Skip to main content

Nuts and Their Potential Role in Alzheimer’s Disease

  • Chapter
  • First Online:
Nutraceuticals for Alzheimer's Disease: A Promising Therapeutic Approach

Part of the book series: Nutritional Neurosciences ((NN))

  • 115 Accesses

Abstract

The rising incidence of Alzheimer’s disease (AD), a challenging neurological disorder, is a practically global issue. To find potential treatments for the condition, research is being done on natural products. The potential therapeutic properties of tree nuts have been analyzed in many research articles and traditional medicinal systems like Persian Medicine because of their properties to protect the brain. The purpose of this chapter is to emphasize the advantages of consuming nuts as dietary supplements and natural therapies for AD patients by providing a pharmacological evaluation of their bioactive components. The macronutrients, micronutrients, and phytochemicals found in almonds, hazelnuts, and walnuts have an effect on several pathways involved in the pathogenesis of AD, such as amyloidogenesis, tau phosphorylation, oxidative stress, cholinergic pathways, and some nontarget mechanisms, such as effects on neurogenesis and cholesterol-lowering and anti-inflammatory properties. Especially in the case of hazelnut, it reverses brain atrophy. Along with almonds, walnuts, and hazelnuts, other nuts like pistachio, pine nuts, peanuts, areca nuts, kola nuts, and pecan nuts also have the potential to ameliorate Alzheimer’s disease by their bioactive components. Beyond the molecular effects associated with the phytochemicals, the utilization of these tree nuts as valuable nutrients for the prevention or perhaps management of AD may be more thoroughly investigated in scientific investigations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Ahmed T, Setzer WN, Nabavi SF, Orhan IE, Braidy N, Sobarzo-Sanchez E et al (2016) Insights into effects of Ellagic acid on the nervous system: a mini review. Curr Pharm Des 22(10):1350–1360

    Article  CAS  PubMed  Google Scholar 

  • Alami K, Mousavi SY (2020) Afghan Chehelghoza (Pinus gerardiana L.) pine nut diet enhances the learning and memory in male rats. Nutr Diet Suppl 12:277–288

    Article  Google Scholar 

  • Alasalvar C, Shahidi F, Liyanapathirana CM, Ohshima T (2003) Turkish tombul hazelnut (Corylus avellana L.). 1. Compositional characteristics. J Agric Food Chem 51(13):3790–3796

    Article  CAS  PubMed  Google Scholar 

  • Alasalvar C, Shahidi F, Raton B (2010) Tree nuts: composition, phytochemicals, and health effects. Chromatographia 72(5):589–594

    Google Scholar 

  • Ansari MA, Abdul HM, Joshi G, Opii WO, Butterfield DA (2009) Protective effect of quercetin in primary neurons against Abeta(1-42): relevance to Alzheimer's disease. J Nutr Biochem 20(4):269–275

    Article  CAS  PubMed  Google Scholar 

  • Ansari MA, Prakash N, Punitha P, Baishya LK (2015) Post-harvest management and value addition of groundnut. ICAR research Complex NEH Region Manipur centre, Lamphelpat

    Google Scholar 

  • Arab L, Ang A (2015) A cross sectional study of the association between walnut consumption and cognitive function among adult US populations represented in NHANES. J Nutr Health Aging 19:284–290

    Article  CAS  PubMed  Google Scholar 

  • Arslan J, Gilani AUH, Jamshed H, Khan SF, Kamal MA (2020) Edible nuts for memory. Curr Pharm Des 26(37):4712–4720

    Article  CAS  Google Scholar 

  • Asha D, Sumathi T (2016) Nootropic activity of isorhamnetin in amyloid beta 25–35 induced cognitive dysfunction and its related mRNA expressions in Alzheimer's disease. Int J Pharm Sci Res 7(8):3233

    CAS  Google Scholar 

  • Atanasov AG, Sabharanjak SM, Zengin G, Mollica A, Szostak A, Simirgiotis M et al (2018) Pecan nuts: a review of reported bioactivities and health effects. Trends Food Sci Technol 71:246–257

    Article  CAS  Google Scholar 

  • Bahaeddin Z, Yans A, Khodagholi F, Hajimehdipoor H, Sahranavard S (2017) Hazelnut and neuroprotection: improved memory and hindered anxiety in response to intra-hippocampal Aβ injection. Nutr Neurosci 20(6):317–326

    Article  CAS  PubMed  Google Scholar 

  • Batool Z, Sadir S, Liaquat L, Tabassum S, Madiha S, Rafiq S et al (2016) Repeated administration of almonds increases brain acetylcholine levels and enhances memory function in healthy rats while attenuates memory deficits in animal model of amnesia. Brain Res Bull 120:63–74

    Article  CAS  PubMed  Google Scholar 

  • Batool Z, Agha F, Ahmad S, Liaquat L, Tabassum S, Khaliq S et al (2017) Attenuation of cadmium-induced decline in spatial, habituation and recognition memory by long-term administration of almond and walnut supplementation: role of cholinergic function. Pak J Pharm Sci 30(1):273

    CAS  PubMed  Google Scholar 

  • Bhat SK, Ashwin D, Mythri S, Bhat S (2017) Areca nut (Areca catechu L) decreases Alzheimer’s disease symptoms: compilation of research works. J Med Plants Stud 5(5):4–9

    Google Scholar 

  • Boccardi V, Baroni M, Mangialasche F, Mecocci P (2016) Vitamin E family: role in the pathogenesis and treatment of Alzheimer's disease. Alzheimers Dement (N Y) 2(3):182–191

    Article  PubMed  Google Scholar 

  • Bozorgi M, Najafi Z, Omidpanah S, Sadri A, Narimani Z, Moghadam FH et al (2021) Investigation of anti-Alzheimer's activity of aqueous extract of areca nuts (Areca catechu L.): in vitro and in vivo studies. Bol Latinoam Caribe Plantas Med Aromát 20(4)

    Google Scholar 

  • Brown JP (1980) A review of the genetic effects of naturally occurring flavonoids, anthraquinones and related compounds. Mutat Res 75(3):243–277

    Article  CAS  PubMed  Google Scholar 

  • Butterfield DA, Castegna A, Pocernich CB, Drake J, Scapagnini G, Calabrese V (2002) Nutritional approaches to combat oxidative stress in Alzheimer’s disease. J Nutr Biochem 13(8):444–461

    Article  CAS  PubMed  Google Scholar 

  • Caballero B, Trugo LC, Finglas PM (2003) Encyclopedia of food sciences and nutrition. Academic, New York

    Google Scholar 

  • Ceballos-Picot I, Merad-Boudia M, Nicole A, Thevenin M, Hellier G, Legrain S et al (1996) Peripheral antioxidant enzyme activities and selenium in elderly subjects and in dementia of Alzheimer's type—place of the extracellular glutathione peroxidase. Free Radic Biol Med 20(4):579–587

    Article  CAS  PubMed  Google Scholar 

  • Chastain SE (2016) Therapeutic potential of catechins and derivatives for the prevention of Alzheimer's disease. University of South Carolina, Columbia

    Google Scholar 

  • Chauhan A, Chauha V (2020) Beneficial effects of walnuts on cognition and brain health. Nutrients 12(2):550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chauhan N, Wang KC, Wegiel J, Malik MN (2004) Walnut extract inhibits the fibrillization of amyloid beta-protein, and also defibrillizes its preformed fibrils. Curr Alzheimer Res 1:183–188

    Article  CAS  PubMed  Google Scholar 

  • Che H, Du L, Cong P, Tao S, Ding N, Wu F et al (2017) Cerebrosides from sea cucumber protect against oxidative stress in SAMP8 mice and PC12 cells. J Med Food 20(4):392–402

    Article  CAS  PubMed  Google Scholar 

  • Chen J, Zhou Y, Mueller-Steiner S, Chen LF, Kwon H, Yi S et al (2005) SIRT1 protects against microglia-dependent amyloid-β toxicity through inhibiting NF-κB signaling. J Biol Chem 280(48):40364–40374

    Article  CAS  PubMed  Google Scholar 

  • Contini M, Baccelloni S, Massantini R, Anelli G (2008) Extraction of natural antioxidants from hazelnut (Corylus avellana L.) shell and skin wastes by long maceration at room temperature. Food Chem 110(3):659–669

    Article  CAS  Google Scholar 

  • De Jesus Moreno Moreno M (2003) Cognitive improvement in mild to moderate Alzheimer's dementia after treatment with the acetylcholine precursor choline alfoscerate: a multicenter, doubleblind, randomized, placebo-controlled trial. Clin Ther 25(1):178–193

    Article  PubMed  Google Scholar 

  • De Lima Oliveira BC, Bellozi PMQ, Reis HJ, De Oliveira ACP (2018) Inflammation as a possible link between dyslipidemia and Alzheimer’s disease. Neuroscience 376:127–141

    Article  Google Scholar 

  • DeToma AS, Choi JS, Braymer JJ, Lim MH (2011) Myricetin: a naturally occurring regulator of metal-induced amyloid-β aggregation and neurotoxicity. Chembiochem 12(8):1198–1201

    Article  CAS  Google Scholar 

  • Duarte J, Pérez-Vizcaíno F, Zarzuelo A, Jiménez J, Tamargo J (1993) Vasodilator effects of quercetin in isolated rat vascular smooth muscle. Eur J Pharmacol 239(1–3):1–7

    Article  CAS  PubMed  Google Scholar 

  • Ellis D, Lieb J (2015) Hyperoxaluria and genitourinary disorders in children ingesting almond milk products. J Pediatr 167(5):1155–1158

    Article  PubMed  Google Scholar 

  • Esfahlan AJ, Jamei R, Esfahlan RJ (2010) The importance of almond (Prunus amygdalus L.) and its by-products. Food Chem 120(2):349–360

    Article  CAS  Google Scholar 

  • Fang F, Ho CT, Sang S, Rosen RT (2005) Determination of sphingolipids in nuts and seeds by a single quadrupole liquid chromatography–mass spectrometry method. J Food Lipids 12(4):327–343

    Article  CAS  Google Scholar 

  • Flood JF, Cherkin A (1988) Effect of acute arecoline, tacrine and arecoline+ tacrine post-training administration on retention in old mice. Neurobiol Aging 9:5–8

    Article  CAS  PubMed  Google Scholar 

  • Flood JF, Smith GE, Cherkin A (1985) Memory enhancement: supra-additive effect of subcutaneous cholinergic drug combinations in mice. Psychopharmacology 86(1):61–67

    Article  CAS  PubMed  Google Scholar 

  • Gao H, Yan P, Zhang S, Nie S, Huang F, Han H et al (2016) Chronic alpha-linolenic acid treatment alleviates age-associated neuropathology: roles of PERK/eIF2alpha signaling pathway. Brain Behav Immun 57:314–325

    Article  CAS  PubMed  Google Scholar 

  • Gibson GE, Sheu KF, Blass JP, Baker A, Carlson KC, Harding B et al (1988) Reduced activities of thiamine-dependent enzymes in the brains and peripheral tissues of patients with Alzheimer's disease. Arch Neurol 45(8):836–840

    Article  CAS  PubMed  Google Scholar 

  • Gorji N, Moeini R, Memariani Z (2018) Almond, hazelnut and walnut, three nuts for neuroprotection in Alzheimer’s disease: a neuropharmacological review of their bioactive constituents. Pharmacol Res 129:115–127

    Article  CAS  PubMed  Google Scholar 

  • Grodzicki W, Dziendzikowska K (2020) The role of selected bioactive compounds in the prevention of Alzheimer’s disease. Antioxidants 9(3):229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haaskjold YL, Drotningsvik A, Leh S, Marti HP, Svarstad E (2015) Renal failure due to excessive intake of almonds in the absence of Oxalobacter formigenes. Am J Med 128(12):e29–e30

    Article  PubMed  Google Scholar 

  • Haider S, Batool Z, Haleem DJ (2012) Nootropic and hypophagic effects following long term intake of almonds (Prunus amygdalus) in rats. Forum Nutr 27(6):2109–2115

    CAS  Google Scholar 

  • Harnly JM, Doherty RF, Beecher GR, Holden JM, Haytowitz DB, Bhagwat S et al (2006) Flavonoid content of US fruits, vegetables, and nuts. J Agric Food Chem 54(26):9966–9977

    Article  CAS  PubMed  Google Scholar 

  • Hinterberger M, Fischer P (2013) Folate and Alzheimer: when time matters. J Neural Transm 120(1):211–224

    Article  CAS  PubMed  Google Scholar 

  • Huang HC, Jiang ZF (2009) Accumulated amyloid-β peptide and hyperphosphorylated tau protein: relationship and links in Alzheimer’s disease. J Alzheimers Dis 16:15–27

    Article  CAS  PubMed  Google Scholar 

  • IOM—Institute of Medicine (2002) Dietary reference intakes for vitamin C, vitamin E, selenium, and carotenoids. Academy, Washington

    Google Scholar 

  • Jamshed H, Gilani AH (2014) Almonds inhibit dyslipidemia and vascular dysfunction in rats through multiple pathways. J Nutr 144(11):1768–1774

    Article  CAS  PubMed  Google Scholar 

  • Khorasani MA (2001) Makhzan al Advieh (The storehouse of medicaments). Research institute for Islamic and Complementary Medicine, Iran University of Medical Sciences. Bavardaran Press(In Persian), Tehran, Iran, p 351

    Google Scholar 

  • Kim EJ, Yang SJ (2017) Nicotinamide reduces amyloid precursor protein and Presenilin 1 in brain tissues of amyloid Beta-tail vein injected mice. Clin Nutr Res 6(2):130–135

    Article  PubMed  PubMed Central  Google Scholar 

  • Kim JK, Choi SJ, Cho HY, Hwang HJ, Kim YJ, Lim ST et al (2010) Protective effects of kaempferol (3,4′,5,7-tetrahydroxyflavone) against amyloid beta peptide (Abeta)-induced neurotoxicity in ICR mice. Biosci Biotechnol Biochem 74(2):397–401

    Article  CAS  PubMed  Google Scholar 

  • Kim MJ, Seong AR, Yoo JY, Jin CH, Lee YH, Kim YJ et al (2011) Gallic acid, a histone acetyltransferase inhibitor, suppresses beta-amyloid neurotoxicity by inhibiting microglial-mediated neuroinflammation. Mol Nutr Food Res 55(12):1798–1808

    Article  CAS  PubMed  Google Scholar 

  • Kim KB, Nam YA, Kim HS, Hayes AW, Lee BM (2014) Alpha-linolenic acid: nutraceutical, pharmacological and toxicological evaluation. Food Chem Toxicol 70:163–178

    Article  CAS  PubMed  Google Scholar 

  • Kim JH, Wang Q, Choi JM, Lee S, Cho EJ (2015) Protective role of caffeic acid in an Aβ25-35-induced Alzheimer's disease model. Nutr Res Pract 9(5):480–488

    Article  CAS  PubMed  Google Scholar 

  • Kinney JW, Bemiller SM, Murtishaw AS, Leisgang AM, Salazar AM, Lamb BT (2018) Inflammation as a central mechanism in Alzheimer’s disease. Alzheimers Dement (N Y) 4:575–590

    Article  PubMed  Google Scholar 

  • Kulkarni KS, Kasture S, Mengi S (2010) Efficacy study of Prunus amygdalus (almond) nuts in scopolamine-induced amnesia in rats. Ind J Pharmacol 42(3):168

    Article  Google Scholar 

  • Kumar K, Kumar A, Keegan RM, Deshmukh R (2018) Recent advances in the neurobiology and neuropharmacology of Alzheimer’s disease. Biomed Pharmacother 98:297–307

    Article  CAS  PubMed  Google Scholar 

  • La Fata G, Weber P, Mohajeri MH (2014) Effects of vitamin E on cognitive performance during ageing and in Alzheimer’s disease. Nutrients 6(12):5453–5472

    Article  PubMed  PubMed Central  Google Scholar 

  • Lechner M, Breeze CE, Vaz F, Lund VJ, Kotech B (2019) Betel nut chewing in high-income countries—lack of awareness and regulation. Lancet Oncol 20(2):181–183

    Article  PubMed  Google Scholar 

  • Lee E, Eom J-E, Kim H-L, Baek KH, Jun K-Y, Kim H-J et al (2013) Effect of conjugated linoleic acid, μ-calpain inhibitor, on pathogenesis of Alzheimer's disease. Biochim Biophys Acta 1831(4):709–718

    Article  CAS  Google Scholar 

  • Lim HJ, Shim SB, Jee SW, Lee SH, Lim CJ, Hong JT et al (2013) Green tea catechin leads to global improvement among Alzheimer's disease-related phenotypes in NSE/hAPP-C105 Tg mice. J Nutr Biochem 24(7):1302–1313

    Article  CAS  Google Scholar 

  • Lu H, Fang L, Wang J, Zhao F, Liu C, Gao Y, Min W (2021) Pine nut antioxidant peptides ameliorate the memory impairment in a scopolamine-induced mouse model via SIRT3-induced synaptic plasticity. Food Funct 12(17):8026–8036

    Article  CAS  PubMed  Google Scholar 

  • Maguire LS, O'Sullivan SM, Galvin K, O'Connor TP, O'Brien NM (2004) Fatty acid profile, tocopherol, squalene and phytosterol content of walnuts, almonds, peanuts, hazelnuts and the macadamia nut. Int J Food Sci Nutr 55(3):171–178

    Article  CAS  PubMed  Google Scholar 

  • Mandalari G, Bisignano C, Filocamo A, Chessa S, Sarò M, Torre G et al (2013) Bioaccessibility of pistachio polyphenols, xanthophylls, and tocopherols during simulated human digestion. Nutrition 29(1):338–344

    Article  CAS  PubMed  Google Scholar 

  • Martínez ML, Labuckas DO, Lamarque AL, Maestri DM (2010) Walnut (Juglans regia L.): genetic resources, chemistry, by-products. J Sci Food Agric 90(12):1959–1967

    PubMed  Google Scholar 

  • Martinez-Lapiscina EH, Clavero P, Toledo E, Estruch R, Salas-Salvado J, San Julian B et al (2013) Mediterranean diet improves cognition: the PREDIMED-NAVARRA randomised trial. J Neurol Neurosurg Psychiatry 84:1318–1325

    Article  PubMed  Google Scholar 

  • McWilliam V, Koplin J, Lodge C, Tang M, Dharmage S, Allen K (2015) The prevalence of tree nut allergy: a systematic review. Curr Allergy Asthma Rep 15(9):54

    Article  PubMed  Google Scholar 

  • Mercer LD, Kelly BL, Horne MK, Beart PM (2005) Dietary polyphenols protect dopamine neurons from oxidative insults and apoptosis: investigations in primary rat mesencephalic cultures. Biochem Pharmacol 69(2):339–345

    Article  CAS  PubMed  Google Scholar 

  • Mocchegiani E, Costarelli L, Giacconi R, Malavolta M, Bass A, Piacenza F et al (2014) Vitamin E–gene interactions in aging and inflammatory age-related diseases: implications for treatment. Ageing Res Rev 14:81–101

    Article  CAS  PubMed  Google Scholar 

  • Morris MC, Evan DA, Bienias JL, Scherr PA, Tangney CC, Hebert LE et al (2004) Dietary niacin and the risk of incident Alzheimer’s disease and of cognitive decline. J Neurol Neurosurg Psychiatry 75(8):1093–1099

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Muthaiyah B, Essa MM, Chauhan V, Chauhan A (2011) Protective effects of walnut extract against amyloid beta peptide-induced cell death and oxidative stress in PC12 cells. Neurochem Res 36(11):2096–2103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Muthaiyah B, Essa MM, Lee M, Chauhan V, Kaur K, Chauhan A (2014) Dietary supplementation of walnuts improves memory deficits and learning skills in transgenic mouse model of Alzheimer's disease. J Alzheimers Dis 42(4):1397–1405

    Article  CAS  PubMed  Google Scholar 

  • Neale EP, Tapsell LC, Martin A, Batterham MJ, Wibisono C, Probst YC (2017) Impact of providing walnut samples in a lifestyle intervention for weight loss: a secondary analysis of the HealthTrack trial. Food Nutr Res 61:1344522

    Article  PubMed  PubMed Central  Google Scholar 

  • Nuzzo D, Galizzi G, Amato A, Terzo S, Picone P, Cristaldi L et al (2020) Regular intake of pistachio mitigates the deleterious effects of a high fat-diet in the brain of obese mice. Antioxidants 9(4):317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • O’Brien J, Okereke O, Devore E, Rosner B, Breteler M, Grodstein F (2014) Long-term intake of nuts in relation to cognitive function in older women. J Nutr Health Aging 18:496–502

    Article  PubMed  PubMed Central  Google Scholar 

  • Oboh G, Ademosun AO, Ogunsuyi OB, Oyedola ET, Olasehinde TA, Oyeleye SI et al (2019) In vitro anticholinesterase, antimonoamine oxidase and antioxidant properties of alkaloid extracts from kola nuts (Cola acuminata and Cola nitida). J Complement Integr Med 16(1). https://doi.org/10.1515/jcim-2016-0155

  • Olofinnade AT, Onaolapo AY, Onaolapo OJ, Olowe OA (2021) Hazelnut modulates Neurobehaviour and ameliorates ageing-induced oxidative stress, and Caspase-3-mediated apoptosis in mice. Curr Aging Sci 14(2):154–162

    Article  CAS  PubMed  Google Scholar 

  • Ono K, Hasegawa K, Naiki H, Yamada M (2004) Anti-amyloidogenic activity of tannic acid and its activity to destabilize Alzheimer's β-amyloid fibrils in vitro. Biochim Biophys Acta 1690(3):193–202

    Article  CAS  PubMed  Google Scholar 

  • Park YS, Jang HJ, Lee KH, Hahn TR, Paik YS (2006) Prolyl endopeptidase inhibitory activity of unsaturated fatty acids. J Agric Food Chem 54(4):1238–1242

    Article  CAS  PubMed  Google Scholar 

  • Peng W, Liu YJ, Wu N, Sun T, He XY, Gao YX et al (2015) Areca catechu L.(Arecaceae): a review of its traditional uses, botany, phytochemistry, pharmacology and toxicology. J Ethnopharmacol 164:340–356

    Article  CAS  PubMed  Google Scholar 

  • Perry EK (1986) The cholinergic hypothesis—ten years on. Br Med Bull 42(1):63–69

    Article  CAS  PubMed  Google Scholar 

  • Perry EK, Tomlinson BE, Blessed G, Bergmann K, Gibson PH, Perry RH (1978) Correlation of cholinergic abnormalities with senile plaques and mental test scores in senile dementia. Br Med J 2(6150):1457–1459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pribis P, Bailey RN, Russell AA, Kilsby MA, Hernandez M, Craig WJ et al (2012) Effects of walnut consumption on cognitive performance in young adults. Br J Nutr 107(9):1393–1401

    Article  CAS  PubMed  Google Scholar 

  • Rath M, Müller I, Kropf P, Closs EI, Munder M (2014) Metabolism via arginase or nitric oxide synthase: two competing arginine pathways in macrophages. Front Immunol 5:532

    Article  PubMed  PubMed Central  Google Scholar 

  • Rice-evans CA, Miller NJ, Bolwell PG, Bramley PM, Pridham JB (1995) The relative antioxidant activities of plant-derived polyphenolic flavonoids. Free Radic Res 22(4):375–383

    Article  CAS  PubMed  Google Scholar 

  • Rita Cardoso B, Apolinário D, Da Silva BV, Busse AL, Magaldi RM, Jacob-Filho W et al (2016) Effects of Brazil nut consumption on selenium status and cognitive performance in older adults with mild cognitive impairment: a randomized controlled pilot trial. Eur J Nutr 55(1):107–116

    Article  PubMed  Google Scholar 

  • Roth A, Schaffner W, Hertel C (1999) Phytoestrogen kaempferol (3,4′,5,7-tetrahydroxyflavone) protects PC12 and T47D cells from beta-amyloid-induced toxicity. J Neurosci Res 57(3):399–404

    Article  CAS  PubMed  Google Scholar 

  • Salari E, Baloochi M, Shamsizedeh A, Ayoobi F, Allahtavakoli M, Taghavi Y et al (2014) Effect of the hydroalcoholic extract of pistachio on avoidance learning in male Wistar rats. 180–187

    Google Scholar 

  • Sala-Vila A, Crous-Bou M, Sánchez-Benavides G, De Arenaza-Urquijo EM, Suárez-Calvet M, Milà-Alomà M et al (2020) Eating a weekly serving of walnuts relates to beneficial brain imaging phenotypes in a cohort at increased risk of Alzheimer's disease. Curr Dev Nutr 4(Suppl_2):1234–1234

    Google Scholar 

  • Sharma A, Sharma L, Goyal R (2018a) A review on himalayan pine species: ethnopharmacological, phytochemical and pharmacological aspects. Pharm J 10(4):611

    CAS  Google Scholar 

  • Sharma P, Srivastava P, Seth A, Tripathi PN, Banerjee AG, Shrivastava SK (2018b) Comprehensive review of mechanisms of pathogenesis involved in Alzheimer’s disease and potential therapeutic strategies. Prog Neurobiol 174:53–89

    Article  PubMed  Google Scholar 

  • Shimmyo Y, Kihara T, Akaike A, Niidome T, Sugimoto H (2008) Multifunction of myricetin on Aβ: neuroprotection via a conformational change of Aβ and reduction of Aβ via the interference of secretases. J Neurosci Res 86(2):368–377

    Article  CAS  PubMed  Google Scholar 

  • Song Y, Cong P, Lu L, Wan Y, Tang Q, Zhang H et al (2017) Effects of dietary glucocerebrosides from sea cucumber on the brain sphingolipid profiles of mouse models of Alzheimer's disease. Food Funct 8(3):1271–1281

    Article  CAS  PubMed  Google Scholar 

  • Stockler-Pinto MB, Mafra D, Moraes C, Lobo J, Boaventura GT, Farage NE et al (2014) Brazil nut (Bertholletia excelsa, HBK) improves oxidative stress and inflammation biomarkers in hemodialysis patients. Biol Trace Elem Res 158(1):105–112

    Article  CAS  PubMed  Google Scholar 

  • Sul D, Kim HS, Lee D, Joo SS, Hwang KW, Park SY (2009) Protective effect of caffeic acid against beta-amyloid-induced neurotoxicity by the inhibition of calcium influx and tau phosphorylation. Life Sci 84(9–10):257–262

    Article  CAS  PubMed  Google Scholar 

  • Sze-Tao KWC, Sathe SK (2000) Walnuts (Juglans regia L): proximate composition, protein solubility, protein amino acid composition and protein in vitro digestibility. J Sci Food Agric 80(9):1393–1401

    Article  CAS  Google Scholar 

  • Valls-Pedret C, Sala-Vila A, Serra-Mir M, Corella D, de la Torre R, Martinez-Gonzalez MA et al (2015) Mediterranean diet and age-related cognitive decline: a randomized clinical trial. JAMA Intern Med 175:1094–1103

    Article  PubMed  Google Scholar 

  • Van Praag H, Lucero MJ, Yeo GW, Stecker K, Heivand N, Zhao C et al (2007) Plant-derived flavanol (−) epicatechin enhances angiogenesis and retention of spatial memory in mice. J Neurosci 27(22):5869–5878

    Article  PubMed  PubMed Central  Google Scholar 

  • Vanmierlo T, Bogie JF, Mailleux J, Vanmol J, Lütjohann D, Mulder M et al (2015) Plant sterols: friend or foe in CNS disorders? Prog Lipid Res 58:26–39

    Article  CAS  PubMed  Google Scholar 

  • Venkatachalam M, Sathe SK (2006) Chemical composition of selected edible nut seeds. J Agric Food Chem 54(13):4705–4714

    Article  CAS  PubMed  Google Scholar 

  • Wani IA, Ayoub A, Bhat NA, Dar AH, Gull A (2020) Hazelnut. In: Nayik GA, Gull A (eds) Antioxidants in vegetables and nuts-properties and health benefits. Springer, Singapore, pp 559–572

    Chapter  Google Scholar 

  • Webber KM, Raina AK, Marlatt MW, Zhu X, Prat MI, Morelli L et al (2005) The cell cycle in Alzheimer disease: a unique target for neuropharmacology. Mech Ageing Dev 126(10):1019

    Article  CAS  PubMed  Google Scholar 

  • Xia W, Mo H (2016) Potential of tocotrienols in the prevention and therapy of Alzheimer's disease. J Nutr Biochem 31:1–9

    Article  CAS  PubMed  Google Scholar 

  • Xu SL, Choi RC, Zhu KY, Leung KW, Guo AJ, Bi D et al (2012) Isorhamnetin, a flavonol aglycone from Ginkgo biloba L., induces neuronal differentiation of cultured PC12 cells: potentiating the effect of nerve growth factor. Evidence-based complementary and alternative medicine. Evid Based Complement Alternat Med 2012:278273

    Article  PubMed  PubMed Central  Google Scholar 

  • Yamakawa MY, Uchino K, Watanabe Y, Adachi T, Nakanishi M, Ichino H et al (2016) Anthocyanin suppresses the toxicity of Aβ deposits through diversion of molecular forms in in vitro and in vivo models of Alzheimer's disease. Nutr Neurosci 19(1):32–42

    Article  CAS  PubMed  Google Scholar 

  • Yi J, Horky LL, Friedlich AL, Shi Y, Rogers JT, Huang X (2009) L-arginine and Alzheimer's disease. Int J Clin Exp Pathol 2(3):211

    CAS  PubMed  Google Scholar 

  • Yin RH, Yu JT, Tan L (2015) The role of SORL1 in Alzheimer’s disease. Mol Neurobiol 51:909–918

    Article  CAS  PubMed  Google Scholar 

  • Youn K, Yun EY, Lee J, Kim JY, Hwang JS, Jeong WS et al (2014) Oleic acid and linoleic acid from Tenebrio molitor larvae inhibit BACE1 activity in vitro: molecular docking studies. J Med Food 17(2):284–289

    Article  CAS  PubMed  Google Scholar 

  • Zeisel SH (2006) Choline: critical role during fetal development and dietary requirements in adults. Annu Rev Nutr 26:229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Q, Yang G, Li W, Fan Z, Sun A, Luo J et al (2011) Thiamine deficiency increases betasecretase activity and accumulation of beta-amyloid peptides. Neurobiol Aging 32(1):42–53

    Article  PubMed  Google Scholar 

  • Zhao X, Liu C, Xu M, Li X, Bi K, Jia Y (2016) Total lignans of Schisandra chinensis ameliorates Aβ1-42-induced neurodegeneration with cognitive impairment in mice and primary mouse neuronal cells. PLoS One 11(4):e0152772

    Article  PubMed  PubMed Central  Google Scholar 

  • Zou J, Cai PS, Xiong CM, Ruan JL (2016) Neuroprotective effect of peptides extracted from walnut (Juglans Sigilata Dode) proteins on Abeta25-35-induced memory impairment in mice. J Huazhong Univ Sci Technolog Med Sci 36(1):21–30

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Vaishnavi, G., Justin Thenmozhi, A. (2023). Nuts and Their Potential Role in Alzheimer’s Disease. In: Thenmozhi, A.J., Manivasagam, T. (eds) Nutraceuticals for Alzheimer's Disease: A Promising Therapeutic Approach. Nutritional Neurosciences. Springer, Singapore. https://doi.org/10.1007/978-981-99-0677-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-0677-2_9

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-0676-5

  • Online ISBN: 978-981-99-0677-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics