Skip to main content
Log in

Molecular imaging of pediatric brain tumors: comparison of tumor metabolism using 18F-FDG-PET and MRSI

  • Clinical Study
  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

Magnetic resonance spectroscopic imaging (MRSI) and 18F-fluorodeoxyglucose positron emission tomography (FDG-PET) are non-invasive imaging techniques routinely used to evaluate tumor malignancy in adults with brain tumors. We compared the metabolic activity of pediatric brain tumors using FDG-PET and MRSI. Children (n = 37) diagnosed with a primary brain tumor underwent FDG-PET and MRSI within two weeks of each other. Tumor metabolism was classified as inactive, active or highly active using the maximum choline:N-acetyl-asparate (Cho:NAA) on MRSI and the highest tumor uptake on FDG-PET. A voxel-wise comparison was used to evaluate the area with the greatest abnormal metabolism. Agreement between methods was assessed using the percent agreement and the kappa statistic (κ). Pediatric brain tumors were metabolically heterogeneous on FDG-PET and MRSI studies. Active tumor metabolism was observed more frequently using MRSI compared to FDG-PET, and agreement in tumor classification was weak (κ = 0.16, p = 0.12), with 42 % agreement (95 % CI = 25–61 %). Voxel-wise comparison for identifying the area of greatest metabolic activity showed overlap in the majority (62 %) of studies, though exact agreement between techniques was low (29.4 %, 95 % CI = 15.1–47.5 %). These results indicate that FDG-PET and MRSI detect similar but not always identical regions of tumor activity, and there is little agreement in the degree of tumor metabolic activity between the two techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Pollack IF, Jakacki RI (2011) Childhood brain tumors: epidemiology, current management and future directions. Nat Rev Neurol 7:495–506

    Article  PubMed  Google Scholar 

  2. Central Brain Tumor Registry of the United States (CBTRUS) (2010) CBTRUS statistical report: primary and central nervous system tumors diagnosed in the United States in 2004–2006. CBTRUS, Hindsdale, pp 10–25

    Google Scholar 

  3. Verma R, Zacharaki EI, Ou Y, Cai H, Chawla S, Lee SK, Melhem ER, Wolf R, Davatzikos C (2008) Multiparametric tissue characterization of brain neoplasms and their recurrence using pattern classification of MR images. Acad Radiol 15:966–977

    Article  PubMed  Google Scholar 

  4. Yang I, Huh NG, Smith ZA, Han SJ, Parsa AT (2010) Distinguishing glioma recurrence from treatment effect after radiochemotherapy and immunotherapy. Neurosurg Clin N Am 21:181–186

    Article  PubMed  CAS  Google Scholar 

  5. Peet AC, Lateef S, MacPherson L, Natarajan K, Sgouros S, Grundy RG (2007) Short echo time 1 H magnetic resonance spectroscopy of childhood brain tumours. Childs Nerv Syst 23:163–169

    Article  PubMed  CAS  Google Scholar 

  6. Astrakas LG, Zurakowski D, Tzika AA, Zarifi MK, Anthony DC, De Girolami U, Tarbell NJ, Black PM (2004) Noninvasive magnetic resonance spectroscopic imaging biomarkers to predict the clinical grade of pediatric brain tumors. Clin Cancer Res 10:8220–8228

    Article  PubMed  CAS  Google Scholar 

  7. Tzika AA, Astrakas LG, Zarifi MK, Zurakowski D, Poussaint TY, Goumnerova L, Tarbell NJ, Black PM (2004) Spectroscopic and perfusion magnetic resonance imaging predictors of progression in pediatric brain tumors. Cancer 100:1246–1256

    Article  PubMed  Google Scholar 

  8. Marcus KJ, Astrakas LG, Zurakowski D, Zarifi MK, Mintzopoulos D, Poussaint TY, Anthony DC, De Girolami U, Black PM, Tarbell NJ, Tzika AA (2007) Predicting survival of children with CNS tumors using proton magnetic resonance spectroscopic imaging biomarkers. Int J Oncol 30:651–657

    PubMed  CAS  Google Scholar 

  9. Warren KE, Frank JA, Black JL, Hill RS, Duyn JH, Aikin AA, Lewis BK, Adamson PC, Balis FM (2000) Proton magnetic resonance spectroscopic imaging in children with recurrent primary brain tumors. J Clin Oncol 18:1020–1026

    PubMed  CAS  Google Scholar 

  10. Steffen-Smith EA, Shih JH, Hipp SJ, Bent R, Warren KE (2011) Proton magnetic resonance spectroscopy predicts survival in children with diffuse intrinsic pontine glioma. J Neurooncol 105:365–373

    Article  PubMed  Google Scholar 

  11. Padma MV, Said S, Jacobs M, Hwang DR, Dunigan K, Satter M, Christian B, Ruppert J, Bernstein T, Kraus G, Mantil JC (2003) Prediction of pathology and survival by FDG PET in gliomas. J Neurooncol 64:227–237

    Article  PubMed  CAS  Google Scholar 

  12. Di Chiro G (1987) Positron emission tomography using [18F] fluorodeoxyglucose in brain tumors. A powerful diagnostic and prognostic tool. Invest Radiol 22:360–371

    Article  PubMed  Google Scholar 

  13. Patronas NJ, Di Chiro G, Kufta C, Bairamian D, Kornblith PL, Simon R, Larson SM (1985) Prediction of survival in glioma patients by means of positron emission tomography. J Neurosurg 62:816–822

    Article  PubMed  CAS  Google Scholar 

  14. Alavi JB, Alavi A, Chawluk J, Kushner M, Powe J, Hickey W, Reivich M (1988) Positron emission tomography in patients with glioma. A predictor of prognosis. Cancer 62:1074–1078

    Article  PubMed  CAS  Google Scholar 

  15. Ogawa T, Uemura K, Shishido F, Yamaguchi T, Murakami M, Inugami A, Kanno I, Sasaki H, Kato T, Hirata K et al (1988) Changes of cerebral blood flow, and oxygen and glucose metabolism following radiochemotherapy of gliomas: a PET study. J Comput Assist Tomogr 12:290–297

    Article  PubMed  CAS  Google Scholar 

  16. Imani F, Boada FE, Lieberman FS, Davis DK, Deeb EL, Mountz JM (2010) Comparison of proton magnetic resonance spectroscopy with fluorine-18 2-fluoro-deoxyglucose positron emission tomography for assessment of brain tumor progression. J Neuroimaging [Epub ahead of print 14 Dec 2010]

  17. Zukotynski KA, Fahey FH, Kocak M, Alavi A, Wong TZ, Treves ST, Shulkin BL, Haas-Kogan DA, Geyer JR, Vajapeyam S, Boyett JM, Kun LE, Poussaint TY (2011) Evaluation of 18F-FDG PET and MRI associations in pediatric diffuse intrinsic brain stem glioma: a report from the pediatric brain tumor consortium. J Nucl Med 52:188–195

    Article  PubMed  Google Scholar 

  18. Pirotte B, Acerbi F, Lubansu A, Goldman S, Brotchi J, Levivier M (2007) PET imaging in the surgical management of pediatric brain tumors. Childs Nerv Syst 23:739–751

    Article  PubMed  Google Scholar 

  19. Utriainen M, Metsahonkala L, Salmi TT, Utriainen T, Kalimo H, Pihko H, Makipernaa A, Harila-Saari A, Jyrkkio S, Laine J, Nagren K, Minn H (2002) Metabolic characterization of childhood brain tumors: comparison of 18F-fluorodeoxyglucose and 11C-methionine positron emission tomography. Cancer 95:1376–1386

    Article  PubMed  Google Scholar 

  20. Borgwardt L, Hojgaard L, Carstensen H, Laursen H, Nowak M, Thomsen C, Schmiegelow K (2005) Increased fluorine-18 2-fluoro-2-deoxy-d-glucose (FDG) uptake in childhood CNS tumors is correlated with malignancy grade: a study with FDG positron emission tomography/magnetic resonance imaging coregistration and image fusion. J Clin Oncol 23:3030–3037

    Article  PubMed  Google Scholar 

  21. Duyn JH, Gillen J, Sobering G, van Zijl PC, Moonen CT (1993) Multisection proton MR spectroscopic imaging of the brain. Radiology 188:277–282

    PubMed  CAS  Google Scholar 

  22. Tedeschi G, Bertolino A, Campbell G, Barnett AS, Duyn JH, Jacob PK, Moonen CT, Alger JR, Di Chiro G (1996) Reproducibility of proton MR spectroscopic imaging findings. AJNR Am J Neuroradiol 17:1871–1879

    PubMed  CAS  Google Scholar 

  23. Hipp SJ, Steffen-Smith E, Hammoud D, Shih JH, Bent R, Warren KE (2011) Predicting outcome of children with diffuse intrinsic pontine gliomas using multiparametric imaging. Neuro-oncol 13:904–909

    Article  PubMed  Google Scholar 

  24. Jenkinson M, Smith S (2001) A global optimisation method for robust affine registration of brain images. Med Image Anal 5:143–156

    Article  PubMed  CAS  Google Scholar 

  25. Weber MA, Henze M, Tuttenberg J, Stieltjes B, Meissner M, Zimmer F, Burkholder I, Kroll A, Combs SE, Vogt-Schaden M, Giesel FL, Zoubaa S, Haberkorn U, Kauczor HU, Essig M (2010) Biopsy targeting gliomas: do functional imaging techniques identify similar target areas? Invest Radiol 45:755–768

    Article  PubMed  Google Scholar 

  26. Fulham MJ, Melisi JW, Nishimiya J, Dwyer AJ, Di Chiro G (1993) Neuroimaging of juvenile pilocytic astrocytomas: an enigma. Radiology 189:221–225

    PubMed  CAS  Google Scholar 

  27. Prat R, Galeano I, Lucas A, Martinez JC, Martin M, Amador R, Reynes G (2010) Relative value of magnetic resonance spectroscopy, magnetic resonance perfusion, and 2-(18F) fluoro-2-deoxy-d-glucose positron emission tomography for detection of recurrence or grade increase in gliomas. J Clin Neurosci 17:50–53

    Article  PubMed  CAS  Google Scholar 

  28. Parmar H, Lim TC, Yin H, Chua V, Khin LW, Raidy T, Hui F (2005) Multi-voxel MR spectroscopic imaging of the brain: utility in clinical setting-initial results. Eur J Radiol 55:401–408

    Article  PubMed  Google Scholar 

  29. Mandal PK (2011) In vivo proton magnetic resonance spectroscopic signal processing for the absolute quantitation of brain metabolites. Eur J Radiol [Epub ahead of print 22 Apr 2011]

  30. Horska A, Barker PB (2010) Imaging of brain tumors: MR spectroscopy and metabolic imaging. Neuroimaging Clin N Am 20:293–310

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was presented in part at the 2011 ASCO annual meeting in Chicago, IL. The views expressed in this article are those of the authors and do not reflect the official policy of the National Institutes of Health, Department of Army, Department of Defense, or U.S. Government. Research was supported in part by the Intramural Research Program of the National Institutes of Health, National Cancer Institute, Center for Cancer Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katherine E. Warren.

Additional information

Sean J. Hipp and Emilie A. Steffen-Smith contributed equally to this study.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hipp, S.J., Steffen-Smith, E.A., Patronas, N. et al. Molecular imaging of pediatric brain tumors: comparison of tumor metabolism using 18F-FDG-PET and MRSI. J Neurooncol 109, 521–527 (2012). https://doi.org/10.1007/s11060-012-0918-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11060-012-0918-0

Keywords

Navigation