Skip to main content

Advertisement

Log in

Species-Related Differences in the Properties of TRPC4 Channels in Intestinal Myocytes of Rodents

  • Published:
Neurophysiology Aims and scope

TRPC4 proteins form receptor-operated cation channels that are activated in synergy by M2 and M3 ACh receptors coupled to Gq/11 and Gi/o proteins, respectively. These channels are widely expressed in the brain and smooth muscles where they perform a number of important functions, including control of GABA release from the dendrites and cholinergic excitation of smooth muscles. The biophysical properties of TRPC4 currents directly activated by GTPγS in mouse cells remain mostly unknown. We, thus, aimed to investigate these channels in mouse ileal myocytes where a prominent TRPC4-mediated cation current termed mICAT is observed, and to compare the behavior of this current to that of the better studied mICAT in guinea-pig myocytes. Although cation current responses to carbachol at –50 mV (i.e., at the value close to the normal resting potential in these cells) were highly similar, mICAT in the mouse lacked the permissive action of intracellular Ca2+ on channel opening. The slope factor of the muscarinic cation conductance, which is a defining property of voltage-dependent behavior, was identical in both species. There were differences in the potential at which the current peaked at negative potentials, but not in the maximal current densities. Major differences were found in the kinetics of mICAT voltagedependent relaxations, which were much faster in the mouse. The above rodent species employ two different strategies for the open probability increase by activated G-proteins; the mean open time was shorter in the mouse compared to that in the guinea-pig (15.1 ± 5.2 msec, n = 8, vs. 80.0 ± 19.7 msec, n = 9; P < 0.01). Correspondingly, the instantaneous frequency of channel opening was much higher in the mouse (154.1 ± 18.8 sec–1 vs. 70.2 ± 7.3 sec–1 in the guinea-pig; P < 0.001). These functional differences are discussed based on structural differences found in the corresponding TRPC4 amino acid sequences of the two rodent species, which are mainly clustered in the cytosolic C-terminus of TRPC4 protein.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. M. Eglen, S. S. Hegde, and N. Watson, “Muscarinic receptor subtypes and smooth muscle function,” Pharmacol. Rev., 48, 531-565 (1996).

    CAS  PubMed  Google Scholar 

  2. A. V. Zholos, “Muscarinic effects on ion channels in smooth muscle cells”, Neurophysiology, 31, No. 3, 173-187 (1999).

  3. K. M. Sanders, “G protein-coupled receptors in gastrointestinal physiology. IV. Neural regulation of gastrointestinal smooth muscle,” Am. J. Physiol., 275, G1-G7 (1998).

    CAS  PubMed  Google Scholar 

  4. T. B. Bolton, S. A. Prestwich, A. V. Zholos, and D. V. Gordienko. “Excitation-contraction coupling in gastrointestinal and other smooth muscles,” Annu. Rev. Physiol., 61, 85-115 (1999).

    Article  CAS  PubMed  Google Scholar 

  5. H. Kuriyama, K. Kitamura, T. Itoh, and R. Inoue, “Physiological features of visceral smooth muscle cells, with special reference to receptors and ion channels,” Physiol. Rev., 78, 811-920 (1998).

    CAS  PubMed  Google Scholar 

  6. A. V. Zholos, “Regulation of TRP-like muscarinic cation current in gastrointestinal smooth muscle with special reference to PLC/InsP3 /Ca2+ system,” Acta Pharmacol. Sin., 27, 833-842 (2006).

    Article  CAS  PubMed  Google Scholar 

  7. I. So and K. W. Kim, “Nonselective cation channels activated by the stimulation of muscarinic receptors in mammalian gastric smooth muscle,” J. Smooth Muscle Res., 39, 231-247 (2003).

    Article  CAS  PubMed  Google Scholar 

  8. T. B. Bolton, “Mechanisms of action of transmitters and other substances on smooth muscle,” Physiol. Rev., 59, 606-718 (1979).

    CAS  PubMed  Google Scholar 

  9. A. V. Zholos, V. V. Tsvilovskyy, and T. B. Bolton, “Muscarinic cholinergic excitation of smooth muscle: signal transduction and single cationic channel properties,” Neurophysiology, 35, Nos. 3/4, 283-301 (2003).

  10. A. V. Zholos and T. B. Bolton, “Muscarinic receptor subtypes controlling the cationic current in guinea-pig ileal smooth muscle,” Br. J. Pharmacol., 122, 885-893 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. H. D. Yan, H. Okamoto, T. Unno, et al, “Effects of G-protein-specific antibodies and Gβγ subunits on the muscarinic receptor-operated cation current in guineapig ileal smooth muscle cells,” Br. J. Pharmacol., 139, 605-615 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. R. Inoue and G. Isenberg, “Intracellular calcium ions modulate acetylcholine-induced inward current in guinea-pig ileum,” J. Physiol., 424, 73-92 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. P. Pacaud and T. B. Bolton, “Relation between muscarinic receptor cationic current and internal calcium in guinea-pig jejunal smooth muscle cells,” J. Physiol., 441, 477-499 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. D. V. Gordienko and A. V. Zholos, “Regulation of muscarinic cationic current in myocytes from guineapig ileum by intracellular Ca2+ release: a central role of inositol 1,4,5-trisphosphate receptors,” Cell Calcium, 36, 367-386 (2004).

    Article  CAS  PubMed  Google Scholar 

  15. Ya. D. Tsytsyura, A. V. Zholos, M. F. Shuba, and T. B. Bolton, “Effect of intracellular Ca2+ on muscarinic cationic current in guinea pig ileal smooth muscle cells,” Neurophysiology, 32, No.3, 198-199 (2000).

  16. C. D. Benham, T. B. Bolton, and R. J. Lang, “Acetylcholine activates an inward current in single mammalian smooth muscle cells,” Nature, 316, 345-347 (1985).

    Article  CAS  PubMed  Google Scholar 

  17. R. Inoue, K. Kitamura, and H. Kuriyama, “Acetylcholine activates single sodium channels in smooth muscle cells,” Pflugers Arch., 410, 69-74 (1987).

    Article  CAS  PubMed  Google Scholar 

  18. R. Inoue and G. Isenberg, “Effect of membrane potential on acetylcholine-induced inward current in guinea-pig ileum”. J. Physiol., 424, 57-71 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. A. V. Zholos and T. B. Bolton, “G-protein control of voltage dependence as well as gating of muscarinic metabotropic channels in guinea-pig ileum,” J. Physiol., 478, 195-202 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. A. V. Dresviannikov, T. B. Bolton, and A. V. Zholos, “Muscarinic receptor-activated cationic channels in murine ileal myocytes,” Br. J. Pharmacol., 149, 179-187 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. T. Sakamoto, T. Unno, T. Kitazawa, et al. “Three distinct muscarinic signalling pathways for cationic channel activation in mouse gut smooth muscle cells,” J. Physiol., 582, 41-61 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. V. V. Tsvilovskyy, A. V. Zholos, T. Aberle, et al. “Deletion of TRPC4 and TRPC6 in mice impairs smooth muscle contraction and intestinal motility in vivo,Gastroenterology, 137, 1415-1424 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  23. K. P. Lee, J. Y. Jun, I. Y. Chang, et al., “TRPC4 is an essential component of the nonselective cation channel activated by muscarinic stimulation in mouse visceral smooth muscle cells,” Mol. Cells, 20, 435-441 (2005).

    CAS  PubMed  Google Scholar 

  24. J. P. Jeon, C. Hong, E. J. Park, et al. “Selective Gαi subunits as novel direct activators of transient receptor potential canonical TRPC4 and TRPC5 channels,” J. Biol. Chem., 287, 17029-17039 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. K. Otsuguro, J. Tang, Y. Tang, et al. “Isoform-specific inhibition of TRPC4 channel by phosphatidylinositol 4,5-bisphosphate,” J. Biol. Chem., 283, 10026-10036 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. M. X. Zhu, “Multiple roles of calmodulin and other Ca2+-binding proteins in the functional regulation of TRP channels,” Pflugers Arch., 451, 105-115 (2005).

    Article  CAS  PubMed  Google Scholar 

  27. K. Venkatachalam and C. Montell, “TRP channels,” Annu. Rev. Biochem., 76, 387-417 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. A. V. Zholos, A. A. Zholos, and T. B. Bolton, “G-proteingated TRP-like cationic channel activated by muscarinic receptors: effect of potential on single-channel gating,” J. Gen. Physiol., 123, 581-598 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. I. C. Spyropoulos, T. D. Liakopoulos, P. G. Bagos, and S. J. Hamodrakas, “TMRPres2D: high quality visual representation of transmembrane protein models,” Bioinformatics, 20, 3258-3260 (2004).

    Article  CAS  PubMed  Google Scholar 

  30. J. Soding, “Protein homology detection by HMM-HMM comparison,” Bioinformatics, 21, 951-960 (2005).

    Article  PubMed  Google Scholar 

  31. M. A. Larkin, G. Blackshields, N. P. Brown, et al., “Clustal W and Clustal X version 2.0,” Bioinformatics, 23, 2947-2948 (2007).

    Article  CAS  PubMed  Google Scholar 

  32. B. Nilius and V. Flockerzi, “What do we really know and what do we need to know: some controversies, perspectives, and surprises,” Handb. Exp. Pharmacol., 223, 1239-1280 (2014).

    Article  PubMed  Google Scholar 

  33. M. Freichel, V. Tsvilovskyy, and J. E. Camacho-Londono, “TRPC4- and TRPC4-containing channels,” Handb. Exp. Pharmacol., 222, 85-128 (2014).

    Article  CAS  PubMed  Google Scholar 

  34. J. Tang, Y. Lin, Z. Zhang, et al., “Identification of common binding sites for calmodulin and inositol 1,4,5-trisphosphate receptors on the carboxyl termini of Trp channels,” J. Biol. Chem., 276, 21303-21310 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. A. V. Zholos and T. B. Bolton, “A novel GTP-dependent mechanism of ileal muscarinic metabotropic channel desensitization,” Br. J. Pharmacol., 119, 997-1012 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. E. Palovcak, L. Delemotte, M. L. Klein, and V. Carnevale, “Comparative sequence analysis suggests a conserved gating mechanism for TRP channels,” J. Gen. Physiol., 146, 37-50 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. J. Chen, D. Kang, J. Xu, et al., “Species differences and molecular determinant of TRPA1 cold sensitivity,” Nat. Commun., 4, 2501 (2013).

    PubMed  PubMed Central  Google Scholar 

  38. M. P. Neeper, Y. Liu, T. L. Hutchinson, et al., “Activation properties of heterologously expressed mammalian TRPV2: Evidence for species dependence,” J. Biol. Chem., 282, 15894-15902 (2007).

    Article  CAS  PubMed  Google Scholar 

  39. S. P. Lim and T. B. Bolton, “A calcium-dependent rather than a G-protein mechanism is involved in the inward current evoked by muscarinic receptor stimulation in dialysed single smooth muscle cells of small intestine,” Br. J. Pharmacol., 95, 325-327 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Zholos.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dryn, D.O., Gryshchenko, A.V., Bolton, T.B. et al. Species-Related Differences in the Properties of TRPC4 Channels in Intestinal Myocytes of Rodents. Neurophysiology 48, 220–229 (2016). https://doi.org/10.1007/s11062-016-9592-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11062-016-9592-8

Keywords

Navigation