metabolism. Pages 87–139, in Wurtman, R. J. and Wurtman, J. J. (eds.), Nutrition and the Brain, Vol. 1, Raven Press, New York.

    Google Scholar 

  14. Cremer, J. E. 1981. Nutrients for the brain: Problems in supply. Early Hum. Develop. 5:117–132.

    Google Scholar 

  15. Balazs, R., and Cremer, J. E., (eds.), 1973. Metabolic Compartmentation in the Brain, Macmillan Press, London.

    Google Scholar 

  16. Berl, S., Clarke, D. D., and Schneider, D., (eds.), 1975. Metabolic Compartmentation and Neurotransmission: Relation to Brain Structure and Function, Plenum Press, New York.

    Google Scholar 

  17. Hertz, L. 1979. Functional interactions between neurons and astrocytes. I. Turnover and metabolism of putative amino acid neurotransmitters. Prog. Neurobiol. 13:277–323.

    Google Scholar 

  18. Tildon, J. T., and Roeder, L. M. 1987. Metabolic regulation in brain cells. Pages 383–402, in Vernadakis, A., Privat, A., Louder, J. M., Timeras, P. S. and Giacobini, E. (eds.) Model Systems of Development and Aging of the Nervous System, Martinus Nijhoff, Boston.

    Google Scholar 

  19. Edmond, J., Auestad, N., Korsak, R. A., Cole, R. A., and de Vellis, J. 1988. Specialization in substrate oxidation by astrocytes from developing brain. Transact. Am. Soc. Neurochem. 19:A78.

    Google Scholar 

  20. Yudkoff, M., Nissim, I., and Pleasure, D. 1988. Astrocyte metabolism of15N and13C glutamine: Implications for the glutamine-glutamate cycle. FASEB J. 2:A637.

    Google Scholar 

  21. Nicklas, W. J., Berl, S., and Clark, D. D. 1975. Relationship between amino acid and catecholamine metabolism in brain. Pages 497–513,in Berl, S., Clarke, D. D. and Schneider, D. (eds.) Metabolic Compartmentation and Neurotransmission: Relation to Brain Structure and Function, Plenum Press, New York.

    Google Scholar 

  22. Nicklas, W. J., and Krespan, B. 1982. Studies on neuronal-glial metabolism of glutamate in cerebellar slices. Pages 383–394,in Bradford, H. F. (ed.), Neurotransmitter Interaction and Compartmentation, Plenum Press, New York.

    Google Scholar 

  23. Roeder, L. M., Tildon, J. T., and Stevenson, J. H., Jr. 1984. Competition among oxidizable substrates in brains of young and adult rats. Whole homogenates. Biochem J. 219:125–130.

    Google Scholar 

  24. Roeder, L. M., Tildon, J. T., and Holman, D. C. 1984. Competition among oxidizable substrates in brains of young and adult rats. Dissociated cells. Biochem. J. 219:131–135.

    Google Scholar 

  25. McKenna, M. C., Bezold, L. I., Kimatian, S. J., and Tildon, J. T. 1986. Competition of glycerol with other oxidizable substrates in rat brain. Biochem. J. 237:47–51.

    Google Scholar 

  26. Tildon, J. T., Roeder, L. M., and Stevenson, J. H. 1985. Substrate oxidation by isolated rat brain mitochondria and synaptosomes. J. Neurosci. Res. 14:207–215.

    Google Scholar 

  27. Roeder, L. M., Williams, I. B., and Tildon, J. T. 1985. Glucose transport in astrocytes: Regulation by thyroid hormone. J. Neurochem. 45:1653–1657.

    Google Scholar 

  28. Hertz, L., Juurlink, B. H. J., Fosmark, H., and Schousboe, A. 1982. Astrocytes in primary culture. Pages 175–186,in Pfeiffer S. E. (ed.), Neuroscience Approached Through Cell Culture, Vol. 1, CRC Press, Boca Raton.

    Google Scholar 

  29. Booher, J., and Sensenbrenner, M. 1972. Growth and cultivation of dissociated neurons and glial cells from embryonic chick, rat and human brain in flask cultures. Neurobiology 2:97–105.

    Google Scholar 

  30. Bock, E., Moller, M., Nissen, C., and Sensenbrenner, M. 1977. Glial Fibrillary acidic protein in primary astroglial cell cultures derived from newborn rat brains. FEBS Lett. 83:207–211.

    Google Scholar 

  31. Schousboe, A. 1980. Primary cultures of astrocytes from mammalian brain as a tool in neurochemical research. Cell. Mol. Biol. 26:505–513.

    Google Scholar 

  32. Fedoroff, S., White, R., Subrahmanyan, L., and Kalnins, V. I. 1981. Properties of putative astrocytes in colony cultures of mouse neopallium. Pages 1–19,in Vidrio, E. A., and Fedoroff, S. (eds.), Eleventh International Congress of Anatomy: Glial and Neuronal Cell Biology, Alan R. Liss, New York.

    Google Scholar 

  33. Smith, P. K., Krohn, R. I., Hermanson, G. T., Mallia, A. K., Gartner, F. H., Provenzano, M. D., Fujimoto, E. K., Goeke, N. M., Olson, B. J., and Klenk, D. C. 1985. Measurement of protein using bicinchoninic acid. Anal. Biochem. 150:76–85.

    Google Scholar 

  34. Fitzpatrick, S. M., Cooper, A. J. L., and Hertz, L. 1988. Effects of ammonia and β-methylene-D, L-aspartate on the oxidation of glucose and pyruvate by neurons and astrocytes in primary culture. J. Neurochem. 51:1197–1203.

    Google Scholar 

  35. Snedecor, G. W., and Cochran, W. G. 1967. Statistical Methods, Sixth Edition, Iowa State University Press, Ames.

    Google Scholar 

  36. Matchett, P. A., and Johnson, J. A. 1954. Inhibition of sodium and potassium transport in frog sartorii in the presence of ouabain. Fed. Proc. 13:384.

    Google Scholar 

  37. Whittam, R. 1962. The asymmetrical stimulation of membrane adenosine triphosphatase in relation to activation transport. Biochem. J. 84:110–118.

    Google Scholar 

  38. Burg, M. B. 1976. Tubular chloride transport and the mode of action of some diuretics. Kidney Int. 9:189–197.

    Google Scholar 

  39. Rodman, M. J., Karch, A. M., Boyd, E. H., and Smith, D. W. 1985. Pharmacology and Drug Therapy in Nursing, J. B. Lippincott Co., Philadelphia.

    Google Scholar 

  40. Cooper, A. J. L., Fitzpatrick, S. M., Ginos, J. Z., Kaufman, C., and Dowd, P. 1983. Inhibition of glutamate-aspartate transaminase by β-methylene-D, L-aspartate. Biochem. Pharmacol. 32:679–689.

    Google Scholar 

  41. Koeppen, A. H., and Riley, K. M. 1987. Effect of free malonate on the utilization of glutamate by rat brain mitochondria. J. Neurochem. 48:1509–1515.

    Google Scholar 

  42. Smith, S. B., Briggs, S., Triebwasser, K. C., and Freedland, R. A. 1977. Re-evaluation of amino-oxyacetate as an inhibitor. Biochem. J. 162:453–455.

    Google Scholar 

  43. Cheeseman, A. J., and Clark, J. B. 1988. Influence of the malate-aspartate shuttle on oxidative metabolism in synaptosomes. J. Neurochem. 50:1559–1565.

    Google Scholar 

  44. Bender, A. S., Woodbury, D. M., and White, H. S. 1988. Metabolic and ionic dependence of glutamate uptake into astrocytes in primary culture. Transact. Am. Soc. Neurochem. 19:A172.

    Google Scholar 

  45. Shank, R. P., and Campbell, G. LeM. 1982. Glutamine and alpha-ketoglutarate uptake and metabolism by nerve terminal enriched material from mouse cerebellum. Neurochem. Res. 7:601–611.

    Google Scholar 

  46. Hagenfeldt, L., Bollgren, I., and Venizelos, N. 1987. N-acetyl-aspartic aciduria due to aspartatoacylase deficiency—a new aetiology of childhood leukodystrophy. J. Inherited Metab. Dis. 10:135–141.

    Google Scholar 

  47. Lehninger, A. L. 1970. Biochemistry, Worth Publishers, Inc., New York.

    Google Scholar 

  48. Williamson, D. H., Lund, H. P., and Krebs, H. A. 1967. The redox state of free nicotinamide-adenine dinucleotide in the cytoplasm and mitochondria of rat liver. Biochem. J. 108:514–527.

    Google Scholar 

  49. Duffy, T. E., Nelson, S. R., and Lowry, O. H. 1972. Cerebral carbohydrate metabolism during acute hypoxia and recovery. J. Neurochem. 19:959–977.

    Google Scholar 

  50. Shank, R. P., and Aprison, M. H. 1988. Glutamate as a neurotransmitter. Pages 3–19, in Kvamme, E. (ed.), Glutamate and Glutamine in Mammals, Vol. 2, CRC Press, Inc., Boca Raton.

    Google Scholar 

  51. Weiler, C. T., Nystrom, B., and Hamberger, A. 1979. Characteristics of glutamine vs. glutamate transport in isolated glia and synaptosomes. J. Neurochem. 32:559–565.

    Google Scholar 

  52. McKenna, M. C., Tildon, J. T., Stevenson, J. H., Couto, R., and Caprio, F. J. 1989. Stimulation of malate release from astrocytes by glutamate. Transact. Am. Soc. Neurochem. 20:A191.

    Google Scholar 

  53. Subbalakshmi, G. Y. C. V., and Murthy, Ch. R. K. (1983). Effects of methionine sulfoximine on the enzymes of glutamate metabolism in isolated astrocytes of rat brain. Biochem. Pharmacol. 32:3695–3700.

    Google Scholar 

  54. Ratnakumari, L., Subbalakshmi, G. Y. C. V., and Murthy, Ch. R. K. 1985. Cerebral citric acid cycle enzymes in methionine sulfoximine toxicity. J. Neurosci. Res. 14:449–459.

    Google Scholar 

  55. Oh, Y. J., Markelonis, G. J., and Oh, T. H. 1988. Evidence for the existence of subtypes of type-1 rat astrocytes in culture. Society for Neuroscience Meeting Abstract 173.7.

  56. Webb, J. L. 1966. Enzyme and Metabolic Inhibitors, Vol. 2, Academic Press, New York.

    Google Scholar 

  57. Shank, R. P., and Campbell, G. LeM. 1984. Glutamine, glutamate and other possible regulation of α-ketoglutarate and malate uptake by synaptic terminals. J. Neurochem. 42:1162–1169.

    Google Scholar 

  58. Mitzen, E. J., and Koeppen, A. H. 1984. Malonate, malonylcoenzyme A, and acetyl-coenzyme A in developing rat brain. J. Neurochem. 43:499–506.

    Google Scholar 

  59. Spencer, T. L., and Lehninger, A. L. 1976.l-lactate transport in Ehrlich ascites-tumor cells. Biochem. J. 154:405–414.

    Google Scholar 

  60. Trimmer, P. A., Reier, P. J., Oh, T. H., and Eng, L. F. 1982. An ultrastructural and immunocytochemical study of astrocyte differentiation in vitro. J. Neuroimmunol. 2:235–260.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

McKenna, M.C., Tildon, J.T., Couto, R. et al. The metabolism of malate by cultured rat brain astrocytes. Neurochem Res 15, 1211–1220 (1990). https://doi.org/10.1007/BF01208582

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01208582

Key Words

Navigation