Skip to main content

Diagnostic Applications of Nuclear Medicine: Brain Tumors

Nuclear Oncology

Abstract

PET/CT and PET/MR can be used with various radiopharmaceuticals to assess the mechanisms underlying biochemical changes and physiopathology of brain tumors.

Amino acid tracers are frequently used for most clinical questions. These tracers include, among others, [11C]methionine, L-3,4-dihydroxy-6[18F]fluorophenylalanine ([18F]FDOPA and O-(2-18F-fluoroethyl)-L-tyrosine (18F-FLT). Amino acid tracers are particularly accurate to distinguish tumor recurrence and radiation necrosis. The role of [18F]FDG, the earliest PET tracer used for diagnosis and monitoring of brain tumors, is being redefined, due to the availability of amino acid tracers. For in vivo prediction of tumor grade however [18F]FDG is still more accurate than most amino acid tracers.

Higher baseline values of tracer uptake as well as lower percent changes after therapy in treated patients predict shorter survival – this has been shown for several tracers.

PET/CT and PET/MR can be used after surgery to assess the presence of residual tumor. PET, in combination with MR, is increasingly used for the definition of the tumor volume that has to be irradiated. Identification of the part of the tumor that displays highest metabolic activity can also be used to direct stereotaxic biopsy.

Other tracers have been synthetized to explore different biochemical processes, for example, hypoxia (e.g., [18F]-fluoromisonidazole), DNA synthesis (3-deoxy-3-[18F]-fluorothymidine), and membrane proliferation (radiolabeled choline). However, these tracers have a less established role in clinical practice.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

[11C]MET:

[11C]methionine

[18F]FDG:

2-Deoxy-2-[18F]fluoro-d-glucose

[18F]FDOPA:

L-3,4-dihydroxy-6-[18F]fluorophenylalanine

123I-IAZA:

123I-iodoazomycin arabinoside

123I-IMT:

123I-alpha-methyltyrosine, a tyrosine analog transported as L-tyrosine by the neutral amino acid transporter

18F-FAZA:

18F-azomycin arabinoside

18F-FES:

16α-18F-fluoro-17β-oestradiol

18F-FET:

O-(2-18F-Fluoroethyl)-L-Tyrosine, a tyrosine analog

18F-FLT:

18F-fluorothymidine

18F-FMAU:

18F-2-fluoro-5-methyl-1-beta-d-arabinofuranosyluracil

18F-MISO:

18F-fluoromisonidazole

64Cu-ATSM:

64Cu-diacetyl-bis(N4-methylsemicarbazone)

99mTc-ECD:

99mTc-ethylcisteinate dimer

99mTc-HMPAO:

99mTc-hexamethylpropyleneamine oxime

ADC:

Apparent diffusion coefficient, a parameter of MR imaging

AJCC:

American Joint Committee on Cancer

BBB:

Blood–brain barrier

BTV:

Biological tumor volume (the extent of tumor based on PET imaging); the combination of GTV and BTV provides the planning target volume for radiation therapy

CBF:

Cerebral blood flow

CI:

Confidence interval

CMRglc :

Cerebral metabolic rate for glucose

CNS:

Central nervous system

CSF:

Cerebrospinal fluid

CT:

X-ray computed tomography

DG:

2-Deoxyglucose

DOTA:

1,4,7,10-Tetraazacyclododecane-1,4,7,10-tetraacetic acid

DOTANOC:

DOTA-1-Nal3-octreotide

DOTATATE:

DOTA- Tyr3-octreotate

DOTATOC:

DOTA-octreotate

DTPA:

Diethylenetriaminepentaacetic acid

DWI:

Diffusion-weighted imaging, an MR imaging technique

EGFR:

Epidermal growth factor receptor; the mutated form EGFRvIII plays a prominent role in tumorigenesis and proangiogenic signaling

FLAIR:

Fluid-attenuated inversion recovery, an MR imaging technique

GBM:

Glioblastoma multiforme

GTV:

Gross tumor voume (the extent of the tumor on morphologic imaging)

IDH:

Isocitrate dehydrogenase; mutations of this enzyme occur more frequently in oligodendroglial and astrocytic tumors

KPS:

Karnofsky performance status

LAT1:

L-type amino acid transporter 1

M:

Metastasis status according to the AJCC/UICC TNM staging system

MDR1:

Multidrug resistance gene 1, a characteristic associated with aggressive tumors; this gene encodes for P-glyoprotein

MGMT:

Methyl guanine DNA methyl transferase, a DNA repair enzyme; methylation of MGMT promoter is associated with increased overall survival

MIB-1:

Marker of cell proliferation used for stratification of grades of brain tumors

MoAb:

Monoclonal antibody

MPNST:

Malignant peripheral nerve sheath tumor

MR:

Magnetic resonance

MRI:

Magnetic resonance imaging

N:

Lymph node status according to the AJCC/UICC TNM staging system

PET:

Positron emission tomography

PET/CT:

Positron emission tomography/computed tomography

PET/MR:

Positron emission tomography/magnetic resonance

PI3K:

Phosphatidylinositol 3-kinase

PNET:

Primitive neuroectodermic tumor

pRIT:

Pretargeting radioimmunotherapy

PTEN:

Phosphatase and tensin homolog is a tumor suppressor; PTEN deletions indicate a poor prognosis

RIT:

Radioimmunotherapy

ROC:

Receiver operating characteristic, a statistical analysis to assess the performance of a binary classifier

ROI:

Region of interest

SPECT:

Single photon emission computed tomography

SPECT/CT:

Single photon emission computed tomography/computed tomography

SST:

Somatostatin

SSTR:

Somatostatin receptors

SUV:

Standardized uptake value

T:

Tumor status according to the AJCC/UICC TNM staging system

T/N:

Ratio of tumor uptake to normal brain uptake

TBR:

Tumor-to-background ratio

TNM:

AJCC/UICC staging system based on parameters “T” (tumor status), “N” (lymph node status), and “M” (distant metastasis status)

TP53:

Tumor protein p53, also known as cellular tumor antigen p53, phosphoprotein p53, tumor suppressor p53, antigen NY-CO-13, or transformation-related protein 53 (TRP53)

UICC:

Union Internationale Contre le Cancer (International Union Against Cancer)

VEGF:

Vascular endothelial growth factor

VOI:

Volume of interest

WHO:

World Health Organization

References

  1. Ostrom QT, et al. CBTRUS statistical report: primary brain and central nervous system tumors diagnosed in the United States in 2006–2010. Neuro Oncol. 2013;15 Suppl 2:ii1–56.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Wohrer A, et al. The Austrian brain tumour registry: a cooperative way to establish a population-based brain tumour registry. J Neurooncol. 2009;95(3):401–11.

    Article  PubMed  Google Scholar 

  3. Ostrom QT, et al. CBTRUS statistical report: primary brain and central nervous system tumors diagnosed in the United States in 2007–2011. Neuro Oncol. 2014;16 Suppl 4:iv1–63.

    Article  PubMed  PubMed Central  Google Scholar 

  4. DeAngelis LM. Brain tumors. N Engl J Med. 2001;344(2):114–23.

    Article  CAS  PubMed  Google Scholar 

  5. Ohgaki H, Kleihues P. Population-based studies on incidence, survival rates, and genetic alterations in astrocytic and oligodendroglial gliomas. J Neuropathol Exp Neurol. 2005;64(6):479–89.

    Article  CAS  PubMed  Google Scholar 

  6. Central Nervous System. In: Edge DRBSB, Compton CC, Fritz AG, Greene FL, Trotti A, Moffi HL, editors. AJCC cancer staging manual. New York: Springer; 2010. p. 591–7.

    Google Scholar 

  7. Herholz K, et al. Brain tumors. Semin Nucl Med. 2012;42(6):356–70.

    Article  PubMed  PubMed Central  Google Scholar 

  8. McLendon RE, Halperin EC. Is the long-term survival of patients with intracranial glioblastoma multiforme overstated? Cancer. 2003;98(8):1745–8.

    Article  PubMed  Google Scholar 

  9. Vigneswaran K, Neill S, Hadjipanayis CG. Beyond the World Health Organization grading of infiltrating gliomas: advances in the molecular genetics of glioma classification. Ann Transl Med. 2015;3(7):95.

    PubMed  PubMed Central  Google Scholar 

  10. Kraus JA, et al. Molecular genetic alterations in glioblastomas with oligodendroglial component. Acta Neuropathol. 2001;101(4):311–20.

    CAS  PubMed  Google Scholar 

  11. Louis DN, et al. The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol. 2007;114(2):97–109.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Lau EW, et al. Comparative PET study using F-18 FET and F-18 FDG for the evaluation of patients with suspected brain tumour. J Clin Neurosci. 2010;17(1):43–9.

    Article  PubMed  Google Scholar 

  13. Thompson L, Dong Y, Evans L. Chronic hypoxia increases inducible NOS-derived nitric oxide in fetal guinea pig hearts. Pediatr Res. 2009;65(2):188–92.

    Article  CAS  PubMed  Google Scholar 

  14. Barker 2nd FG, et al. Necrosis as a prognostic factor in glioblastoma multiforme. Cancer. 1996;77(6):1161–6.

    Article  PubMed  Google Scholar 

  15. Weller M, et al. Molecular neuro-oncology in clinical practice: a new horizon. Lancet Oncol. 2013;14(9):e370–9.

    Article  CAS  PubMed  Google Scholar 

  16. Hegi ME, et al. MGMT gene silencing and benefit from temozolomide in glioblastoma. N Engl J Med. 2005;352(10):997–1003.

    Article  CAS  PubMed  Google Scholar 

  17. Mabray MC, Barajas Jr RF, Cha S. Modern brain tumor imaging. Brain Tumor Res Treat. 2015;3(1):8–23.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Mellinghoff IK, et al. Molecular determinants of the response of glioblastomas to EGFR kinase inhibitors. N Engl J Med. 2005;353(19):2012–24.

    Article  CAS  PubMed  Google Scholar 

  19. Sneed PK, et al. Large effect of age on the survival of patients with glioblastoma treated with radiotherapy and brachytherapy boost. Neurosurgery. 1995;36(5):898–903; discussion 903–4.

    Article  CAS  PubMed  Google Scholar 

  20. Saconn PA, et al. Use of 3.0-T MRI for stereotactic radiosurgery planning for treatment of brain metastases: a single-institution retrospective review. Int J Radiat Oncol Biol Phys. 2010;78(4):1142–6.

    Article  PubMed  Google Scholar 

  21. Wen PY, et al. Updated response assessment criteria for high-grade gliomas: response assessment in neuro-oncology working group. J Clin Oncol. 2010;28(11):1963–72.

    Article  PubMed  Google Scholar 

  22. Hilario A, et al. A prognostic model based on preoperative MRI predicts overall survival in patients with diffuse gliomas. AJNR Am J Neuroradiol. 2014;35(6):1096–102.

    Article  CAS  PubMed  Google Scholar 

  23. Anger HO. Medical radioisotope scanning. Vienna: IAEA; 1959.

    Google Scholar 

  24. Strauss HW, et al. Nuclear cerebral angiography. Usefulness in the differential diagnosis of cerebrovascular disease and tumor. Arch Intern Med. 1973;131(2):211–6.

    Article  CAS  PubMed  Google Scholar 

  25. Kaplan WD, et al. Thallium-201 brain tumor imaging: a comparative study with pathologic correlation. J Nucl Med. 1987;28(1):47–52.

    CAS  PubMed  Google Scholar 

  26. Ancri D, et al. Diagnosis of cerebral lesions by Thallium 201. Radiology. 1978;128(2):417–22.

    Article  CAS  PubMed  Google Scholar 

  27. Biersack HJ, Grunwald F, Kropp J. Single photon emission computed tomography imaging of brain tumors. Semin Nucl Med. 1991;21(1):2–10.

    Article  CAS  PubMed  Google Scholar 

  28. Ishibashi M, et al. Thallium-201 in brain tumors: relationship between tumor cell activity in astrocytic tumor and proliferating cell nuclear antigen. J Nucl Med. 1995;36(12):2201–6.

    CAS  PubMed  Google Scholar 

  29. Ciarmiello A, et al. Tumor clearance of technetium 99m-sestamibi as a predictor of response to neoadjuvant chemotherapy for locally advanced breast cancer. J Clin Oncol. 1998;16(5):1677–83.

    Article  CAS  PubMed  Google Scholar 

  30. Benard F, Romsa J, Hustinx R. Imaging gliomas with positron emission tomography and single-photon emission computed tomography. Semin Nucl Med. 2003;33(2):148–62.

    Article  PubMed  Google Scholar 

  31. Yokogami K, et al. Application of SPET using technetium-99m sestamibi in brain tumours and comparison with expression of the MDR-1 gene: is it possible to predict the response to chemotherapy in patients with gliomas by means of 99mTc-sestamibi SPET? Eur J Nucl Med. 1998;25(4):401–9.

    Article  CAS  PubMed  Google Scholar 

  32. Vaalburg W, et al. P-glycoprotein activity and biological response. Toxicol Appl Pharmacol. 2005;207(2 Suppl):257–60.

    Article  CAS  PubMed  Google Scholar 

  33. Jacquier-Sarlin MR, Polla BS, Slosman DO. Oxido-reductive state: the major determinant for cellular retention of technetium-99m-HMPAO. J Nucl Med. 1996;37(8):1413–6.

    CAS  PubMed  Google Scholar 

  34. Jacquier-Sarlin MR, Polla BS, Slosman DO. Cellular basis of ECD brain retention. J Nucl Med. 1996;37(10):1694–7.

    CAS  PubMed  Google Scholar 

  35. Langen KJ, et al. Tomographic studies of rCBF with [99mTc]-HM-PAO SPECT in patients with brain tumors: comparison with C15O2 continuous inhalation technique and PET. J Cereb Blood Flow Metab. 1988;8(6):S90–4.

    Article  CAS  PubMed  Google Scholar 

  36. Suess E, et al. Technetium-99m-d,1-hexamethylpropyleneamine oxime (HMPAO) uptake and glutathione content in brain tumors. J Nucl Med. 1991;32(9):1675–81.

    CAS  PubMed  Google Scholar 

  37. Papazyan JP, et al. Discrepancies between HMPAO and ECD SPECT imaging in brain tumors. J Nucl Med. 1997;38(4):592–6.

    CAS  PubMed  Google Scholar 

  38. Di Chiro G. Brain imaging of glucose utilization in cerebral tumors. Res Publ Assoc Res Nerv Ment Dis. 1985;63:185–97.

    PubMed  Google Scholar 

  39. Sokoloff L, et al. The [14C]deoxyglucose method for the measurement of local cerebral glucose utilization: theory, procedure, and normal values in the conscious and anesthetized albino rat. J Neurochem. 1977;28(5):897–916.

    Article  CAS  PubMed  Google Scholar 

  40. Varrone A, et al. EANM procedure guidelines for PET brain imaging using [18F]FDG, version 2. Eur J Nucl Med Mol Imaging. 2009;36(12):2103–10.

    Article  PubMed  Google Scholar 

  41. Huang SC, et al. Error sensitivity of fluorodeoxyglucose method for measurement of cerebral metabolic rate of glucose. J Cereb Blood Flow Metab. 1981;1(4):391–401.

    Article  CAS  PubMed  Google Scholar 

  42. Di Chiro G, et al. Glucose utilization of cerebral gliomas measured by [18F] fluorodeoxyglucose and positron emission tomography. Neurology. 1982;32(12):1323–9.

    Article  PubMed  Google Scholar 

  43. Patronas NJ, et al. Glycolytic rate (PET) and contrast enhancement (CT) in human cerebral gliomas. AJNR Am J Neuroradiol. 1983;4(3):533–5.

    CAS  PubMed  Google Scholar 

  44. Delbeke D, et al. Optimal cutoff levels of F-18 fluorodeoxyglucose uptake in the differentiation of low-grade from high-grade brain tumors with PET. Radiology. 1995;195(1):47–52.

    Article  CAS  PubMed  Google Scholar 

  45. DeLaPaz RL, et al. Positron emission tomographic study of suppression of gray-matter glucose utilization by brain tumors. AJNR Am J Neuroradiol. 1983;4(3):826–9.

    CAS  PubMed  Google Scholar 

  46. Patronas NJ, et al. Depressed cerebellar glucose metabolism in supratentorial tumors. Brain Res. 1984;291(1):93–101.

    Article  CAS  PubMed  Google Scholar 

  47. Di Chiro G, Brooks RA. PET-FDG of untreated and treated cerebral gliomas. J Nucl Med. 1988;29(3):421–3.

    PubMed  Google Scholar 

  48. Tyler JL, et al. Metabolic and hemodynamic evaluation of gliomas using positron emission tomography. J Nucl Med. 1987;28(7):1123–33.

    CAS  PubMed  Google Scholar 

  49. Piert M, et al. Diminished glucose transport and phosphorylation in Alzheimer’s disease determined by dynamic FDG-PET. J Nucl Med. 1996;37(2):201–8.

    CAS  PubMed  Google Scholar 

  50. Schmidt K, et al. Errors introduced by tissue heterogeneity in estimation of local cerebral glucose utilization with current kinetic models of the [18F]fluorodeoxyglucose method. J Cereb Blood Flow Metab. 1992;12(5):823–34.

    Article  CAS  PubMed  Google Scholar 

  51. Mazziotta JC, et al. Quantitation in positron emission computed tomography: 5 physical – anatomical effects. J Comput Assist Tomogr. 1981;5(5):734–43.

    Article  CAS  PubMed  Google Scholar 

  52. Di Chiro G, Brooks RA. PET quantitation: blessing and curse. J Nucl Med. 1988;29(9):1603–4.

    PubMed  Google Scholar 

  53. Padma MV, et al. Prediction of pathology and survival by FDG PET in gliomas. J Neurooncol. 2003;64(3):227–37.

    Article  CAS  PubMed  Google Scholar 

  54. Levivier M, et al. The integration of metabolic imaging in stereotactic procedures including radiosurgery: a review. J Neurosurg. 2002;97(5 Suppl):542–50.

    PubMed  Google Scholar 

  55. Segtnan EA, et al. F-Fluorodeoxyglucose PET/computed tomography for primary brain tumors. PET Clin. 2015;10(1):59–73.

    Article  PubMed  Google Scholar 

  56. Ishizu K, et al. Effects of hyperglycemia on FDG uptake in human brain and glioma. J Nucl Med. 1994;35(7):1104–9.

    CAS  PubMed  Google Scholar 

  57. Ishizu K, et al. Enhanced detection of brain tumors by [18F]fluorodeoxyglucose PET with glucose loading. J Comput Assist Tomogr. 1994;18(1):12–5.

    Article  CAS  PubMed  Google Scholar 

  58. Spence AM, et al. 18F-FDG PET of gliomas at delayed intervals: improved distinction between tumor and normal gray matter. J Nucl Med. 2004;45(10):1653–9.

    PubMed  Google Scholar 

  59. Henze M, et al. Detection of tumour progression in the follow-up of irradiated low-grade astrocytomas: comparison of 3-[123I]iodo-alpha-methyl- l-tyrosine and 99mTc-MIBI SPET. Eur J Nucl Med Mol Imaging. 2002;29(11):1455–61.

    Article  PubMed  Google Scholar 

  60. Patronas NJ, et al. Work in progress: [18F]fluorodeoxyglucose and positron emission tomography in the evaluation of radiation necrosis of the brain. Radiology. 1982;144(4):885–9.

    Article  CAS  PubMed  Google Scholar 

  61. Rozental JM, et al. Early changes in tumor metabolism after treatment: the effects of stereotactic radiotherapy. Int J Radiat Oncol Biol Phys. 1991;20(5):1053–60.

    Article  CAS  PubMed  Google Scholar 

  62. Pirotte B, et al. PET in stereotactic conditions increases the diagnostic yield of brain biopsy. Stereotact Funct Neurosurg. 1994;63(1–4):144–9.

    CAS  PubMed  Google Scholar 

  63. Tralins KS, et al. Volumetric analysis of 18F-FDG PET in glioblastoma multiforme: prognostic information and possible role in definition of target volumes in radiation dose escalation. J Nucl Med. 2002;43(12):1667–73.

    PubMed  Google Scholar 

  64. Douglas JG, et al. [F-18]-fluorodeoxyglucose positron emission tomography for targeting radiation dose escalation for patients with glioblastoma multiforme: clinical outcomes and patterns of failure. Int J Radiat Oncol Biol Phys. 2006;64(3):886–91.

    Article  CAS  PubMed  Google Scholar 

  65. Singhal T, et al. 11C-l-methionine positron emission tomography in the clinical management of cerebral gliomas. Mol Imaging Biol. 2008;10(1):1–18.

    Article  PubMed  Google Scholar 

  66. Herholz K, Coope D, Jackson A. Metabolic and molecular imaging in neuro-oncology. Lancet Neurol. 2007;6(8):711–24.

    Article  CAS  PubMed  Google Scholar 

  67. van Waarde A, et al. Comparison of sigma-ligands and metabolic PET tracers for differentiating tumor from inflammation. J Nucl Med. 2006;47(1):150–4.

    PubMed  Google Scholar 

  68. Kubota R, et al. Methionine uptake by tumor tissue: a microautoradiographic comparison with FDG. J Nucl Med. 1995;36(3):484–92.

    CAS  PubMed  Google Scholar 

  69. Utriainen M, et al. Evaluation of brain tumor metabolism with [11C]choline PET and 1H-MRS. J Neurooncol. 2003;62(3):329–38.

    Article  CAS  PubMed  Google Scholar 

  70. De Witte O, et al. Positron emission tomography with injection of methionine as a prognostic factor in glioma. J Neurosurg. 2001;95(5):746–50.

    Article  PubMed  Google Scholar 

  71. Kim S, et al. 11C-methionine PET as a prognostic marker in patients with glioma: comparison with 18F-FDG PET. Eur J Nucl Med Mol Imaging. 2005;32(1):52–9.

    Article  CAS  PubMed  Google Scholar 

  72. Pirotte B, et al. Integration of [11C]methionine-positron emission tomographic and magnetic resonance imaging for image-guided surgical resection of infiltrative low-grade brain tumors in children. Neurosurgery. 2005;57(1 Suppl):128–39.

    PubMed  Google Scholar 

  73. Pirotte B, et al. Positron emission tomography for the early postsurgical evaluation of pediatric brain tumors. Childs Nerv Syst. 2005;21(4):294–300.

    Article  PubMed  Google Scholar 

  74. Pirotte BJ, et al. Positron emission tomography-guided volumetric resection of supratentorial high-grade gliomas: a survival analysis in 66 consecutive patients. Neurosurgery. 2009;64(3):471–81.

    Article  PubMed  Google Scholar 

  75. Grosu AL, et al. Validation of a method for automatic image fusion (BrainLAB System) of CT data and 11C-methionine-PET data for stereotactic radiotherapy using a LINAC: first clinical experience. Int J Radiat Oncol Biol Phys. 2003;56(5):1450–63.

    Article  PubMed  Google Scholar 

  76. Nariai T, et al. Usefulness of l-[methyl-11C] methionine-positron emission tomography as a biological monitoring tool in the treatment of glioma. J Neurosurg. 2005;103(3):498–507.

    Article  PubMed  Google Scholar 

  77. Terakawa Y, et al. Diagnostic accuracy of 11C-methionine PET for differentiation of recurrent brain tumors from radiation necrosis after radiotherapy. J Nucl Med. 2008;49(5):694–9.

    Article  PubMed  Google Scholar 

  78. Biersack HJ, et al. Imaging of brain tumors with l-3-[123I]iodo-alpha-methyl tyrosine and SPECT. J Nucl Med. 1989;30(1):110–2.

    CAS  PubMed  Google Scholar 

  79. Langen KJ, et al. SPECT studies of brain tumors with l-3-[123I] iodo-alpha-methyl tyrosine: comparison with PET, 124IMT and first clinical results. J Nucl Med. 1990;31(3):281–6.

    CAS  PubMed  Google Scholar 

  80. Kuwert T, et al. Uptake of iodine-123-alpha-methyl tyrosine by gliomas and non-neoplastic brain lesions. Eur J Nucl Med. 1996;23(10):1345–53.

    Article  CAS  PubMed  Google Scholar 

  81. Weber W, et al. Fluorine-18-FDG PET and iodine-123-IMT SPECT in the evaluation of brain tumors. J Nucl Med. 1997;38(5):802–8.

    CAS  PubMed  Google Scholar 

  82. Schmidt D, et al. 3-[123I]Iodo-alpha-methyl-l-tyrosine uptake in cerebral gliomas: relationship to histological grading and prognosis. Eur J Nucl Med. 2001;28(7):855–61.

    Article  CAS  PubMed  Google Scholar 

  83. Weber WA, et al. Correlation between postoperative 3-[123I]iodo-l-alpha-methyltyrosine uptake and survival in patients with gliomas. J Nucl Med. 2001;42(8):1144–50.

    CAS  PubMed  Google Scholar 

  84. Pauleit D, et al. Comparison of O-(2-18F-fluoroethyl)-l-tyrosine PET and 3-123I-iodo-alpha-methyl-l-tyrosine SPECT in brain tumors. J Nucl Med. 2004;45(3):374–81.

    CAS  PubMed  Google Scholar 

  85. Gotz L, et al. PET and SPECT for radiation treatment planning. Q J Nucl Med Mol Imaging. 2012;56(2):163–72.

    CAS  PubMed  Google Scholar 

  86. Dunet V, Prior JL. FET PET in neuro-oncology and in evaluation of treatment response. PET Clin. 2013;8:147–62.

    Article  PubMed  Google Scholar 

  87. Pauleit D, et al. Whole-body distribution and dosimetry of O-(2-[18F]fluoroethyl)-l-tyrosine. Eur J Nucl Med Mol Imaging. 2003;30(4):519–24.

    Article  CAS  PubMed  Google Scholar 

  88. Weber WA, et al. O-(2-[18F]fluoroethyl)-l-tyrosine and l-[methyl-11C]methionine uptake in brain tumours: initial results of a comparative study. Eur J Nucl Med. 2000;27(5):542–9.

    Article  CAS  PubMed  Google Scholar 

  89. Wester HJ, et al. Synthesis and radiopharmacology of O-(2-[18F]fluoroethyl)-l-tyrosine for tumor imaging. J Nucl Med. 1999;40(1):205–12.

    CAS  PubMed  Google Scholar 

  90. Heiss P, et al. Investigation of transport mechanism and uptake kinetics of O-(2-[18F]fluoroethyl)-l-tyrosine in vitro and in vivo. J Nucl Med. 1999;40(8):1367–73.

    CAS  PubMed  Google Scholar 

  91. Langen KJ, et al. Comparison of fluorotyrosines and methionine uptake in F98 rat gliomas. Nucl Med Biol. 2003;30(5):501–8.

    Article  CAS  PubMed  Google Scholar 

  92. Dunet V, et al. Performance of 18F-fluoro-ethyl-tyrosine (18F-FET) PET for the differential diagnosis of primary brain tumor: a systematic review and meta analysis. J Nucl Med. 2012;53(2):207–14.

    Article  CAS  PubMed  Google Scholar 

  93. Vander Borght T, et al. EANM procedure guidelines for brain tumour imaging using labelled amino acid analogues. Eur J Nucl Med Mol Imaging. 2006;33(11):1374–80.

    Article  CAS  PubMed  Google Scholar 

  94. Pauleit D, et al. Comparison of 18F-FET and 18F-FDG PET in brain tumors. Nucl Med Biol. 2009;36(7):779–87.

    Article  CAS  PubMed  Google Scholar 

  95. Jeong SY, Lim SM. Comparison of 3′-deoxy-3′-[18F]fluorothymidine PET and O-(2-[18F]fluoroethyl)-l-tyrosine PET in patients with newly diagnosed glioma. Nucl Med Biol. 2012;39(7):977–81.

    Article  CAS  PubMed  Google Scholar 

  96. Roelcke U, et al. F-18 choline PET does not detect increased metabolism in F-18 fluoroethyltyrosine-negative low-grade gliomas. Clin Nucl Med. 2012;37(1):e1–3.

    Article  PubMed  Google Scholar 

  97. Calcagni ML, et al. Dynamic O-(2-[18F]fluoroethyl)-l-tyrosine (F-18 FET) PET for glioma grading: assessment of individual probability of malignancy. Clin Nucl Med. 2011;36(10):841–7.

    Article  PubMed  Google Scholar 

  98. Jansen NL, et al. MRI-suspected low-grade glioma: is there a need to perform dynamic FET PET? Eur J Nucl Med Mol Imaging. 2012;39(6):1021–9.

    Article  CAS  PubMed  Google Scholar 

  99. Pyka T, et al. Prediction of glioma recurrence using dynamic 18F-fluoroethyltyrosine PET. AJNR Am J Neuroradiol. 2014;35(10):1924–9.

    Article  CAS  PubMed  Google Scholar 

  100. Becherer A, et al. Brain tumour imaging with PET: a comparison between [18F]fluorodopa and [11C]methionine. Eur J Nucl Med Mol Imaging. 2003;30(11):1561–7.

    Article  CAS  PubMed  Google Scholar 

  101. Talbot JN, et al. FDOPA PET has clinical utility in brain tumour imaging: a proposal for a revision of the recent EANM guidelines. Eur J Nucl Med Mol Imaging. 2007;34(7):1131–2; author reply 1133–4.

    Article  PubMed  Google Scholar 

  102. Karunanithi S, et al. 18F-FDOPA PET/CT for detection of recurrence in patients with glioma: prospective comparison with 18F-FDG PET/CT. Eur J Nucl Med Mol Imaging. 2013;40(7):1025–35.

    Article  CAS  PubMed  Google Scholar 

  103. Tripathi M, et al. Comparative evaluation of F-18 FDOPA, F-18 FDG, and F-18 FLT-PET/CT for metabolic imaging of low grade gliomas. Clin Nucl Med. 2009;34(12):878–83.

    Article  PubMed  Google Scholar 

  104. Shields AF, et al. Cellular sources of thymidine nucleotides: studies for PET. J Nucl Med. 1987;28(9):1435–40.

    CAS  PubMed  Google Scholar 

  105. Mankoff DA, et al. Kinetic analysis of 2-[carbon-11]thymidine PET imaging studies: compartmental model and mathematical analysis. J Nucl Med. 1998;39(6):1043–55.

    CAS  PubMed  Google Scholar 

  106. Grierson JR, et al. Metabolism of 3′-deoxy-3′-[F-18]fluorothymidine in proliferating A549 cells: validations for positron emission tomography. Nucl Med Biol. 2004;31(7):829–37.

    Article  CAS  PubMed  Google Scholar 

  107. Muzi M, et al. Kinetic analysis of 3′-deoxy-3′-18F-fluorothymidine in patients with gliomas. J Nucl Med. 2006;47(10):1612–21.

    CAS  PubMed  Google Scholar 

  108. Ullrich R, et al. Glioma proliferation as assessed by 3′-fluoro-3′-deoxy-l-thymidine positron emission tomography in patients with newly diagnosed high-grade glioma. Clin Cancer Res. 2008;14(7):2049–55.

    Article  CAS  PubMed  Google Scholar 

  109. Fink J, et al. Multi-modality brain tumor imaging – MRI, PET, and PET/MRI. J Nucl Med. 2015;56:1554–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Chen W, et al. Predicting treatment response of malignant gliomas to bevacizumab and irinotecan by imaging proliferation with [18F] fluorothymidine positron emission tomography: a pilot study. J Clin Oncol. 2007;25(30):4714–21.

    Article  CAS  PubMed  Google Scholar 

  111. Hatakeyama T, et al. 11C-methionine (MET) and 18F-fluorothymidine (FLT) PET in patients with newly diagnosed glioma. Eur J Nucl Med Mol Imaging. 2008;35(11):2009–17.

    Article  CAS  PubMed  Google Scholar 

  112. Grosu AL, et al. Positron emission tomography for radiation treatment planning. Strahlenther Onkol. 2005;181(8):483–99.

    Article  PubMed  Google Scholar 

  113. Huang Z, et al. Misdiagnoses of 11C-choline combined with 18F-FDG PET imaging in brain tumours. Nucl Med Commun. 2008;29(4):354–8.

    Article  CAS  PubMed  Google Scholar 

  114. Giovacchini G, et al. C-11 choline versus F-18 fluorodeoxyglucose for imaging meningiomas: an initial experience. Clin Nucl Med. 2009;34(1):7–10.

    Article  PubMed  Google Scholar 

  115. Hara T, et al. Use of 18F-choline and 11C-choline as contrast agents in positron emission tomography imaging-guided stereotactic biopsy sampling of gliomas. J Neurosurg. 2003;99(3):474–9.

    Article  PubMed  Google Scholar 

  116. Ohtani T, et al. Brain tumour imaging with carbon-11 choline: comparison with FDG PET and gadolinium-enhanced MR imaging. Eur J Nucl Med. 2001;28(11):1664–70.

    Article  CAS  PubMed  Google Scholar 

  117. Li FM, et al. 11C-CHO PET in optimization of target volume delineation and treatment regimens in postoperative radiotherapy for brain gliomas. Nucl Med Biol. 2012;39(3):437–42.

    Article  CAS  PubMed  Google Scholar 

  118. Kato T, et al. Metabolic assessment of gliomas using 11C-methionine, [18F] fluorodeoxyglucose, and 11C-choline positron-emission tomography. AJNR Am J Neuroradiol. 2008;29(6):1176–82.

    Article  CAS  PubMed  Google Scholar 

  119. Li W, et al. 11C-choline PET/CT tumor recurrence detection and survival prediction in post-treatment patients with high-grade gliomas. Tumour Biol. 2014;35(12):12353–60.

    Article  CAS  PubMed  Google Scholar 

  120. Tan H, et al. Comparison of MRI, F-18 FDG, and 11C-choline PET/CT for their potentials in differentiating brain tumor recurrence from brain tumor necrosis following radiotherapy. Clin Nucl Med. 2011;36(11):978–81.

    Article  PubMed  Google Scholar 

  121. Markus R, et al. Statistical parametric mapping of hypoxic tissue identified by [18F]fluoromisonidazole and positron emission tomography following acute ischemic stroke. Neuroimage. 2002;16(2):425–33.

    Article  CAS  PubMed  Google Scholar 

  122. Valk PE, et al. Hypoxia in human gliomas: demonstration by PET with fluorine-18-fluoromisonidazole. J Nucl Med. 1992;33(12):2133–7.

    CAS  PubMed  Google Scholar 

  123. Grunbaum Z, et al. Synthesis and characterization of congeners of misonidazole for imaging hypoxia. J Nucl Med. 1987;28(1):68–75.

    CAS  PubMed  Google Scholar 

  124. Bruehlmeier M, et al. Assessment of hypoxia and perfusion in human brain tumors using PET with 18F-fluoromisonidazole and 15O-H2O. J Nucl Med. 2004;45(11):1851–9.

    PubMed  Google Scholar 

  125. Swanson KR, et al. Complementary but distinct roles for MRI and 18F-fluoromisonidazole PET in the assessment of human glioblastomas. J Nucl Med. 2009;50(1):36–44.

    Article  PubMed  Google Scholar 

  126. Hirata K, et al. 18F-Fluoromisonidazole positron emission tomography may differentiate glioblastoma multiforme from less malignant gliomas. Eur J Nucl Med Mol Imaging. 2012;39(5):760–70.

    Article  CAS  PubMed  Google Scholar 

  127. Werner P, et al. Current status and future role of brain PET/MRI in clinical and research settings. Eur J Nucl Med Mol Imaging. 2015;42(3):512–26.

    Article  CAS  PubMed  Google Scholar 

  128. Catana C, et al. PET/MRI for neurologic applications. J Nucl Med. 2012;53(12):1916–25.

    Article  PubMed  Google Scholar 

  129. Charnley N, et al. Early change in glucose metabolic rate measured using FDG-PET in patients with high-grade glioma predicts response to temozolomide but not temozolomide plus radiotherapy. Int J Radiat Oncol Biol Phys. 2006;66(2):331–8.

    Article  CAS  PubMed  Google Scholar 

  130. Boss A, et al. Hybrid PET/MRI of intracranial masses: initial experiences and comparison to PET/CT. J Nucl Med. 2010;51(8):1198–205.

    Article  PubMed  Google Scholar 

  131. Bisdas S, et al. Metabolic mapping of gliomas using hybrid MR-PET imaging: feasibility of the method and spatial distribution of metabolic changes. Invest Radiol. 2013;48(5):295–301.

    Article  CAS  PubMed  Google Scholar 

  132. Preuss M, et al. Integrated PET/MRI for planning navigated biopsies in pediatric brain tumors. Childs Nerv Syst. 2014;30(8):1399–403.

    Article  PubMed  Google Scholar 

  133. Garibotto V, et al. Molecular neuroimaging with PET/MRI. Clin Transl Imaging. 2013;1(1):53–63.

    Article  Google Scholar 

  134. Dunet V, et al. Combination of MRI and dynamic FET PET for initial glioma grading. Nuklearmedizin. 2014;53(4):155–61.

    Article  CAS  PubMed  Google Scholar 

  135. Lustig RA, et al. Imaging response in malignant glioma, RTOG 90–06. Am J Clin Oncol. 2007;30(1):32–7.

    Article  PubMed  Google Scholar 

  136. Patronas NJ, et al. Prediction of survival in glioma patients by means of positron emission tomography. J Neurosurg. 1985;62(6):816–22.

    Article  CAS  PubMed  Google Scholar 

  137. Alavi JB, et al. Positron emission tomography in patients with glioma. A predictor of prognosis. Cancer. 1988;62(6):1074–8.

    Article  CAS  PubMed  Google Scholar 

  138. Santra A, et al. F-18 FDG PET-CT for predicting survival in patients with recurrent glioma: a prospective study. Neuroradiology. 2011;53(12):1017–24.

    Article  PubMed  Google Scholar 

  139. Colavolpe C, et al. FDG-PET predicts survival in recurrent high-grade gliomas treated with bevacizumab and irinotecan. Neuro Oncol. 2012;14(5):649–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Colavolpe C, et al. Independent prognostic value of pre-treatment 18-FDG-PET in high-grade gliomas. J Neurooncol. 2012;107(3):527–35.

    Article  PubMed  Google Scholar 

  141. Brock CS, et al. Early evaluation of tumour metabolic response using [18F]fluorodeoxyglucose and positron emission tomography: a pilot study following the phase II chemotherapy schedule for temozolomide in recurrent high-grade gliomas. Br J Cancer. 2000;82(3):608–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Hillner BE, et al. Impact of dedicated brain PET on intended patient management in participants of the national oncologic PET registry. Mol Imaging Biol. 2011;13(1):161–5.

    Article  PubMed  Google Scholar 

  143. Floeth FW, et al. Prognostic value of O-(2-18F-fluoroethyl)-l-tyrosine PET and MRI in low-grade glioma. J Nucl Med. 2007;48(4):519–27.

    Article  CAS  PubMed  Google Scholar 

  144. Piroth MD, et al. Prognostic impact of postoperative, pre-irradiation 18F-fluoroethyl-l-tyrosine uptake in glioblastoma patients treated with radiochemotherapy. Radiother Oncol. 2011;99(2):218–24.

    Article  CAS  PubMed  Google Scholar 

  145. Hutterer M, et al. O-(2-18F-fluoroethyl)-l-tyrosine PET predicts failure of antiangiogenic treatment in patients with recurrent high-grade glioma. J Nucl Med. 2011;52(6):856–64.

    Article  CAS  PubMed  Google Scholar 

  146. Galldiks N, et al. Assessment of treatment response in patients with glioblastoma using O-(2-18F-fluoroethyl)-l-tyrosine PET in comparison to MRI. J Nucl Med. 2012;53(7):1048–57.

    Article  CAS  PubMed  Google Scholar 

  147. Harris RJ, et al. 18F-FDOPA and 18F-FLT positron emission tomography parametric response maps predict response in recurrent malignant gliomas treated with bevacizumab. Neuro Oncol. 2012;14(8):1079–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Schwarzenberg J, et al. Treatment response evaluation using 18F-FDOPA PET in patients with recurrent malignant glioma on bevacizumab therapy. Clin Cancer Res. 2014;20(13):3550–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Mariani G, et al. A review on the clinical uses of SPECT/CT. Eur J Nucl Med Mol Imaging. 2010;37(10):1959–85.

    Article  PubMed  Google Scholar 

  150. Buck AK, et al. Spect/Ct. J Nucl Med. 2008;49(8):1305–19.

    Article  PubMed  Google Scholar 

  151. Hayashi M, et al. Comparison of methods of attenuation and scatter correction in brain perfusion SPECT. J Nucl Med Technol. 2005;33(4):224–9.

    PubMed  Google Scholar 

  152. Filippi L, et al. Usefulness of SPECT/CT with a hybrid camera for the functional anatomical mapping of primary brain tumors by [Tc99m] tetrofosmin. Cancer Biother Radiopharm. 2006;21(1):41–8.

    Article  PubMed  Google Scholar 

  153. Schillaci O, et al. Single-photon emission computed tomography/computed tomography in brain tumors. Semin Nucl Med. 2007;37(1):34–47.

    Article  PubMed  Google Scholar 

  154. Kortmann RD. Radiotherapy in low-grade gliomas: pros. Semin Oncol. 2003;30(6 Suppl 19):29–33.

    Article  PubMed  Google Scholar 

  155. van den Bent MJ, et al. Phase II study of first-line chemotherapy with temozolomide in recurrent oligodendroglial tumors: the European Organization for Research and Treatment of Cancer Brain Tumor Group Study 26971. J Clin Oncol. 2003;21(13):2525–8.

    Article  PubMed  CAS  Google Scholar 

  156. Glas M, et al. Long-term survival of patients with glioblastoma treated with radiotherapy and lomustine plus temozolomide. J Clin Oncol. 2009;27(8):1257–61.

    Article  CAS  PubMed  Google Scholar 

  157. Olson JJ, et al. The role of cytotoxic chemotherapy in the management of progressive glioblastoma: a systematic review and evidence-based clinical practice guideline. J Neurooncol. 2014;118(3):501–55.

    Article  CAS  PubMed  Google Scholar 

  158. Chamberlain MC, Raizer J. Antiangiogenic therapy for high-grade gliomas. CNS Neurol Disord Drug Targets. 2009;8(3):184–94.

    Article  CAS  PubMed  Google Scholar 

  159. Mariani G, Kassis AI, Adelstein SJ. Antibody internalization by tumor cells: implications for tumor diagnosis and therapy. J Nucl Med Allied Sci. 1990;34(1):51–4.

    CAS  PubMed  Google Scholar 

  160. Paganelli G, et al. Three-step monoclonal antibody tumor targeting in carcinoembryonic antigen-positive patients. Cancer Res. 1991;51(21):5960–6.

    CAS  PubMed  Google Scholar 

  161. Grana C, et al. Pretargeted adjuvant radioimmunotherapy with yttrium-90-biotin in malignant glioma patients: a pilot study. Br J Cancer. 2002;86(2):207–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Bartolomei M, et al. Combined treatment of glioblastoma patients with locoregional pre-targeted 90Y-biotin radioimmunotherapy and temozolomide. Q J Nucl Med Mol Imaging. 2004;48(3):220–8.

    CAS  PubMed  Google Scholar 

  163. Sekhar LN, Levine ZT, Sarma S. Grading of meningiomas. J Clin Neurosci. 2001;8 Suppl 1:1–7.

    Article  PubMed  Google Scholar 

  164. Johnson MD, et al. New prospects for management and treatment of inoperable and recurrent skull base meningiomas. J Neurooncol. 2008;86(1):109–22.

    Article  CAS  PubMed  Google Scholar 

  165. Soto-Montenegro ML, et al. Meningiomas: a comparative study of 68Ga-DOTATOC, 68Ga-DOTANOC and 68Ga-DOTATATE for molecular imaging in mice. PLoS One. 2014;9(11):e111624.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  166. Milker-Zabel S, et al. Improved target volume definition for fractionated stereotactic radiotherapy in patients with intracranial meningiomas by correlation of CT, MRI, and [68Ga]-DOTATOC-PET. Int J Radiat Oncol Biol Phys. 2006;65(1):222–7.

    Article  PubMed  Google Scholar 

  167. Afshar-Oromieh A, et al. Detection of cranial meningiomas: comparison of 68Ga-DOTATOC PET/CT and contrast-enhanced MRI. Eur J Nucl Med Mol Imaging. 2012;39(9):1409–15.

    Article  PubMed  Google Scholar 

  168. Di Chiro G, et al. Glucose utilization by intracranial meningiomas as an index of tumor aggressivity and probability of recurrence: a PET study. Radiology. 1987;164(2):521–6.

    Article  PubMed  Google Scholar 

  169. Lippitz B, et al. PET-study of intracranial meningiomas: correlation with histopathology, cellularity and proliferation rate. Acta Neurochir Suppl. 1996;65:108–11.

    CAS  PubMed  Google Scholar 

  170. Lee JW, et al. 18F-FDG PET in the assessment of tumor grade and prediction of tumor recurrence in intracranial meningioma. Eur J Nucl Med Mol Imaging. 2009;36:1574–82.

    Article  PubMed  Google Scholar 

  171. Iuchi T, et al. Glucose and methionine uptake and proliferative activity in meningiomas. Neurol Res. 1999;21(7):640–4.

    Article  CAS  PubMed  Google Scholar 

  172. Grosu AL, et al. 11C-methionine PET improves the target volume delineation of meningiomas treated with stereotactic fractionated radiotherapy. Int J Radiat Oncol Biol Phys. 2006;66(2):339–44.

    Article  CAS  PubMed  Google Scholar 

  173. Astner ST, et al. Effect of 11C-methionine-positron emission tomography on gross tumor volume delineation in stereotactic radiotherapy of skull base meningiomas. Int J Radiat Oncol Biol Phys. 2008;72(4):1161–7.

    Article  PubMed  Google Scholar 

  174. Muhr C, et al. Meningioma treated with interferon-alpha, evaluated with [11C]-l-methionine positron emission tomography. Clin Cancer Res. 2001;7(8):2269–76.

    CAS  PubMed  Google Scholar 

  175. Bertagna F, et al. Incidental 11C-choline PET/CT brain uptake due to meningioma in a patient studied for prostate cancer: correlation with MRI and imaging fusion. Clin Nucl Med. 2013;38(11):e435–7.

    Article  PubMed  Google Scholar 

  176. Calabria F, et al. A case of intracranial meningioma detected by 18F-choline PET/CT and examined by PET/MRI fusion imaging. Rev Esp Med Nucl Imagen Mol. 2014;33(5):306–7.

    CAS  PubMed  Google Scholar 

  177. Schulz S, et al. Immunohistochemical determination of five somatostatin receptors in meningioma reveals frequent overexpression of somatostatin receptor subtype sst2A. Clin Cancer Res. 2000;6(5):1865–74.

    CAS  PubMed  Google Scholar 

  178. von Wild KR. New development of functional neurorehabilitation in neurosurgery. Acta Neurochir Suppl. 2003;87:43–7.

    Google Scholar 

  179. Henze M, et al. PET imaging of somatostatin receptors using [68GA]DOTA-D-Phe1-Tyr3-octreotide: first results in patients with meningiomas. J Nucl Med. 2001;42(7):1053–6.

    CAS  PubMed  Google Scholar 

  180. Henze M, et al. Characterization of 68Ga-DOTA-D-Phe1-Tyr3-octreotide kinetics in patients with meningiomas. J Nucl Med. 2005;46(5):763–9.

    CAS  PubMed  Google Scholar 

  181. Afshar-Oromieh A, et al. Comparison of 68Ga-DOTATOC-PET/CT and PET/MRI hybrid systems in patients with cranial meningioma: initial results. Neuro Oncol. 2015;17(2):312–9.

    Article  CAS  PubMed  Google Scholar 

  182. Moresco RM, et al. Oestrogen receptors in meningiomas: a correlative PET and immunohistochemical study. Nucl Med Commun. 1997;18(7):606–15.

    Article  CAS  PubMed  Google Scholar 

  183. Chao ST, et al. The sensitivity and specificity of FDG PET in distinguishing recurrent brain tumor from radionecrosis in patients treated with stereotactic radiosurgery. Int J Cancer. 2001;96(3):191–7.

    Article  CAS  PubMed  Google Scholar 

  184. Nihashi T, Dahabreh IJ, Terasawa T. Diagnostic accuracy of PET for recurrent glioma diagnosis: a meta-analysis. AJNR Am J Neuroradiol. 2013;34(5):944–50, S1–11.

    Article  CAS  PubMed  Google Scholar 

  185. Choi SJ, et al. [18F]3′-deoxy-3′-fluorothymidine PET for the diagnosis and grading of brain tumors. Eur J Nucl Med Mol Imaging. 2005;32(6):653–9.

    Article  PubMed  Google Scholar 

  186. Fallanca F, et al. Incidental detection by [11C]choline PET/CT of meningiomas in prostate cancer patients. Q J Nucl Med Mol Imaging. 2009;53(4):417–21.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Ciarmiello .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this entry

Cite this entry

Giovacchini, G., Riondato, M., Giovannini, E., Ciarmiello, A. (2016). Diagnostic Applications of Nuclear Medicine: Brain Tumors. In: Strauss, H., Mariani, G., Volterrani, D., Larson, S. (eds) Nuclear Oncology. Springer, Cham. https://doi.org/10.1007/978-3-319-26067-9_9-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-26067-9_9-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Online ISBN: 978-3-319-26067-9

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Diagnostic Applications of Nuclear Medicine: Brain Tumors
    Published:
    23 April 2022

    DOI: https://doi.org/10.1007/978-3-319-26067-9_9-2

  2. Original

    Diagnostic Applications of Nuclear Medicine: Brain Tumors
    Published:
    07 October 2016

    DOI: https://doi.org/10.1007/978-3-319-26067-9_9-1