Skip to main content

Advertisement

Log in

In Vivo Neuroprotective Effects of Peripheral Kynurenine on Acute Neurotoxicity Induced by Glutamate in Rat Cerebral Cortex

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

N-methyl-D-aspartate (NMDA) receptors play a crucial role in Glutamate (l-Glu) neurotoxicity. To evaluate the effects of astrocyte-derived tryptophan metabolite kynurenic acid (KYNA), on l-Glu neurotoxicity, adult male rats were pretreated with Kynurenine (KYN) which is a precursor of KYNA, at a dose of 30 mg or 300 mg/kg bw i.p., 2 h before stereotactic l-Glu bolus (1μmole/1 μl) administration in cerebral cortex. Results showed that acute l-Glu increased reactive oxygen species, rate of lipid peroxidation, calcium, nitric oxide and neuroinflammatory markers viz. TNF-α, IFN-γ levels and decreased key antioxidant parameters such as SOD, catalase, total glutathione and glutathione reductase along with mitochondrial membrane potential. While peripheral loading of 30 mg/kg dose of KYN had no protective effects on l-Glu induced neurotoxicity, 300 mg/kg dose prevented the above toxic effects following intracortical l-Glu. KYN apparently crossed blood brain barrier to elevate astrocytic-KYNA level, which seems to protect neurons through several interactive mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Erhardt S, Olsson SK, Engberg G (2009) Pharmacological manipulation of kynurenic acid: potential in the treatment of psychiatric disorders. CNS Drugs 23:91–101

    Article  CAS  PubMed  Google Scholar 

  2. Poeggeler B, Rassoulpour A, Wu HQ et al (2007) Dopamine receptor activation reveals a novel, kynurenate-sensitive component of striatal N-methyl-D-aspartate neurotoxicity. Neuroscience 148:188–197

    Article  CAS  PubMed  Google Scholar 

  3. Swartz KJ, During MJ, Freese A et al (1990) Cerebral synthesis and release on kynurenic acid and endogenous antagonist of excitatory amino acid receptors. J Neurosci 10:2965–2973

    CAS  PubMed  Google Scholar 

  4. Fukui S, Schwartz R, Rapoport SI et al (1991) Blood-brain barrier transport of kynurenines: implications for brain synthesis and metabolism. J Neurochem 56:2007–2017

    Article  CAS  PubMed  Google Scholar 

  5. Robotka H, Sas K, Agoston M et al (2008) Neuroprotection achieved in the ischaemic rat cortex with l-kynurenine sulphate. Life Sci 23:915–919

    Article  Google Scholar 

  6. Stone TW, Darlington LG (2002) Endogenous kynurenines as targets for drug discovery and development. Nat Rev Drug Discov 1:609–620

    Article  CAS  PubMed  Google Scholar 

  7. Bawari M, Babu GN (2003) Metabolic responses in discrete regions of rat brain following acute administration of glutamate. Neurochem Res 28:1345–1349

    Article  CAS  PubMed  Google Scholar 

  8. Santamaria A, Rios C, Solis-Hernandez F et al (1996) Systemic DL-kynurenine and probenecid pretreatment attenuates quinolinic acid-induced neurotoxicity in rats. Neuropharmacology 35:23–28

    Article  CAS  PubMed  Google Scholar 

  9. Utley HG, Bernheim F, Hochstein P (1967) Effect of sulfhydryl reagent on peroxidation in microsome. Arch Biochem Biophys 118:29–32

    Article  CAS  Google Scholar 

  10. Nishikimi M, Appaji Rao N, Yagi K (1972) The occurrence of superoxide anion in the reaction of reduced phenazine methosulfate and molecular oxygen. Biochem Biophys Res Commun 46:849–854

    Article  CAS  PubMed  Google Scholar 

  11. Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–126

    Article  CAS  PubMed  Google Scholar 

  12. Brehe JE, Burch HB (1976) Enzymatic assay for glutathione. Anal Biochem 74:189–197

    Article  CAS  PubMed  Google Scholar 

  13. Racker E (1955) Glutathione reductase from bakers’ yeast and beef liver. J Biol Chem 217:855–865

    CAS  PubMed  Google Scholar 

  14. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  15. Green LC, Wagner DA, Glogowski J et al (1982) Analysis of nitrate, nitrite, and [15N]nitrate in biological fluids. Anal Biochem 126:131–138

    Article  CAS  PubMed  Google Scholar 

  16. Rastogi L, Godbole MM, Ray M, Rathore P et al (2006) Reduction in oxidative stress and cell death explains hypothyroidism induced neuroprotection subsequent to ischemia/reperfusion insult. Exp Neurol 200:290–300

    Article  CAS  PubMed  Google Scholar 

  17. Rathore P, Dohare P, Varma S et al (2008) Curcuma oil: reduces early accumulation of oxidative product and is antiapoptogenic in transient focal ischemia in rat brain. Neurochem Res 33:1672–1682

    Article  CAS  PubMed  Google Scholar 

  18. Emaus RK, Grunwald R, Lemasters JJ (1986) Rhodamine 123 is a probe of transmembrane potential in isolated rat liver mitochondria: spectral and metabolic properties. Biochim Biophys Acta 850:436–448

    Article  CAS  PubMed  Google Scholar 

  19. Babu GN, Kumar A, Chandra R et al (2008) Elevated inflammatory markers in a group of amyotrophic lateral sclerosis patients from northern India. Neurochem Res 33:1145–1149

    Article  CAS  PubMed  Google Scholar 

  20. Vamos E, Pardutz A, Varga H et al (2009) l-kynurenine combined with probenecid and the novel synthetic kynurenic acid derivative attenuate nitroglycerin-induced nNOS in the rat caudal trigeminal nucleus. Neuropharmacology 57:425–429

    Article  CAS  PubMed  Google Scholar 

  21. Leipnitz G, Schumacher C, Dalcin KB et al (2007) In vitro evidence for an antioxidant role of 3-hydroxykynurenine and 3-hydroxyanthranilic acid in the brain. Neurochem Int 50:83–94

    Article  CAS  PubMed  Google Scholar 

  22. Prescott C, Weeks AM, Staley KJ, Partin KM (2006) Kynurenic acid has a dual action on AMPA receptor responses. Neurosci Lett 402:108–112

    Article  CAS  PubMed  Google Scholar 

  23. Swartz KJ, During MJ, Freese A et al (1990) Cerebral synthesis and release of kynurenic acid: antagonist of excitatory amino acid receptors. J Neuosci 10:2965–2973

    CAS  Google Scholar 

  24. Wu HQ, Pereira EF, Bruno JP et al (2009) The astrocyte-serived alpha7 nicotinic receptor antagonist kynurenic acid controls extracellular glutamate levels in the prefrontal cortex. J Mol Neurosci. doi: 10.1007/s12031-009-9235-2

  25. Vamos E, Pardutz A, Klivenyi P et al (2009) The role of kynurenines in disorders of the central nervous system: possibilities for neuroprotection. J Neurol Sci 283:21–27

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We acknowledge the council of scientific and industrial research for financial support to AK in the form of a senior research fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Nagesh Babu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kumar, A., Nagesh Babu, G. In Vivo Neuroprotective Effects of Peripheral Kynurenine on Acute Neurotoxicity Induced by Glutamate in Rat Cerebral Cortex. Neurochem Res 35, 636–644 (2010). https://doi.org/10.1007/s11064-009-0114-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-009-0114-6

Keywords

Navigation