Skip to main content

Advertisement

Log in

Neuroprotective Effect of Natural Products Against Alzheimer’s Disease

  • Overview
  • Published:
Neurochemical Research Aims and scope Submit manuscript

An Erratum to this article was published on 31 August 2012

Abstract

Nature has gifted mankind with a plethora of flora-bearing fruits, vegetables and nuts. The diverse array of bioactive nutrients present in these natural products plays a pivotal role in prevention and cure of various neurodegenerative diseases, such as Alzheimer’s disease (AD), Parkinson’s disease and other neuronal dysfunctions. Accumulated evidence suggests that naturally occurring phyto-compounds, such as polyphenolic antioxidants found in fruits, vegetables, herbs and nuts, may potentially hinder neurodegeneration, and improve memory and cognitive function. Nuts such as walnut have also demonstrated neuroprotective effect against AD. The molecular mechanisms behind the curative effects rely mainly on the action of phytonutrients on distinct signalling pathways associated with protein folding and neuroinflammation. The neuroprotective effects of various naturally occurring compounds in AD is evaluating in this review.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Brookmeyer R, Johnson E, Ziegler-Graham K, Arrighi HM (2007) Forecasting the global burden of Alzheimer’s disease. Alzheimers Dementia 3:186–191

    Article  Google Scholar 

  2. Walt G (2004) WHO’s World Health Report 2003—shaping the future depends on strengthening health systems. Br Med J 328:6–6

    Article  Google Scholar 

  3. Korczyn AD, Vakhapova V (2007) The prevention of the dementia epidemic. J Neurol Sci 257:2–4

    Article  PubMed  Google Scholar 

  4. Liu GJ, Huang WD, Moir RD, Vanderburg CR, Lai B, Peng ZC, Tanzi RE, Rogers JT, Huang XD (2006) Metal exposure and Alzheimer’s pathogenesis. J Struct Biol 155:45–51

    Article  PubMed  CAS  Google Scholar 

  5. Chauhan V, Chauhan A (2006) Oxidative stress in Alzheimer’s disease. Pathophysiology 13:195–208

    Article  PubMed  CAS  Google Scholar 

  6. Williams P, Sorribas A, Howes MJR (2011) Natural products as a source of Alzheimer’s drug leads. Nat Product Rep 28:48–77

    Article  CAS  Google Scholar 

  7. Brown J (1991) Mutations in amyloid precursor protein gene and disease. Lancet 337:923–924

    Article  PubMed  CAS  Google Scholar 

  8. Joseph JA, Shukitt-Hale B, Denisova NA, Bielinski D, Martin A, McEwen JJ, Bickford PC (1999) Reversals of age-related declines in neuronal signal transduction, cognitive, and motor behavioral deficits with blueberry, spinach, or strawberry dietary supplementation. J Neurosci 19:8114–8121

    PubMed  CAS  Google Scholar 

  9. Youdim KA, Shukitt-Hale B, Martin A, Wang H, Denisova N, Bickford PC, Joseph JA (2000) Short-term dietary supplementation of blueberry polyphenolics: beneficial effects on aging brain performance and peripheral tissue function. Nutr Neurosci 3:383–397

    CAS  Google Scholar 

  10. Casadesus G, Shukitt-Hale B, Stellwagen HM, Zhu XW, Lee HG, Smith MA, Joseph JA (2004) Modulation of hippocampal plasticity and cognitive behavior by short-term blueberry supplementation in aged rats. Nutr Neurosci 7:309–316

    Article  PubMed  CAS  Google Scholar 

  11. Krikorian R, Shidler MD, Nash TA, Kalt W, Vinqvist-Tymchuk MR, Shukitt-Hale B, Joseph JA (2010) Blueberry supplementation improves memory in older adults. J Agric Food Chem 58:3996–4000

    Article  PubMed  CAS  Google Scholar 

  12. McDonald RJ, White NM (1994) Parallel information processing in the water maze: evidence for independent memory systems involving dorsal striatum and hippocampus. Behav Neural Biol 61:260–270

    Article  PubMed  CAS  Google Scholar 

  13. Shukitt-Hale B, Carey AN, Jenkins D, Rabin BM, Joseph JA (2007) Beneficial effects of fruit extracts on neuronal function and behavior in a rodent model of accelerated aging. Neurobiol Aging 28:1187–1194

    Article  PubMed  CAS  Google Scholar 

  14. Andres-Lacueva C, Shukitt-Hale B, Galli RL, Jauregui O, Lamuela-Raventos RM, Joseph JA (2005) Anthocyanins in aged blueberry-fed rats are found centrally and may enhance memory. Nutr Neurosci 8:111–120

    Article  PubMed  CAS  Google Scholar 

  15. Spangler EL, Duffy K, Devan B, Guo Z, Bowker J, Shukitt-Hale B, Joseph JA, DK I (2003) Rats fed a blueberry-enriched diet exhibit greater protection against a kainate-induced learning impairment. Society for Neuroscience, Washington, DC

    Google Scholar 

  16. Joseph JA, Bielinski DF, Fisher DR (2010) Blueberry treatment antagonizes C-2 ceramide-induced stress signaling in muscarinic receptor-transfected COS-7 cells. J Agric Food Chem 58:3380–3392

    Article  PubMed  CAS  Google Scholar 

  17. Goyarzu P, Lau FC, Kaufmann J, Jennings R, Taglialatela G, Joseph J, Shukitt-Hale B, DH M (2003) age-related increase in brain NF-B is attenuated by blueberry-enriched antioxidant diet. Society for Neuroscience, Washington DC

  18. Raymond Chuen-Chung C, Jianfei C, Man-Shan Y, Wang M (2010) Neuroprotective effects of oxyresveratrol from fruit against neurodegeneration in Alzheimer’s disease. Recent Advances on Nutrition and the Prevention of Alzheimer’s disease Kerala. Transworld Research Network, India, pp 155–168

  19. Fortalezas S, Ll Tavares, Pimpão R, Tyagi M, Pontes V, Alves P, McDougall G, Stewart D, Ferreira R, Santos C (2010) Antioxidant properties and neuroprotective capacity of strawberry tree fruit (Arbutus unedo). Nutrients 2:214–229

    Article  PubMed  CAS  Google Scholar 

  20. Pappolla MA, Chyan YJ, Omar RA, Hsiao K, Perry G, Smith MA, Bozner P (1998) Evidence of oxidative stress and in vivo neurotoxicity of beta-amyloid in a transgenic mouse model of Alzheimer’s disease—a chronic oxidative paradigm for testing antioxidant therapies in vivo. Am J Pathol 152:871–877

    PubMed  CAS  Google Scholar 

  21. Heo HJ, Lee CY (2005) Strawberry and its anthocyanins reduce oxidative stress-induced apoptosis in PC12 cells. J Agric Food Chem 53:1984–1989

    Article  PubMed  CAS  Google Scholar 

  22. Kwak HM, Jeon SY, Sohng BH, Kim JG, Lee JM, Lee KB, Jeong HH, Hur JM, Kang YH, Song KS (2005) Beta-secretase (BACE1) inhibitors from pomegranate (Punica granatum) husk. Arch Pharmacal Res 28:1328–1332

    Article  CAS  Google Scholar 

  23. Hartman RE, Shah A, Fagan AM, Schwetye KE, Parsadanian M, Schulman RN, Finn MB, Holtzman DM (2006) Pomegranate juice decreases amyloid load and improves behavior in a mouse model of Alzheimer’s disease. Neurobiol Dis 24:506–515

    Article  PubMed  CAS  Google Scholar 

  24. Feng Y, Yang S-g, Du X-t, Zhang X, Sun X-x, Zhao M, Sun G-y, Liu R-t (2009) Ellagic acid promotes A beta 42 fibrillization and inhibits A beta 42-induced neurotoxicity. Biochem Biophys Res Commun 390:1250–1254

    Google Scholar 

  25. Hardy J, Selkoe DJ (2002) The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science 297:353–356

    Article  PubMed  CAS  Google Scholar 

  26. Bastianetto S, Zheng WH, Quirion R (2000) Neuroprotective abilities of resveratrol and other red wine constituents against nitric oxide-related toxicity in cultured hippocampal neurons. Br J Pharmacol 131:711–720

    Article  PubMed  CAS  Google Scholar 

  27. Wang Y-J, Thomas P, Zhong J-H, Bi F–F, Kosaraju S, Pollard A, Fenech M, Zhou X-F (2009) Consumption of grape seed extract prevents Amyloid-beta deposition and attenuates inflammation in brain of an Alzheimer’s Disease mouse. Neurotox Res 15:3–14

    Article  PubMed  Google Scholar 

  28. Wang J, Ho L, Zhao W, Ono K, Rosensweig C, Chen L, Humala N, Teplow DB, Pasinetti GM (2008) Grape-derived polyphenolics prevent A beta oligomerization and attenuate cognitive deterioration in a mouse model of Alzheimer’s disease. J Neurosci 28:6388–6392

    Article  PubMed  CAS  Google Scholar 

  29. Von Bernhardi R (2007) Glial cell dysregulation: a new perspective on Alzheimer disease. Neurotox Res 12:215–232

    Article  Google Scholar 

  30. Kim H, Deshane J, Barnes S, Meleth S (2006) Proteomics analysis of the actions of grape seed extract in rat brain: technological and biological implications for the study of the actions of psychoactive compounds. Life Sci 78:2060–2065

    Article  PubMed  CAS  Google Scholar 

  31. Vingtdeux V, Dreses-Werringloer U, Zhao H, Davies P, Marambaud P (2008) Therapeutic potential of resveratrol in Alzheimer’s disease. Bmc Neurosci 9:5

    Article  Google Scholar 

  32. Bush AI (2000) Metals and neuroscience. Curr Opin Chem Biol 4:184–191

    Article  PubMed  CAS  Google Scholar 

  33. Chandrika UG, Jansz ER, Wickramasinghe SN, Warnasuriya ND (2003) Carotenoids in yellow and red fleshed papaya (Carica papaya L.). J Sci Food Agric 83:1279–1282

    Article  CAS  Google Scholar 

  34. Zhang J, Mori A, Chen Q, Zhao B (2006) Fermented papaya preparation attenuates beta-amyloid precursor protein: beta-amyloid-mediated copper neurotoxicity in beta-amyloid precursor protein and beta-amyloid precursor protein Swedish mutation overexpressing SH-SY5Y cells. Neuroscience 143:63–72

    Article  PubMed  CAS  Google Scholar 

  35. Remington R, Chan A, Lepore A, Kotlya E, Shea TB (2010) Apple juice improved behavioral but not cognitive symptoms in moderate-to-late stage Alzheimer’s disease in an open-label pilot study. Am J Alzheimer’s Dis Other Dementias 25:367–371

    Article  Google Scholar 

  36. Chan A, Shea TB (2006) Supplementation with apple juice attenuates presenilin-1 overexpression during dietary and genetically-induced oxidative stress. J Alzheimer’s Dis 10:353–358

    CAS  Google Scholar 

  37. Weinreb O, Mandel S, Amit T, Youdim MBH (2004) Neurological mechanisms of green tea polyphenols in Alzheimer’s and Parkinson’s diseases. J Nutr Biochem 15:506–516

    Article  PubMed  CAS  Google Scholar 

  38. Levites Y, Amit T, Mandel S, Youdim MBH (2003) Neuroprotection and neurorescue against A beta toxicity and PKC-dependent release of non-amyloidogenic soluble precursor protein by green tea polyphenol (−)-epigallocatechin-3-gallate. Faseb J 17:952+

    Google Scholar 

  39. Guo QN, Zhao BL, Li MF, Shen SR, Xin WJ (1996) Studies on protective mechanisms of four components of green tea polyphenols against lipid peroxidation in synaptosomes. Biochim Biophys Acta Lipids Lipid Metabolism 1304:210–222

    Article  CAS  Google Scholar 

  40. Jeong JH, Kim HJ, Lee TJ, Kim MK, Park ES, Choi BS (2004) Epigallocatechin 3-gallate attenuates neuronal damage induced by 3-hydroxykynurenine. Toxicology 195:53–60

    Article  PubMed  CAS  Google Scholar 

  41. Nanjo F, Goto K, Seto R, Suzuki M, Sakai M, Hara Y (1996) Scavenging effects of tea catechins and their derivatives on 1,1-diphenyl-2-picrylhydrazyl radical. Free Radical Biol Med 21:895–902

    Article  CAS  Google Scholar 

  42. Braidy N, Grant R, Adams S, Guillemin GJ (2010) Neuroprotective effects of naturally occurring polyphenols on quinolinic acid-induced excitotoxicity in human neurons. FEBS J 277:368–382

    Article  PubMed  CAS  Google Scholar 

  43. Ramassamy C (2006) Emerging role of polyphenolic compounds in the treatment of neurodegenerative diseases: a review of their intracellular targets. Eur J Pharmacol 545:51–64

    Article  PubMed  CAS  Google Scholar 

  44. Fredholm BB, Battig K, Holmen J, Nehlig A, Zvartau EE (1999) Actions of caffeine in the brain with special reference to factors that contribute to its widespread use. Pharmacol Rev 51:83–133

    PubMed  CAS  Google Scholar 

  45. Rosso A, Mossey J, Lippa CF (2008) Caffeine: neuroprotective functions in cognition and Alzheimer’s disease. Am J Alzheimers Dis Other Dementias 23:417–422

    Article  Google Scholar 

  46. Pereira DM, Ferreres F, Oliveira J, Valentao P, Andrade PB, Sottomayor M (2009) Targeted metabolite analysis of Catharanthus roseus and its biological potential. Food Chem Toxicol 47:1349–1354

    Article  PubMed  CAS  Google Scholar 

  47. Chauhan N, Wang KC, Wegiel J, Malik MN (2004) Walnut extract inhibits the fibrillization of amyloid beta-protein, and also defibrillizes its preformed fibrils. Curr Alzheimer Res 1:183–188

    Article  PubMed  CAS  Google Scholar 

  48. Muthaiyah B, Essa M, Chauhan V, Chauhan A (2011) Protective effects of walnut extract against amyloid beta peptide-induced cell death and oxidative stress in PC12 cells. Neurochem Res, pp 1–8

  49. Akhondzadeh S (2007) Herbal medicine in the treatment of psychiatric and neurological disorders. In: LA L (ed) Lowcost approaches to promote physical and mental health: theory research and practice. Springer, NewYork, pp 119–138

  50. Akhondzadeh S, Sabet MS, Harirchian MH, Togha M, Cheraghmakani H, Razeghi S, Hejazi SS, Yousefi MH, Alimardani R, Jamshidi A et al (2010) A 22-week, multicenter, randomized, double-blind controlled trial of Crocus sativus in the treatment of mild-to-moderate Alzheimer’s disease. Psychopharmacology 207:637–643

    Article  PubMed  CAS  Google Scholar 

  51. Papandreou MA, Kanakis CD, Polissiou MG, Efthimiopoulos S, Cordopatis P, Margarity M, Lamari FN (2006) Inhibitory activity on amyloid-beta aggregation and antioxidant properties of Crocus sativus stigmas extract and its crocin constituents. J Agric Food Chem 54:8762–8768

    Article  PubMed  CAS  Google Scholar 

  52. Ganguli M, Chandra V, Kamboh MI, Johnston JM, Dodge HH, Thelma BK, Juyal RC, Pandav R, Belle SH, DeKosky ST (2000) Apolipoprotein E polymorphism and Alzheimer disease—the Indo-US cross-national dementia study. Arch Neurol 57:824–830

    Article  PubMed  CAS  Google Scholar 

  53. Cole GM, Teter B, Frautschy SA (2007) Neuroprotective effects of curcumin. Mol Targets Therap Uses Curcumin Health Dis 595:197–212

    Article  Google Scholar 

  54. Ono K, Hasegawa K, Naiki H, Yamada M (2004) Curcumin has potent anti-amyloidogenic effects for Alzheimer’s beta-amyloid fibrils in vitro. J Neurosci Res 75:742–750

    Article  PubMed  CAS  Google Scholar 

  55. Yazawa K, Kihara T, Shen H, Shimmyo Y, Niidome T, Sugimoto H (2006) Distinct mechanisms underlie distinct polyphenol-induced neuroprotection. FEBS Lett 580:6623–6628

    Article  PubMed  CAS  Google Scholar 

  56. Lee SA, Hong SS, Han XH, Hwang JS, Oh GJ, Lee KS, Lee MK, Hwang BY, Ro JS (2005) Piperine from the fruits of Piper longum with inhibitory effect on monoamine oxidase and antidepressant-like activity. Chem Pharm Bull 53:832–835

    Article  PubMed  CAS  Google Scholar 

  57. Wattanathorn J, Chonpathompikunlert P, Muchimapura S, Priprem A, Tankamnerdthai O (2008) Piperine, the potential functional food for mood and cognitive disorders. Food Chem Toxicol 46:3106–3110

    Article  PubMed  CAS  Google Scholar 

  58. Selvendiran K, Singh JPV, Krishnan KB, Sakthisekaran D (2003) Cytoprotective effect of piperine against benzo[a]pyrene induced lung cancer with reference to lipid peroxidation and antioxidant system in Swiss albino mice. Fitoterapia 74:109–115

    Article  PubMed  CAS  Google Scholar 

  59. Gupta SK, Bansal P, Bhardwaj RK, Velpandian T (2000) Comparative anti-nociceptive, anti-inflammatory and toxicity profile of nimesulide vs nimesulide and piperine combination. Pharmacol Res 41:657–662

    Article  PubMed  CAS  Google Scholar 

  60. D’Hooge R, Pei YQ, Raes A, Lebrun P, vanBogaert PP, DeDeyn PP (1996) Anticonvulsant activity of piperine on seizures induced by excitatory amino acid receptor agonists. Arzneimittel-Forschung/Drug Res 46:557–560

    Google Scholar 

  61. Bai YF, Xu H (2000) Protective action of piperine against experimental gastric ulcer. Acta Pharmacol Sin 21:357–359

    PubMed  CAS  Google Scholar 

  62. Chonpathompikunlert P, Wattanathorn J, Muchimapura S (2010) Piperine, the main alkaloid of Thai black pepper, protects against neurodegeneration and cognitive impairment in animal model of cognitive deficit like condition of Alzheimer’s disease. Food Chem Toxicol 48:798–802

    Article  PubMed  CAS  Google Scholar 

  63. Frydman-Marom A, Levin A, Farfara D, Benromano T, Scherzer-Attali R, Peled S, Vassar R, Segal D, Gazit E, Frenkel D, Ovadia M (2011) Orally administrated cinnamon extract reduces beta-amyloid oligomerization and corrects cognitive impairment in Alzheimer’s disease animal models. Plos One 6

  64. Chauhan NeelimaB, Jimena S (2007) Amelioration of early cognitive deficits by aged garlic extract in Alzheimer’s transgenic mice. Phytotherap Res 21:629–640

    Article  CAS  Google Scholar 

  65. Ursell A (2000) Natural food – Therapeutic use. In: The complete guide to healing foods. Dorling Kindersley, London, pp 120–158

    Google Scholar 

  66. Oboh G, Ademiluyi AO, Akinyemi AJ (2010) Inhibition of acetylcholinesterase activities and some pro-oxidant induced lipid peroxidation in rat brain by two varieties of ginger (Zingiber officinale). Exp Toxicol Pathol, Corrected Proof (in press)

  67. Guillemin GJ, Meininger V, Brew BJ (2005) Implications for the kynurenine pathway and quinolinic acid in amyotrophic lateral sclerosis. Neuro-degenerative Dis 2:166–176

    Article  CAS  Google Scholar 

  68. Smith JV, Luo Y (2004) Studies on molecular mechanisms of Ginkgo biloba extract. Appl Microbiol Biotechnol 64:465–472

    Article  PubMed  CAS  Google Scholar 

  69. Wu Y, Wu Z, Butko P, Christen Y, Lambert MP, Klein WL, Link CD, Luo Y (2006) Amyloid-beta-induced pathological behaviors are suppressed by Ginkgo biloba extract EGb 761 and ginkgolides in transgenic Caenorhabditis elegans. J Neurosci 26:13102–13113

    Article  PubMed  CAS  Google Scholar 

  70. Ahlemeyer B, Krieglstein J (2003) Neuroprotective effects of Ginkgo biloba extract. Cell Mol Life Sci 60:1779–1792

    Article  PubMed  CAS  Google Scholar 

  71. Sasaki K, Hatta S, Wada K, Ueda N, Yoshimura T, Endo T, Sakata M, Tanaka T, Haga M (2002) Effects of extract of Ginkgo biloba leaves and its constituents on carcinogen-metabolizing enzyme activities and glutathione levels in mouse liver. Life Sci 70:1657–1667

    Article  PubMed  CAS  Google Scholar 

  72. Shi C, Zhao L, Zhu B, Li Q, Yew DT, Yao Z, Xu J (2009) Protective effects of Ginkgo biloba extract (EGb761) and its constituents quercetin and ginkgolide B against beta-amyloid peptide-induced toxicity in SH-SY5Y cells. Chem Biol Interact 181:115–123

    Article  PubMed  CAS  Google Scholar 

  73. Maclennan KM, Darlington CL, Smith PE (2002) The CNS effects of Ginkgo biloba extracts and ginkgolide B. Prog Neurobiol 67:235–257

    Article  PubMed  CAS  Google Scholar 

  74. Hynes N, Bishai I, Lees J, Coceani F (1991) Leucotrenes in Brain—natural occurence and induced changes. Brain Res 553:4–13

    Article  PubMed  CAS  Google Scholar 

  75. Colciaghi F, Borroni B, Zimmermann M, Bellone C, Longhi A, Padovani A, Cattabeni F, Christen Y, Di Luca M (2004) Amyloid precursor protein metabolism is regulated toward alpha-secretase pathway by Ginkgo biloba extracts. Neurobiol Dis 16:454–460

    Article  PubMed  Google Scholar 

  76. Yao ZX, Han ZQ, Drieu K, Papadopoulos V (2004) Ginkgo biloba extract (Egb 761) inhibits beta-amyloid production by lowering free cholesterol levels. J Nutr Biochem 15:749–756

    Article  PubMed  CAS  Google Scholar 

  77. Tsuzuki K, Fukatsu R, Yamaguchi H, Tateno M, Imai K, Fujii N, Yamauchi T (2000) Transthyretin binds amyloid beta peptides, A beta 1-42 and A beta 1-40 to form complex in the autopsied human kidney—possible role of transthyretin for A beta sequestration. Neurosci Lett 281:171–174

    Article  PubMed  CAS  Google Scholar 

  78. Watanabe CMH, Wolffram S, Ader P, Rimbach G, Packer L, Maguire JJ, Schultz PG, Gohil K (2001) The in vivo neuromodulatory effects of the herbal medicine ginkgo biloba. Proc Natl Acad Sci USA 98:6577–6580

    Article  PubMed  CAS  Google Scholar 

  79. Shi C, Liu J, Wu F, Yew DT (2010) Ginkgo biloba extract in Alzheimer’s disease: from action mechanisms to medical practice. Int J Mol Sci 11:107–123

    Article  PubMed  CAS  Google Scholar 

  80. Kuboyama T, Tohda C, Komatsu K (2006) Withanoside IV and its active metabolite, sominone, attenuate A beta(25-35)-induced neurodegeneration. Eur J Neurosci 23:1417–1426

    Article  PubMed  Google Scholar 

  81. Kim JK, Bae H, Kim M-J, Choi SJ, Cho HY, Hwang H-J, Kim YJ, Lim ST, Kim EK, Kim HK et al (2009) Inhibitory effect of Poncirus Trifoliate on acetylcholinesterase and attenuating activity against trimethyltin-induced learning and memory impairment. Biosci Biotechnol Biochem 73:1105–1112

    Article  PubMed  CAS  Google Scholar 

  82. Akhondzadeh S, Noroozian M, Mohammadi M, Ohadinia S, Jamshidi AH, Khani M (2003) Salvia officinalis extract in the treatment of patients with mild to moderate Alzheimer’s disease: a double blind, randomized and placebo-controlled trial. J Clin Pharm Ther 28:53–59

    Article  PubMed  CAS  Google Scholar 

  83. Kim SR, Lee KY, Koo KA, Sung SH, Lee NG, Kim J, Kim YC (2002) Four new neuroprotective iridoid glycosides from Scrophularia buergeriana roots. J Nat Prod 65:1696–1699

    Article  PubMed  CAS  Google Scholar 

  84. Jeong EJ, Ma CJ, Lee KY, Kim SH, Sung SH, Kim YC (2009) KD-501, a standardized extract of Scrophularia Buergeriana has both cognitive-enhancing and antioxidant activities in mice given scopolamine. J Ethnopharmacol 121:98–105

    Article  PubMed  Google Scholar 

  85. Kim Y, Park EJ, Kim J, Kim YB, Kim SR, Kim YC (2001) Neuroprotective constituents from Hedyotis diffusa. J Nat Prod 64:75–78

    Article  PubMed  CAS  Google Scholar 

  86. Zhao Q, Tang XC (2002) Effects of huperzine A on acetylcholinesterase isoforms in vitro: comparison with tacrine, donepezil, rivastigmine and physostigmine. Eur J Pharmacol 455:101–107

    Article  PubMed  CAS  Google Scholar 

  87. Xiao XQ, Yang JW, Tang XC (1999) Huperzine A protects rat pheochromocytoma cells against hydrogen peroxide-induced injury. Neurosci Lett 275:73–76

    Article  PubMed  CAS  Google Scholar 

  88. Xiao XQ, Wang R, Han YF, Tang XC (2000) Protective effects of huperzine A on beta-amyloid(25-35) induced oxidative injury in rat pheochromocytoma cells. Neurosci Lett 286:155–158

    Article  PubMed  CAS  Google Scholar 

  89. Xiao XQ, Wang R, Tang XC (2000) Huperzine A and tacrine attenuate beta-amyloid peptide-induced oxidative injury. J Neurosci Res 61:564–569

    Article  PubMed  CAS  Google Scholar 

  90. Zhang HY, Yan H, Tang XC (2004) Huperzine A enhances the level of secretory amyloid precursor protein and protein kinase C-alpha in intracerebroventricular beta-amyloid-(1-40) infused rats and human embryonic kidney 293 Swedish mutant cells. Neurosci Lett 360:21–24

    Article  PubMed  CAS  Google Scholar 

  91. Wang R, Tang XC (2005) Neuroprotective effects of huperzine A—a natural cholinesterase inhibitor for the treatment of Alzheimer’s disease. Neurosignals 14:71–82

    Article  PubMed  CAS  Google Scholar 

  92. Goswami S, Saoji A, Kumar N, Thawani V, Tiwari MT (2011) Effect of Bacopa monnieri on cognitive functions in Alzheimer’s disease patients. Int J Collaborat Res Int Med Public Health 3:285–293

    Google Scholar 

  93. Fujiwara H, Tabuchi M, Yamaguchi T, Iwasaki K, Furukawa K, Sekiguchi K, Ikarashi Y, Kudo Y, Higuchi M, Saido TC et al (2009) A traditional medicinal herb Paeonia suffruticosa and its active constituent 1,2,3,4,6-penta-O-galloyl-beta-d-glucopyranose have potent anti-aggregation effects on Alzheimer’s amyloid beta proteins in vitro and in vivo. J Neurochem 109:1648–1657

    Article  PubMed  CAS  Google Scholar 

  94. Fujiwara H, Iwasaki K, Furukawa K, Seki T, He M, Maruyama M, Tomita N, Kudo Y, Higuchi M, Saido TC et al (2006) Uncaria rhynchophylla, a Chinese medicinal herb, has potent antiaggregation effects on Alzheimer’s beta-amyloid proteins. J Neurosci Res 84:427–433

    Article  PubMed  CAS  Google Scholar 

  95. Ganguly R, Hazra R, Ray K, Guha D (2005) Effect of Moringa Oleifera in experimental model of Alzheimer’s disease: role of antioxidant. Ann Neurosci 12

  96. Tamaki Y, Tabuchi T, Takahashi T, Kosaka K, Satoh T (2010) Activated glutathione metabolism participates in protective effects of Carnosic acid against oxidative stress in neuronal HT22 cells. Planta Med 76:683–688

    Article  PubMed  CAS  Google Scholar 

  97. Wijeratne SSK, Cuppett SL (2007) Potential of rosemary (Rosemarinus officinalis L.) diterpenes in preventing lipid hydroperoxide-mediated oxidative stress in Caco-2 cells. J Agric Food Chem 55:1193–1199

    Article  PubMed  CAS  Google Scholar 

  98. Marco L, MdC Carreiras (2006) Galanthamine, a natural product for the treatment of Alzheimers disease. Rec Pat CNS Drug Discov 1:105–111

    Article  CAS  Google Scholar 

  99. Lee S-T, Chu K, Sim J-Y, Heo J-H, Kim M (2008) Ponax Ginseng enhances cognitive performance in Alzheimer disease. Alzheimer Dis Assoc Disord 22:222–226

    Article  PubMed  Google Scholar 

  100. Lee YK, Yuk DY, Kim TI, Kim YH, Kim KT, Kim KH, Lee BJ, Nam S-Y, Hong JT (2009) Protective effect of the ethanol extract of Magnolia officinalis and 4-O-methylhonokiol on scopolamine-induced memory impairment and the inhibition of acetylcholinesterase activity. J Nat Med 63:274–282

    Article  PubMed  CAS  Google Scholar 

  101. Ashwlayan VD, Singh R (2011) Reversal effect of Phyllanthus Emblica (Euphorbiaceae) Rasayana on memory deficits in mice. Int J Appl Pharm 3:10–15

    Google Scholar 

  102. Panjwani D, Mishra B, Banji D (2010) Time dependent antioxidant activity of fresh juice of leaves of Coriandrum Sativum. Int J Pharm Sci Drug Res 2:63–66

    Google Scholar 

  103. Mani V, Parle M, Ramasamy K, Abdul Majeed AB (2010) Reversal of memory deficits by Coriandrum sativum leaves in mice. J Sci Food Agric 91:186–192

    Article  PubMed  Google Scholar 

  104. Brunner E, Ehrlich H, Schupp P, Hedrich R, Hunoldt S, Kammer M, Machill S, Paasch S, Bazhenov VV, Kurek DV et al (2009) Chitin-based scaffolds are an integral part of the skeleton of the marine demosponge Ianthella basta. J Struct Biol 168:539–547

    Article  PubMed  CAS  Google Scholar 

  105. Gervais F, Paquette J, Morissette C, Krzywkowski P, Yu M, Azzi M, Lacombe D, Kong X, Aman A, Laurin J et al (2007) Targeting soluble A beta peptide with Tramiprosate for the treatment of brain amyloidosis. Neurobiol Aging 28:537–547

    Article  PubMed  CAS  Google Scholar 

  106. Hernandez F, Gomez de Barreda E, Fuster-Matanzo A, Lucas JJ, Avila J (2010) GSK3: a possible link between beta amyloid peptide and tau protein. Exp Neurol 223:322–325

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The work has been partly supported by The Research Council; Oman (Grant # RC/AGR/FOOD/11/01). This work has been also supported by the Alzheimer’s Association (grant#IIRG-08-89545) and by the Rebecca Cooper foundation (Australia). Dr Nady Braidy is the recipient of an Alzheimer’s Australia Viertel Foundation Postdoctoral Research Fellowship at the University of New South Wales.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gilles J. Guillemin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Essa, M.M., Vijayan, R.K., Castellano-Gonzalez, G. et al. Neuroprotective Effect of Natural Products Against Alzheimer’s Disease. Neurochem Res 37, 1829–1842 (2012). https://doi.org/10.1007/s11064-012-0799-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-012-0799-9

Keywords

Navigation