Skip to main content

Advertisement

Log in

Elevated Inflammatory Markers in a Group of Amyotrophic Lateral Sclerosis Patients from Northern India

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

The role of cytokines in the pathophysiology of amyotrophic lateral sclerosis (ALS) and its relation to clinical outcome has not been clearly defined. We evaluated tumor necrosis factor-alpha (TNF-α), interferon-γ (IFN-γ) and nitric oxide (NO) levels in the serum of 22 ALS patients and 20 controls. Serum TNF-α levels and IFN-γ levels were significantly (P < 0.001) elevated in ALS patients. We also observed NO levels to be significantly (P < 0.05) increased with respect to normal subjects. We further noticed positive correlation between the duration of ALS and these proinflammatory molecule levels. Exitotoxicity and oxidative stress are known to play a crucial role in the neurodegeneration observed in ALS. Since high levels of TNF-α are known to be cytotoxic, it could be that a complex interplay of these effectors may be one of the factors underlying the progression of ALS. This study confirms the involvement of inflammation in ALS and the need to develop surrogate markers to check the progression of this disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Tandan R, Bradley WG (1985) Amyotrophic lateral sclerosis: part 1. Clinical features, pathology, and ethical issues in management. Ann Neurol 18:271–280

    Article  PubMed  CAS  Google Scholar 

  2. Tandan R, Bradley WG (1985) Amyotrophic lateral sclerosis: part 2. Etiopathogenesis. Ann Neurol 18:419–431

    Article  PubMed  CAS  Google Scholar 

  3. Young AB, Penney JB, Dauth GW et al (1983) Glutamate or aspartate as a possible neurotransmitter of cerebral corticofugal fibers in the monkey. Neurology 33:1513–1516

    PubMed  CAS  Google Scholar 

  4. Fonnum F (1984) Glutamate: a neurotransmitter in mammalian brain. J Neurochem 42:1–11

    Article  PubMed  CAS  Google Scholar 

  5. O’Brien RJ, Fischbach GD (1986) Modulation of embryonic chick motoneuron glutamate sensitivity by interneurons and agonists. J Neurosci 6:3290–3296

    PubMed  CAS  Google Scholar 

  6. Choi DW (1988) Glutamate neurotoxicity and diseases of the nervous system. Neuron 1:623–634

    Article  PubMed  CAS  Google Scholar 

  7. Babu GN, Bawari M (1997) Single microinjection of l-glutamate induces oxidative stress in discrete regions of rat brain. Biochem Mol biol Int 43:1207–1217

    PubMed  CAS  Google Scholar 

  8. Bawari M, Babu GN (2003) Metabolic responses in discrete regions of rat brain following acute administration of glutamate. Neurochem Res 28:1345–1349

    Article  PubMed  CAS  Google Scholar 

  9. Babu GN, Bawari M, Mathur VN, Kalita J, Misra UK (1998) Blood glutamate levels in patients with motor neuron disease. Clin Chim Acta 273:195–200

    Article  PubMed  CAS  Google Scholar 

  10. Silveira RC, Procianoy RS (2003) Interleukin-6 and tumor necrosis factor-alpha levels in plasma and cerebrospinal fluid of term newborn infants with hypoxic-ischemic encephalopathy. J Pediatr 143:625–629

    Article  PubMed  CAS  Google Scholar 

  11. Ergenekon E, Gucuyener K, Erbas D et al (2004) Cerebrospinal fluid and serum vascular endothelial growth factor and nitric oxide levels in newborns with hypoxic ischemic encephalopathy. Brain Dev 26:283–286

    Article  PubMed  Google Scholar 

  12. Fogal B, Hewett JA, Hewett SJ (2005) Interleukin-1beta potentiates neuronal injury in a variety of injury models involving energy deprivation. J Neuroimmunol 161:93–100

    Article  PubMed  CAS  Google Scholar 

  13. Basu A, Lazovic J, Krady JK et al (2005) Interleukin-1 and the interleukin-1 type 1 receptor are essential for the progressive neurodegeneration that ensues subsequent to a mild hypoxic/ischemic injury. J Cereb Blood Flow Metab 25:17–29

    Article  PubMed  CAS  Google Scholar 

  14. Lyng K, Munkeby BH, Saugstad OD et al (2005) Effect of interleukin-10 on newborn piglet brain following hypoxia-ischemia and endotoxin-induced inflammation. Biol Neonate 87:207–216

    Article  PubMed  CAS  Google Scholar 

  15. Oygur N, Sonmez O, Saka O et al (1998) Predictive value of plasma and cerebrospinal fluid tumour necrosis factor-alpha and interleukin-1 beta concentrations on outcome of full term infants with hypoxic-ischaemic encephalopathy. Arch Dis Child Fetal Neonatal Ed 79:F190–F193

    Article  PubMed  CAS  Google Scholar 

  16. Moser M, Murphy KM (2000) Dendritic cell regulation of TH1–TH2 development. Nat Immunol 1:199–205

    Article  PubMed  CAS  Google Scholar 

  17. Jensen MB, Hegelund IV, Lomholt ND et al (2000) IFN-gamma enhances microglial reactions to hippocampal axonal degeneration. J Neurosci 20:3612–3621

    PubMed  CAS  Google Scholar 

  18. Pouly S, Becher B, Blain M et al (2000) Interferon-gamma modulates human oligodendrocyte susceptibility to Fas-mediated apoptosis. J Neuropathol Exp Neurol 59:280–286

    PubMed  CAS  Google Scholar 

  19. Bo L, Dawson TM, Wesselingh S et al (1994) Induction of nitric oxide synthase in demyelinating regions of multiple sclerosis brains. Ann Neurol 36:778–786

    Article  PubMed  CAS  Google Scholar 

  20. Dawson VL, Dawson TM (1996) Nitric oxide neurotoxicity. J Chem Neuroanat 10:179–190

    Article  PubMed  CAS  Google Scholar 

  21. Lee SC, Dickson DW, Liu W et al (1993) Induction of nitric oxide synthase activity in human astrocytes by interleukin-1 beta and interferon-gamma. J Neuroimmunol 46:19–24

    Article  PubMed  CAS  Google Scholar 

  22. Moncada S, Higgs A (1993) The l-arginine–nitric oxide pathway. N Engl J Med 329:2002–2012

    Article  PubMed  CAS  Google Scholar 

  23. Rhodes P, Leone AM, Francis PL et al (1995) The l-arginine:nitric oxide pathway is the major source of plasma nitrite in fasted humans. Biochem Biophys Res Commun 209:590–596

    Article  PubMed  CAS  Google Scholar 

  24. Brooks BR (1994) El Escorial World Federation of Neurology criteria for the diagnosis of amyotrophic lateral sclerosis. Subcommittee on Motor Neuron Disease/Amyotrophic lateral sclerosis of the World Federation of Neurology Research group on Neuromuscular disease and the El Escorial ‘Clinical limits of amytrophic lateral sclerosis’ workshop contributors. J Neurol Sci 124(Suppl):96–107

    Article  PubMed  Google Scholar 

  25. Norris FH, Calanchini PR, Fallat RJ et al (1974) The administration of guanidine in amyotrophic lateral sclerosis. Neurology 24:721–728

    PubMed  Google Scholar 

  26. Taskiran D, Sagduyu A, Yuceyar N et al (2000) Increased cerebrospinal fluid and serum nitrite and nitrate levels in amyotrophic lateral sclerosis. Int J Neurosci 101:65–72

    Article  PubMed  CAS  Google Scholar 

  27. Green LC, Wagner DA, Glogowski J et al (1982) Analysis of nitrate, nitrite, and [15N] nitrate in biological fluids. Anal Biochem 126:131–138

    Article  PubMed  CAS  Google Scholar 

  28. Czlonkowska A, Ciesielska A, Gromadzka G, Kurkowska-Jastrzebska I (2005) Estrogen and cytokines production—the possible cause of gender differences in neurological diseases. Curr Pharm Des 11(8):1017–1030

    Article  PubMed  CAS  Google Scholar 

  29. Moreau C, Devos D, Brunaud-Danel V et al (2005) Elevated IL-6 and TNF-alpha levels in patients with ALS: inflammation or hypoxia? Neurology 65:1958–1960

    Article  PubMed  CAS  Google Scholar 

  30. Poloni M, Facchetti D, Mai R et al (2000) Circulating levels of tumour necrosis factor-alpha and its soluble receptors are increased in the blood of patients with amyotrophic lateral sclerosis. Neurosci Lett 287:211–214

    Article  PubMed  CAS  Google Scholar 

  31. Holmoy T, Roos PM, Kvale EO (2006) ALS: cytokine profile in cerebrospinal fluid T-cell clones. Amyotroph Lateral Scler 7:183–186

    Article  PubMed  CAS  Google Scholar 

  32. Gupta RC, Milatovic D, Dettbarn WD (2002) Involvement of nitric oxide in myotoxicity produced by diisopropylphosphorofluoridate (DFP)-induced muscle hyperactivity. Arch Toxicol 76:715–726

    Article  PubMed  CAS  Google Scholar 

  33. Watanabe T, Akishita M, Toba K, Kozaki K, Eto M, Sugimoto N, Kiuchi T, Hashimotoa M, Shirakawad W, Ouchia Y (2000) Influence of sex and age on serum nitrite/nitrate concentration in healthy subjects. Clin Chim Acta 301:169–179

    Article  PubMed  CAS  Google Scholar 

  34. Salter M, Duffy C, Garthwaite J Strijbos PJ (1996) Ex vivo measurement of brain tissue nitrite and nitrate accurately reflects nitric oxide synthase activity in vivo. J Neurochem 66:1683–1690

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

This study was funded by a research grant awarded to G.N.B by the Council of Science and Technology, UP, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Nagesh Babu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Babu, G.N., Kumar, A., Chandra, R. et al. Elevated Inflammatory Markers in a Group of Amyotrophic Lateral Sclerosis Patients from Northern India. Neurochem Res 33, 1145–1149 (2008). https://doi.org/10.1007/s11064-007-9564-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-007-9564-x

Keywords

Navigation