Skip to main content
Log in

Subtelomeric analysis of pediatric astrocytoma: subchromosomal instability is a distinctive feature of pleomorphic xanthoastrocytoma

  • Laboratory Investigation - Human/animal tissue
  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

Astrocytic neoplasms are genetically heterogeneous; however a low frequency of genomic changes has been found in juvenile pilocytic astrocytoma (PA) in molecular studies. Concerning pleomorphic xanthoastrocytomas (PXA), recent studies have given heterogeneous results for chromosomal alterations. We studied the subtelomeric regions of 19 primary astrocytoma tumors. Results were near normality for the PA group with relative scarcity of chromosomal imbalances, except for the duplication of 3pter in 4/15 and deletion of 21qter in 5/15 of them. In contrast, a specific profile was observed in the 4 PXA tumoral samples. This involved 3pter, 14qter and 19pter duplication and 4qter, 6qter, 9qter, 13cen, 17pter, 18qter and 21qter deletion. Our results indicate that the chromosomal and genetic aberrations in PXAs differed from those typically associated with the diffusely infiltrating astrocytic and oligodendroglial gliomas. These genetic differences would likely contribute to the more favorable behavior of PXAs and may be helpful for molecular differential diagnosis of pediatric cerebral tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Bleyer WA (1999) Epidemiology of childhood brain tumors. Childs Nerv Syst 15:758–763. doi:10.1007/s003810050467

    Article  PubMed  CAS  Google Scholar 

  2. Kleihues P, Cavenee WK (eds) (2000) Pathology & genetics of tumours of the nervous system. World Health Organization classification of tumours. IARC Press, Lyon

    Google Scholar 

  3. Kleihues P, Ohgaki H (1999) Primary and secondary glioblastomas: from concept to clinical diagnosis. Neuro Oncol 1:44–51. doi:10.1215/15228517-1-1-44

    Article  PubMed  CAS  Google Scholar 

  4. Jung V, Romeike BFM, Henn W et al (1999) Evidence of focal genetic microheterogeneity in glioblastoma multiforme by area-specific CGH on microdissected tumor cells. J Neuropathol Exp Neurol 58:993–999. doi:10.1097/00005072-199909000-00009

    Article  PubMed  CAS  Google Scholar 

  5. Kepes JJ, Rubinstein LJ, Eng LF (1979) Pleomorphic xanthoastrocytoma: a distinctive menigocerebral glioma of young subjects with relatively favourable prognosis; a study of 12 cases. Cancer 44:1839–1852. doi:10.1002/1097-0142(197911)44:5<1839::AID-CNCR2820440543>3.0.CO;2-0

    Article  PubMed  CAS  Google Scholar 

  6. Kepes JJ (1993) Pleomorphic xanthoastrocytoma: the birth of a diagnosis and a concept. Brain Pathol 3:269–274. doi:10.1111/j.1750-3639.1993.tb00753.x

    Article  PubMed  CAS  Google Scholar 

  7. Palma L, Maleci A, Di Lorenzo N et al (1985) Pleomorphic xanthoastrocytoma with 18-year survival. Case report. J Neurosurg 63:808–810

    Google Scholar 

  8. Macaulay RJ, Jay V, Hoffman HJ et al (1993) Increased mitotic activity as a negative prognostic indicator in pleomorphic xanthoastrocytoma. Case report. J Neurosurg 79:761–768

    Google Scholar 

  9. Ichimura K, Ohgaki H, Kleihues P et al (2004) Molecular pathogenesis of astrocytic tumours. J Neurooncol 70:137–160. doi:10.1007/s11060-004-2747-2

    Article  PubMed  Google Scholar 

  10. Schrock E, Blume C, Meffert MC et al (1996) Recurrent gain of chromosome arm 7q in low-grade astrocytic tumors studied by comparative genomic hybridization. Genes Chromosomes Cancer 15:199–205. doi:10.1002/(SICI)1098-2264(199604)15:4<199::AID-GCC1>3.0.CO;2-X

    Article  PubMed  CAS  Google Scholar 

  11. Neumann E, Kalousek DK, Norman MG et al (1993) Cytogenetic analysis of 109 pediatric central nervous system tumors. Cancer Genet Cytogenet 71:40–49. doi:10.1016/0165-4608(93)90200-6

    Article  PubMed  CAS  Google Scholar 

  12. Bhattacharjee MB, Armstrong DD, Vogel H et al (1997) Cytogenetic analysis of 120 primary pediatric brain tumors and literature review. Cancer Genet Cytogenet 97:39–53. doi:10.1016/S0165-4608(96)00330-5

    Article  PubMed  CAS  Google Scholar 

  13. Bigner SH, McLendon RE, Fuchs H et al (1997) Chromosomal characteristics of childhood brain tumors. Cancer Genet Cytogenet 97:125–134. doi:10.1016/S0165-4608(96)00404-9

    Article  PubMed  CAS  Google Scholar 

  14. Ashby LS, Shapiro WR (2004) Low-grade glioma: supratentorial astrocytoma, oligodendroglioma, and oligoastrocytoma in adults. Curr Neurol Neurosci Rep 4:211–217. doi:10.1007/s11910-004-0041-5

    Article  PubMed  Google Scholar 

  15. White FV, Anthony DC, Yunis EJ et al (1995) Nonrandom chromosomal gains in pilocytic astrocytomas of childhood. Hum Pathol 26:979–986. doi:10.1016/0046-8177(95)90087-X

    Article  PubMed  CAS  Google Scholar 

  16. Shlomit R, Ayala AG, Michal D et al (2000) Gains and losses of DNA sequences in childhood brain tumors analyzed by comparative genomic hybridization. Cancer Genet Cytogenet 121:67–72. doi:10.1016/S0165-4608(00)00218-1

    Article  PubMed  CAS  Google Scholar 

  17. Sanoudou D, Tingby O, Ferguson-Smith MA et al (2000) Analysis of pilocytic astrocytoma by comparative genomic hybridization. Br J Cancer 82:1218–1222. doi:10.1054/bjoc.1999.1066

    Article  PubMed  CAS  Google Scholar 

  18. Wiltshire RN, Herndon JEII, Lloyd A et al (2004) Comparative genomic hybridization analysis of astrocytomas: prognostic and diagnostic implications. J Mol Diagn 6:166–179

    PubMed  CAS  Google Scholar 

  19. Paulus W, Lisle DK, Tonn JC et al (1996) Molecular genetic alterations in pleomorphic xanthoastrocytoma. Acta Neuropathol 91:293–297. doi:10.1007/s004010050428

    Article  PubMed  CAS  Google Scholar 

  20. Yin XL, Hui AB, Liong EC et al (2002) Genetic imbalances in pleomorphic xanthoastrocytoma detected by comparative genomic hybridization and literature review. Cancer Genet Cytogenet 132:14–19. doi:10.1016/S0165-4608(01)00512-X

    Article  PubMed  CAS  Google Scholar 

  21. Zhuang Z, Lee YS, Zeng W et al (2004) Molecular genetic and proteomic analysis of synchronous malignant gliomas. Neurology 62:2316–2319

    PubMed  CAS  Google Scholar 

  22. Battaglia A, Hoyme HE, Dallapiccola B et al (2008) Further delineation of deletion 1p36 syndrome in 60 patients: a recognizable phenotype and common cause of developmental delay and mental retardation. Pediatrics 121:404–410. doi:10.1542/peds.2007-0929

    Article  PubMed  Google Scholar 

  23. Schouten JP, McElgunn CJ, Waaijer R et al (2002) Relative quantification of 40 nucleic acid sequences by multiplex ligation-dependent probe amplification. Nucleic Acids Res 30:e57. doi:10.1093/nar/gnf056

    Article  PubMed  Google Scholar 

  24. Monfort S, Orellana C, Oltra S et al (2006) Evaluation of MLPA for the detection of cryptic subtelomeric rearrangements. J Lab Clin Med 147:295–300. doi:10.1016/j.lab.2006.01.006

    Article  PubMed  CAS  Google Scholar 

  25. Orellana C, Hernandez-Martí M, Martínez F et al (1998) Pediatric brain tumors: loss of heterozygosity at 17p and TP53 gene mutations. Cancer Genet Cytogenet 102:93–99. doi:10.1016/S0165-4608(97)00343-9

    Article  PubMed  CAS  Google Scholar 

  26. Kishino T, Lalande M, Wagstaff J (1997) UBE3A/E6-AP mutations cause Angelman syndrome. Nat Genet 15:411. doi:10.1038/ng0197-70

    Article  CAS  Google Scholar 

  27. Vu TH, Hoffman AR (1997) Imprinting of the Angelman syndrome gene, UBE3A, is restricted to brain. Nat Genet 17:12–13. doi:10.1038/ng0997-12

    Article  PubMed  CAS  Google Scholar 

  28. Rougeulle C, Glatt H, Lalande M (1997) The Angelman syndrome candidate gene, UBE3A/E6-AP, is imprinted in brain. Nat Genet 17:14–15. doi:10.1038/ng0997-14

    Article  PubMed  CAS  Google Scholar 

  29. Yamasaki K, Joh K, Ohta T et al (2003) Neurons but not glial cells show reciprocal imprinting of sense and antisense transcripts of Ube3a. Hum Mol Genet 12:837–847. doi:10.1093/hmg/ddg106

    Article  PubMed  CAS  Google Scholar 

  30. Debiec-Rychter M, Jesionek-Kupnicka D, Zakrzewski K et al (1999) Cytogenetic changes in two cases of subependymal giant-cell astrocytoma. Cancer Genet Cytogenet 109:29–33. doi:10.1016/S0165-4608(98)00140-X

    Article  PubMed  CAS  Google Scholar 

  31. Fletcher DMC (ed) (2000) Diagnostic histopathology of tumors. Chapter 26, tumors of the central nervous system, vol 2, 2nd edn. Churchill Livingstone, New York

  32. Louis DN (1994) The p53 gene and protein in human brain tumors. J Neuropathol Exp Neurol 53:11–21. doi:10.1097/00005072-199401000-00002

    Article  PubMed  CAS  Google Scholar 

  33. Wei MH, Karavanova I, Ivanov SV et al (1998) In silico-initiated cloning and molecular characterization of a novel human member of the L1 gene family of neural cell adhesion molecules. Hum Genet 103:355–364. doi:10.1007/s004390050829

    Article  PubMed  CAS  Google Scholar 

  34. Frints SGM, Marynen P, Hartmann D et al (2003) CALL interrupted in a patient with non-specific mental retardation: gene dosage-dependent alteration of murine brain development and behavior. Hum Mol Genet 12:1463–1474. doi:10.1093/hmg/ddg165

    Article  PubMed  CAS  Google Scholar 

  35. Kamei Y, Tsutsumi O, Taketani Y et al (1998) cDNA cloning and chromosomal localization of neural adhesion molecule NB-3 in human. J Neurosci Res 51:275–283. doi:10.1002/(SICI)1097-4547(19980201)51:3<275::AID-JNR1>3.0.CO;2-D

    Article  PubMed  CAS  Google Scholar 

  36. Reeves RH, Yao J, Crowley MR et al (1994) Astrocytosis and axonal proliferation in the hippocampus of S100b transgenic mice. Proc Natl Acad Sci USA 91:5359–5363. doi:10.1073/pnas.91.12.5359

    Article  PubMed  CAS  Google Scholar 

  37. Wainwright MS, Craft JM, Griffin WST et al (2004) Increased susceptibility of S100B transgenic mice to perinatal hypoxia-ischemia. Ann Neurol 56:61–67. doi:10.1002/ana.20142

    Article  PubMed  CAS  Google Scholar 

  38. Fernandez-Fernandez MR, Veprintsev DB, Fersht AR (2005) Proteins of the S100 family regulate the oligomerization of p53 tumor suppressor. Proc Natl Acad Sci USA 102:4735–4740. doi:10.1073/pnas.0501459102

    Article  PubMed  CAS  Google Scholar 

  39. Sorci G, Riuzzi F, Agneletti AL et al (2004) S100B causes apoptosis in a myoblast cell line in a RAGE-independent manner. J Cell Physiol 199:274–283. doi:10.1002/jcp.10462

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by grants AP091/06 (Conselleria de Sanitat). We would also thanks Miss Desiree Ramal for her valuable help on data manager labors. English text revised by F. Barraclough.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elena Grau.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grau, E., Balaguer, J., Canete, A. et al. Subtelomeric analysis of pediatric astrocytoma: subchromosomal instability is a distinctive feature of pleomorphic xanthoastrocytoma. J Neurooncol 93, 175–182 (2009). https://doi.org/10.1007/s11060-008-9763-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11060-008-9763-6

Keywords

Navigation