Skip to main content

Advertisement

Log in

Brain-Specific Aminopeptidase: From Enkephalinase to Protector Against Neurodegeneration

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

The major breakthrough discovery of enkephalins as endogenous opiates led our attempts to determine their inactivation mechanisms. Because the NH2-terminal tyrosine is absolutely necessary for the neuropeptides to exert analgesic effects, and aminopeptidase activities are extraordinarily high in the brain, a specific “amino-enkephalinase” should exist. Several aminopeptidases were identified in the central nervous system during the search. In fact, our laboratory found two novel neuron-specific aminopeptidases: NAP and NAP-2. NAP is the only functionally active brain-specific enzyme known. Its synaptic location coupled with its limited substrate specificity could constitute a “functional” specificity and contribute to enkephalin-specific functions. In addition, NAP was found to be essential for neuron growth, differentiation, and death. Thus, aminopeptidases are likely important for mental health and neurological diseases. Recently, puromycin-sensitive aminopeptidase (PSA) was identified as a modifier of tau-induced neurodegeneration. Because the enzymatic similarity between PSA and NAP, we believe that the depletion of NAP in Alzheimer’s disease (AD) brains plays a causal role in the development of AD pathology. Therefore, use of the puromycin-sensitive neuron-aminopeptidase NAP could provide neuroprotective mechanisms in AD and similar neurodegenerative diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Hui K-S, Lajtha A (1983) Neuropeptides. In: Lajtha A (ed) Handbook of neurochemistry, 2nd edn., vol. 4. Plenum, New York, pp 1–19

  2. Taylor A (1993) Aminopeptidases: structure and function. FASEB J 7:290–298

    PubMed  CAS  Google Scholar 

  3. Taylor A (1993) Aminopeptidases: towards a mechanism of action. Trends Biochem Sci 18:167–171

    PubMed  CAS  Google Scholar 

  4. Yao T, Cohen RE (1999) Giant proteases: beyond the proteasome. Curr Biol 9: R551–R553

    Article  PubMed  CAS  Google Scholar 

  5. Lendeckel U, Arndt M, Frank K, Spiess A, Reinhold D, Ansorge S (2000) Modulation of WNT-5A expression by actinonin: linkage of APN to the WNT-pathway? Adv Exp Med Biol 477:35–41

    PubMed  CAS  Google Scholar 

  6. Stoltze L, Schirle M, Schwarz G, Schroter C, Thompson MW, Hersh LB, Kalbacher H, Stevanovic S, Rammensee HG, Schild H (2000) Two new proteases in the MHC class I processing pathway. Nat Immunol 1:413–418

    Article  PubMed  CAS  Google Scholar 

  7. Hui K-S (2007) Neuropeptidases. In: Lajtha A, Banik NL (eds), Handbook of neurochemistry and molecular neurobiology: neural protein metabolism and function, 3rd edn., vol. 7. Springer-Verlag, Berlin, Heidelberg

  8. Nakanish S, Inoue A, Kita T, Nakamura M, Chang ACY, Cohen SN, Numa S (1979) Nucleotide sequence of cloned cDNA for bovine corticotropin-β-lipotropin precursor. Nature 278:423–424

    Article  Google Scholar 

  9. Gubler U, Seeburg P, Hoffman BJ, Gage LP, Udenfriend S (1982) Molecular cloning establishes proenkephalin as precursor of enkephalin-containing peptides. Nature 295:206–208

    Article  PubMed  CAS  Google Scholar 

  10. Boileu G, Barbeau C, Jeannotte L, Chretien M, Drouin J (1983) Complete structure of the porcine proopiomelanocortin mRNA derived from the nucleotide sequence of cloned cDNA. Nucleic Acids Res 11:8063–8071

    Article  Google Scholar 

  11. Yoshikawa K, Williams C, Sabol SL (1984) Rat brain preproenkephalin mRNA, cDNA cloning, primary structure, and distribution in the central nervous system. J Biol Chem 259:14301–14308

    PubMed  CAS  Google Scholar 

  12. Civelli O, Douglass J, Goldstein A, Herbert E (1985) Sequence and expression of the rat prodynorphin gene. Proc Natl Acad Sci USA 82:4291–4295

    Article  PubMed  CAS  Google Scholar 

  13. Nothacker HP, Reinschied RK, Mansour A, Henningsen RA, Ardati A, Monsma FJ, Watson SJ, Civelli O (1996) Primary structure and tissue distribution of the orphanin FQ precursor. Proc Natl Acad Sci USA 93:8677–8682

    Article  PubMed  CAS  Google Scholar 

  14. Molleraeu C, Simons MJ, Soulariue P, Liners F, Vassart G, Meunier JC, Parmentier M (1996) Structure tissue distribution and chromosomal localization of the prepronociceptin gene. Proc Natl Acad Sci USA 93:8666–8670

    Article  Google Scholar 

  15. Hook VYH, Reisine TD (2001) Endorphin. In: Creighton TE (ed) Encyclopedia of molecular medicine, pp 1161–1164

  16. Frenk H, McCarty BC, Lieberkind JC (1978) Different brain areas mediate the analgesic and epileptic properties of enkephalin. Science 200:335–337

    Article  PubMed  CAS  Google Scholar 

  17. Lee JJ, Hahm ET, Min BI, Cho YW (2004) Activation of protein kinase C antagonizes the opioid inhibition of calcium current in rat spinal dorsal horn neurons. Brain Res 1017:108–119

    Article  PubMed  CAS  Google Scholar 

  18. De Wied D, Bohus B, van Ree JM, Urban I (1978) Behavioral and electrophysiological effects of peptides related to lipotropin (β-LPH) J. Pharmacol Exp Ther 204:570–580

    Google Scholar 

  19. Holaday JH, Loh HH, Li CH (1978) Unique behavioral effects of β-endorphin and their relationship to thermoregulation and hypothalamic function. Life Sci 22:1525–1536

    Article  PubMed  CAS  Google Scholar 

  20. Brands B, Thornhill JB, Hirst M, Gowdey CW (1979) Suppression of food intake and body weight gain by naloxone in rats. Life Sci 24:1773–1778

    Article  PubMed  CAS  Google Scholar 

  21. Meyerson BJ, Terenius L (1977) β-endorphin and male sexual behavior. Eur J Pharmacol 42:191–192

    Article  PubMed  CAS  Google Scholar 

  22. Morley JE. 1981. The endocrinology of the opiates and opioid peptides. Metabolism 30:195–209

    Article  PubMed  CAS  Google Scholar 

  23. Bloom F, Segal D, Ling N, Guillemin R (1976) Endorphins: profound behavioral effects in rats suggest new etiological factors in mental illness. Science 194:630–632

    Article  PubMed  CAS  Google Scholar 

  24. Jacquet YF, Marks N (1976) The C-fragment of β-lipotropin: an endogenous neuroleptic or antipsychotogen? Science 194:632–635

    Article  PubMed  CAS  Google Scholar 

  25. Matsuzaki S, Ikeda H, Akiyama G, Sato M, Moribe S, Suzuki T, Nagase H, Cools AR, Koshikawa N (2004) Role of mu- and delta-opioid receptors in the nucleus accumbens in turning behaviour of rats. Neuropharmacology 46:1089–1096

    Article  PubMed  CAS  Google Scholar 

  26. Goodman RR, Fricker LD, Snyder SH (1983) Enkephalins. In: Krieger DT, Brownstein MJ, Martin JB (eds) Brain peptides. John Wiley & Sons, New York, pp 827–849

    Google Scholar 

  27. Patey G, De La Baume S, Schwartz J-C, Gros C, Roques B-P, Fournie-Zaluski M-C, Soroca-Lucas E (1981) Selective protection of methionine enkephalin release from brain slices by enkephalinase inhibition. Science 212:1153–1155

    Article  PubMed  CAS  Google Scholar 

  28. Schwartz J-C (1983) Metabolism of enkephalins and the inactivating neuropeptidase concept. Trends Neurosci 6:15–18

    Article  Google Scholar 

  29. Lee C-M, Snyder SH (1982) Dipeptidyl-aminopeptidase III of rat brain. J Biol Chem 257:12043–12050

    PubMed  CAS  Google Scholar 

  30. Horsthemke B, Hamprecht B., Bauer K (1983) Heterogeneous distribution of enkephalin-degrading peptidases between neuronal and glial cells. Biochem Biophys Res Comm 115:423–429

    Article  PubMed  CAS  Google Scholar 

  31. Llorens C, Cacel G, Swerts J-P, Perdrisot R, Fournie-Zaluski K-C, Schwartz J-C, Roques B-P (1980) Rational design of enkephalinase inhibitor: substrate specificity of enkephalinase studied from inhibitory potency of various dipeptides. Biochem Biophys Res Commun 96:1710–1716

    Article  PubMed  CAS  Google Scholar 

  32. Barnes K, Turner AJ, Kenny AJ (1988) Electronmicroscopic immunocytochemistry of pig brain shows that endopeptidase 24.11 is localized in neuronal membranes. Neurosci Lett 94:64–69

    Article  PubMed  CAS  Google Scholar 

  33. Skidgel RA, Erdos EG (2004) Angiotensin-converting enzyme (ACE) and neprilysin hydrolyze neuropeptides: a brief history, the beginning and follow-ups to early studies. Peptides 25:521–525

    Article  PubMed  CAS  Google Scholar 

  34. Howell S, Murray H, Scott CS, Turner AJ, Kenny AJ (1991) A highly sensitive EL.IS.A. for endopeptidase-24.11, the common acute-lymphoblastic-leukaemia antigen (CALLA, CD-10), applicable to material of porcine and human origin. Biochem J 278:417–421

    PubMed  CAS  Google Scholar 

  35. Knight M, Klee WA (1978) The relationship between enkephalin degradation and opiate receptor occupancy. J Biol Chem 253:3843–3847

    PubMed  CAS  Google Scholar 

  36. Cox BM (1982) Endogenous opioid peptides: a guide to structures and terminology. Life Sci 31:1645–1658

    Article  PubMed  CAS  Google Scholar 

  37. Amar C, Vilkas E, Laurent S, Gautray B, Schmitt H (1983) A new enkephalin analogue: trans-4-hydroxycinnamoyl-glycyl-glycyl-phenylalanyl-leucine synthesis and biological properties. Int J Peptide Protein Res 22:434–436

    Article  CAS  Google Scholar 

  38. Lentzen H., Palenker J (1983) Localization of the thiorphan-sensitive endopeptidase, termed enkephalinase A, on glial cells. FEBS Lett 153:93–97

    Article  PubMed  CAS  Google Scholar 

  39. Schwartz J-C, Costentin J, Lecomte J-M (1985) Pharmacology of enkephalinase inhibitors. Trends Pharmacol Sci 6:472–476

    Article  CAS  Google Scholar 

  40. Zhang A-Z, Yang H-Y, Costa E (1982) Nociception enkephalin content and dipeptidyl carboxypeptidase activity in brain of mice treated with exopeptidase inhibitors. Neuropharmacol 21:625–630

    Article  CAS  Google Scholar 

  41. De La Baume S. Yi CC, Schwartz J-C, Marcais-Collado H, Costentin J (1983) Participation of both “enkephalinase” and aminopeptidase activities in the metabolism of endogenous enkephalins. Neurosci 8:143–151

    Article  Google Scholar 

  42. Herman ZS,Strachura Z, Laskawiec G, Kowalski J, Obuchowicz E (1985) Antinociceptive effects of puromycin and bacitracin. Pol J Pharmacol 37:133–140

    CAS  Google Scholar 

  43. Look AT, Ashmun RA, Shapiro LH, Peiper SC (1989) Human myeloid plasma membrane glycoprotein CD13 (gp150) is identical to aminopeptidase. N J Clin Invest 83:1299–1307

    CAS  Google Scholar 

  44. Razak K, Newland AC (1992) Induction of CD13 expression on fresh myeloid leukaemia: correlation of CD13 expression with aminopeptidase-N activity. Leuk Res 16:625–630

    Article  PubMed  CAS  Google Scholar 

  45. Hersh LB, Aboukhair N, Watson S (1987) Immunohistochemical localization of aminopeptidase M in rat brain and periphery: relationship of enzyme localization and enkephalin metabolism. Peptides 8:523–532

    Article  PubMed  CAS  Google Scholar 

  46. McLellan S, Dyer SH, Rodriguez G, Hersh LB (1988) Studies on the tissue distribution of the puromycin-sensitive enkephalin-degrading aminopeptidases. J Neurochem 51:1552–1559

    Article  PubMed  CAS  Google Scholar 

  47. Dyer SH, Slaughter CA, Orth K, Moomaw CR, Hersh LB (1990) Comparison of the soluble and membrane-bound forms of the puromycin-sensitive enkephalin-degrading aminopeptidases from rat. J Neurochem 54:547–554

    Article  PubMed  CAS  Google Scholar 

  48. Tobler AR, Constam DB, Schmitt-Graff A, Malipiero U, Schlapbach R, Fontana A (1997) Cloning of the human puromycin-sensitive aminopeptidase and evidence for expression in neuron. J Neurochem 68:889–897

    Article  PubMed  CAS  Google Scholar 

  49. Thompson MW, Tobler A, Fontana A, Hersh LB (1999) Cloning and analysis of the gene for the human puromycin-sensitive aminopeptidase. Biochem Biophys Res Commun 258:234–240

    Article  PubMed  CAS  Google Scholar 

  50. Brooks DR, Hooper NM, Isaac RE (2003) The Caenorhabditis elegans orthologue of mammalian puromycin-sensitive aminopeptidase has roles in embryogenesis and reproduction. J Biol Chem 278:42795–42801

    Article  PubMed  CAS  Google Scholar 

  51. Roques BP (1985) Enkephalinase inhibitors and molecular exploration of the differences between active sites of enkephalinase and the angiotensin conversion enzyme. J Pharmacol (Paris) 16:5–31

    CAS  Google Scholar 

  52. Osada T, Ikegami S, Takiguchi-Hayashi K, Yamazaki Y, Katoh-Fukui Y, Higashinakagawa T, Sakaki Y, Takeuchi T (1999) Increased anxiety and impaired pain response in puromycin-sensitive aminopeptidase gene-deficient mice obtained by a mouse gene-trap method. J Neurosci 19:6068–6078

    PubMed  CAS  Google Scholar 

  53. Osada T, Watanabe G, Kondo S, Toyoda M, Sakaki Y, Takeuchi T (2001) Male reproductive defects caused by puromycin-sensitive aminopeptidase deficiency in mice. Mol Endocrinol 15:960–971

    Article  PubMed  CAS  Google Scholar 

  54. Konig M, Zimmer AM, Steiner H, Holmes PV, Crawley J, Brownstein MJ, Simmer A (1996) Pain responses anxiety and aggression in mice deficient in pre-enkephalin. Nature 383:535–538

    Article  PubMed  CAS  Google Scholar 

  55. Thompson MW Govindaswami M, Hersh LB (2003) Mutation of active site residues of the puromycin-sensitive aminopeptidase: conversion of the enzyme into a catalytically inactive binding protein. Arch Biochem Biophys 413:236–242

    Article  CAS  Google Scholar 

  56. Wilce MCJ, Bond CS, Dixon NE, Freeman HC, Guss JM, Lilley PE, Wilce JA (1998) Structure and mechanism of a proline-specific aminopeptidase from Escherichia coli. Proc Nat Acad Sci USA 95:3472–3477

    Article  PubMed  CAS  Google Scholar 

  57. Thunnissen MMGM, Nordlund P, Haeggström JZ (2001) Crystal structure of human leukotrine A4 hydrolyse, a bifunctional enzyme in inflammation. Nat Struct Biol 8:131–135

    Article  PubMed  CAS  Google Scholar 

  58. Wei L, Alhenc-Gelas F, Corvol P, Clauser E (1991) The two homologous domains of human angiotensin I-converting enzyme are both catalytically active. J Biol Chem 266:9002–9008

    PubMed  CAS  Google Scholar 

  59. Shen Y, Joachimiak A, Rosner MR, Tang W-J (2006) Structures of human insulin-degrading enzyme reveal a new substrate recognition mechanism. Nature 443:870–874

    Article  PubMed  CAS  Google Scholar 

  60. Johnson GD, Hersh LB (1990) Studies on the subsite specificity of the rat brain puromycin-sensitive aminopeptidase. Arch Biochem Biophys 276:305–309

    Article  PubMed  CAS  Google Scholar 

  61. Hui K-S, Hui M, Lajtha A (1983) Properties of a brain membrane aminoenkephalinase: inhibition studies. In: Sun G, Bazan N, Wu J-Y, Porcellati G, Sun AY (eds) Neural membranes. Humana Press, NJ, pp 375–393

    Google Scholar 

  62. Turner AJ, Murphy LJ, Medeios MS, Barnes K (1996) Endopeptidase-24.11(neprilysin) and relatives: twenty years on. Adv Exptl Med Biol 389:141–148

    CAS  Google Scholar 

  63. Constam DB, Tobler AR, Rensing-Ehl A, Kemler I, Hersh LB, Fontana A (1995) Puromycin-sensitive aminopeptidase: sequence analysis, expression, and functional characterization. J Biol Chem 270:26931–26939

    Article  PubMed  CAS  Google Scholar 

  64. Sekine K, Fujii H, Abe F (1999) Induction of apoptosis by bestatin (ubenimex) in human leukemic cell lines. Leukemia 13:729–734

    Article  PubMed  CAS  Google Scholar 

  65. Schulz C, Perezgasga L, Fuller MT (2001) Genetic analysis of dPSA, the Drosophila orthologue of puromycin-sensitive aminopeptidase, suggests redundancy of aminopeptidases. Dev Genes Evol 211:581–588

    Article  PubMed  CAS  Google Scholar 

  66. Hui M, Palkovits M, Lajtha A, Budai D, Hui K-S (1995) Changes in puromycin-sensitive aminopeptidase in postmortem schizophrenic brain regions. Neurochem Int 27:433–441

    Article  PubMed  CAS  Google Scholar 

  67. Schonlein C, Loffler J, Huber G (1994) Purification and characterization of a novel metalloprotease from human brain with the ability to cleave substrates derived from the N-terminus of beta-amyloid protein. Biochem Biophys Res Commun 201:45–53

    Article  PubMed  CAS  Google Scholar 

  68. Minnasch P, Yamamoto Y, Ohkubo I, Nishi K (2003) Demonstration of puromycin-sensitive alanyl aminopeptidase in Alzheimer disease brain. Leg Med (Tokyo) 5 (supply 1): S285–S287

  69. Ingram EM, Spillantini MG (2002) Tau gene mutations: dissecting the pathogenesis of FTDP-17. Trends Mol Med 8:555–562

    Article  PubMed  CAS  Google Scholar 

  70. Lee VM, Goedert M, Trojanowski JQ (2001) Neurodegenerative tauopathies. Annu Rev Neurosci 24:1121–1159

    Article  PubMed  CAS  Google Scholar 

  71. Hutton M, Lendon CL, Rizzu P, Baker M, Froelich S, Houlden H, Pickering-Brown S, Chakraverty S, Isaacs A, Grover A, Hackett J, Adamson J, Lincoln S, Dickson D, Davies P, Petersen RC, Stevens M, de Graaff E, Wauters E, van Baren J, Hillebrand M, Joosse M, Kwon JM, Nowotny P, Che LK, Norton J, Morris JC, Reed LA, Trojanowski J, Basun H, Lannfelt L, Neystat M, Fahn S, Dark F, Tannenberg T, Dodd PR, Hayward N, Kwok JB, Schofield PR, Andreadis A, Snowden J, Craufurd D, Neary D, Owen F, Oostra BA, Hardy J, Goate A, van Swieten J, Mann D, Lynch T, Heutink P (1998) Association of missense and 5′-splice-site mutations in tau with the inherited dementia FTDP-17. Nature 393:702–705

    Article  PubMed  CAS  Google Scholar 

  72. Grundke-Iqbal I, Iqbal K, Tung YC, Quinlan M, Wisniewski HM, Binder LI (1986) Abnormal phosphorylation of the microtubule-associated protein tau (tau) in Alzheimer cytoskeletal pathology. Proc Natl Acad Sci USA 83:4913–4917

    Article  PubMed  CAS  Google Scholar 

  73. Kosik KS, Shimura H (2005) Phosphorylated tau and the neurodegenerative foldopathies. Biochim Biophys Acta 1739:298–310

    PubMed  CAS  Google Scholar 

  74. Lee VM, Balin BJ, Otvos L Jr, Trojanowski JQ (1991) A68: a major subunit of paired helical filaments and derivatized forms of normal tau. Science 251:675–678

    Article  PubMed  CAS  Google Scholar 

  75. Gamblin TC, Chen F, Zambrano A, Abraha A, Lagalwar S, Guillozet AL, Lu M, Fu Y, Garcia-Sierra F, LaPointe N, Miller R, Berry RW, Binder LI, Cryns VL (2003) Caspase cleavage of tau: linking amyloid and neurofibrillary tangles in Alzheimer’s disease. Proc Natl Acad Sci USA 100:10032–10037

    Article  PubMed  CAS  Google Scholar 

  76. Bancher C, Grundke-Iqbal I, Iqbal K, Fried VA, Smith HT, Wisniewski HM (1991) Abnormal phosphorylation of tau precedes ubiquitination in neurofibrillary pathology of Alzheimer disease. Brain Res 539:11–18

    Article  PubMed  CAS  Google Scholar 

  77. Gong CX, Liu F, Grundke-Iqbal I, Iqbal K (2005) Posttranslational modifications of tau protein in Alzheimer’s disease. J Neural Transm 112:813–838

    Article  PubMed  CAS  Google Scholar 

  78. Iqbal K, Grundke-Iqbal I (1991) Ubiquitination and abnormal phosphorylation of paired helical filaments in Alzheimer’s disease. Mol Neurobiol 5:399–410

    Article  PubMed  CAS  Google Scholar 

  79. Liu F, Zaidi T, Iqbal K, Grundke-Iqbal I, Merkle RK, Gong CX (2002) Role of glycosylation in hyperphosphorylation of tau in Alzheimer’s disease. FEBS Lett 512:101–106

    Article  PubMed  CAS  Google Scholar 

  80. Wang JZ, Grundke-Iqbal I, Iqbal K (1996) Glycosylation of microtubule-associated protein tau: an abnormal posttranslational modification in Alzheimer’s disease. Nat Med 2:871–875

    Article  PubMed  CAS  Google Scholar 

  81. Amadoro G, Serafino AL, Barbato C, Ciotti MT, Sacco A, Calissano P, Canu N (2004) Role of N-terminal tau domain integrity on the survival of cerebellar granule neurons. Cell Death Differ 11:217–230

    Article  PubMed  CAS  Google Scholar 

  82. Chen F, David D, Ferrari A, Gotz J (2004) Posttranslational modifications of tau–role in human tauopathies and modeling in transgenic animals. Curr Drug Targets 5:503–515

    Article  PubMed  CAS  Google Scholar 

  83. Arai T, Guo JP, McGeer PL (2005) Proteolysis of nonphosphorylated and phosphorylated tau by thrombin. J Biol Chem 280:5145–5153

    Article  PubMed  CAS  Google Scholar 

  84. Mercken M, Grynspan F, Nixon RA (1995) Differential sensitivity to proteolysis by brain calpain of adult human tau, fetal human tau and PHF-tau. FEBS Lett 368:10–14

    Article  PubMed  CAS  Google Scholar 

  85. Kosik KS, Ahn J, Stein R, Yeh LA (2002) Discovery of compounds that will prevent tau pathology. J Mol Neurosci 19:261–266

    Article  PubMed  CAS  Google Scholar 

  86. Price DL, Tanzi RE, Borchelt DR, Sisodia SS (1998) Alzheimer’s disease: genetic studies and transgenic models. Annu Rev Genet 32:461–493

    Article  PubMed  CAS  Google Scholar 

  87. Santacruz K, Lewis J, Spires T, Paulson J, Kotilinek L, Ingelsson M, Guimaraes A, DeTure M, Ramsden M, McGowan E, Forster C, Yue M, Orne J, Janus C, Mariash A, Kuskowski M, Hyman B, Hutton M, Ashe KH (2005) Tau suppression in a neurodegenerative mouse model improves memory function. Science 309:476–481

    Article  PubMed  CAS  Google Scholar 

  88. Hardy J, Selkoe DJ (2002) The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science 297:353–356

    Article  PubMed  CAS  Google Scholar 

  89. Sisodia SS, St George-Hyslop PH (2002) Gamma-Secretase Notch, Abeta and Alzheimer’s disease: where do the presenilins fit in? Nat Rev Neurosci 3:281–290

    Article  PubMed  CAS  Google Scholar 

  90. D′Souza I, Schellenberg GD (2005) Regulation of tau isoform expression and dementia. Biochim Biophys Acta 1739:104–115

    PubMed  CAS  Google Scholar 

  91. Karsten SL, Sang T-K, Gehman LT, Chatterjee S, Liu J, Lawless GM, Sengupta S, Berry RW, Pomakian J, Oh HS, Schulz C, Hui K-S, Wiedau-Pazos M, Vinters HV, Binder LI, Geschwind DH, Jackson GR (2006) A genomic screen for modifiers of tauopathy identifies puromycin-sensitive aminopeptidase as an inhibitor of tau-Induced neurodegeneration. Neuron 51:549–560

    Article  PubMed  CAS  Google Scholar 

  92. Sengupta S, Horowitz PM, Karsten SL, Jackson GR, Geschwind DH, Fu Y, Berry RW, Binder LI (2006) Degradation of Tau protein by puromycin-sensitive aminopeptidase in vitro. Biochemistry 45:15111–15119

    Article  PubMed  CAS  Google Scholar 

  93. Springer AD, Agranoff BW (1976) Electroconvulsive shock––or puromycin––induced retention deficits in goldfish given two-avoidance sessions. Behav Biol 18:309–324

    Article  PubMed  CAS  Google Scholar 

  94. Flexner JB, Flexner LB, Stellar E (1963) Memory in mice as affected by intracerebral puromycin. Science 141:57–59

    Article  PubMed  CAS  Google Scholar 

  95. Eisenstein EM, Altman HJ, Barraco DA, Barraco RA, Lovell KL (1983) Brain protein synthesis and memory: the use of antibiotic probes. Fed Proc 42:3080–3085

    PubMed  CAS  Google Scholar 

  96. Flexner LB, Gambetti P, Flexner JB, Roberts RB (1971) Studies on memory: distribution of peptidyl-puromycin in subcellular fractions of mouse brain. Proc Natl Acad Sci USA 68:26–28

    Article  PubMed  CAS  Google Scholar 

  97. Hui M, Hui KS (2003) Neuron-specific aminopeptidase and puromycin-sensitive aminopeptidase in rat brain development. Neurochem Res 28:855–860

    Article  PubMed  CAS  Google Scholar 

  98. Osada T, Watanabe G, Sakaki Y, Takeuchi T (2001) Puromycin-sensitive aminopeptidase is essential for the maternal recognition of pregnancy in mice. Mol Endocrinol 15:882–893

    Article  PubMed  CAS  Google Scholar 

  99. Shaw SG, Cook WF (1978) Localization and characterisation of aminopeptidase in the CNS and the hydrolysis of enkephalin. Nature 274:816–817

    Article  PubMed  CAS  Google Scholar 

  100. Hui K-S, Hui M (1996) An automatic continuous-flow aminopeptidase detector and its applications. Anal Biochem 242:271–273

    Article  PubMed  CAS  Google Scholar 

  101. Hui K-S, Saito M, Hui M (1998) A novel neuron-specific aminopeptidase in Rat brain synaptosomes: its identification, purification, and characterization. J Biol Chem 273:31053–31060

    Article  PubMed  CAS  Google Scholar 

  102. Shannon JD, Baramova EN, Bjarnason JB, Fox JW (1989) Amino acid sequence of a Crotalus atrox venom metalloproteinase which cleaves type IV collagen and gelatin. J Biol Chem 264:11575–11583

    PubMed  CAS  Google Scholar 

  103. Hui M, Lajtha A, Hui K-S (1993) A new soluble brain-specific protein: identification and partial purification. Brain Res 606:36–43

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Koon-Sea Hui.

Additional information

Special issue in honor of Naren Banik.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hui, KS. Brain-Specific Aminopeptidase: From Enkephalinase to Protector Against Neurodegeneration. Neurochem Res 32, 2062–2071 (2007). https://doi.org/10.1007/s11064-007-9356-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-007-9356-3

Keywords

Navigation