Skip to main content

Advertisement

Log in

Molecular pathogenesis of astrocytic tumours

  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

Our current knowledge of the molecular pathogenesis of the diffuse adult astrocytic tumours is vast if compared to 20 syears ago, yet we are far from understanding the details of this process at the molecular level and using such an understanding to logically and specifically treat patients' tumours. In other astrocytic tumours we have little or no knowledge of the molecular processes. This article will attempt to summarise the histological classification criteria and genetic data for all the astrocytic tumours. The current World Health Organisation classification lists six entities, some with subgroups. Common problems associated with the diagnosis of these tumours are outlined. While the molecular findings are not as yet used clinically, we are approaching a time when the histological investigation will have to be supplemented with molecular data to ensure the best choice of treatment for the patient and as an accurate indicator of prognosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kleihues P, Cavenee WK: Pathology and Genetics of Tumours of the Nervous System, IARC Press, Lyon, 2000

    Google Scholar 

  2. Lewis RA, Gerson LP, Axelson KA, Riccardi VM, Whitford RP: von Recklinghausen neurofibromatosis. II. Incidence of optic gliomata. Ophthalmology 91(8): 929–935, 1984

    Google Scholar 

  3. Listernick R, Charrow J, Greenwald MJ, Esterly NB: Optic gliomas in children with neurofibromatosis type 1. J Pediatr 114(5): 788–792, 1989

    Google Scholar 

  4. Sorensen SA, Mulvihill JJ, Nielsen A: Long-term follow-up of von Recklinghausen neurofibromatosis. Survival and malignant neoplasms. New Engl J Med 314(16): 1011–1015, 1986

    Google Scholar 

  5. Griffiths OF, Williams GT, Williams ED: Duodenal carcinoid tumours, phaeochromocytoma and neurofibromatosis: islet cell tumour, phaeochromocytoma and the von Hippel-Lindau complex: two distinctive neuroendocrine syndromes. Q J Med 64(245): 769–782, 1987

    Google Scholar 

  6. MacCollin M, Mautner VF: The diagnosis and management of neurofibromatosis 2 in childhood. Semin Pediatr Neurol 5(4): 242–252, 1998

    Google Scholar 

  7. Hamilton SR, Liu B, Parsons RE, Papadopoulos N, Jen J, Powell SM, Krush AJ, Berk T, Cohen Z, Tetu B et al.: The molecular basis of Turcot's syndrome. New Engl J Med 332(13): 839–847, 1995

    Google Scholar 

  8. Kropilak M, Jagelman DG, Fazio VW, Lavery IL, McGannon E: Brain tumors in familial adenomatous polyposis. Dis Colon Rectum 32(9): 778–782, 1989

    Google Scholar 

  9. Neglia JP, Meadows AT, Robison LL, Kirn TH, Newton WA, Ruymann FB, Sather HN, Hammond GD: Second neoplasms after acute lymphoblastic leukemia in childhood. New Engl J Med 325(19): 1330–1336, 1991

    Google Scholar 

  10. Kleihues P, Aguzzi A, Ohgaki H: Genetic and environmental factors in the etiology of human brain tumors. Toxicol Lett 82–83: 601–605, 1995

    Google Scholar 

  11. Polednak AP, Flannery JT: Brain, other central nervous system, and eye cancer. Cancer 75(Suppl 1): 330–337, 1995

    Google Scholar 

  12. Winger MJ, Macdonald DR, Cairncross JG: Supratentorial anaplastic gliomas in adults. The prognostic importance of extent of resection and prior low-grade glioma. J Neurosurg 71(4): 487–493, 1989

    Google Scholar 

  13. von Deimling A, von Ammon K, Schoenfeld D, Wiestler OD, Seizinger BR, Louis DN: Subsets of glioblastoma multiforme defined by molecular genetic analysis. Brain Pathol 3(1): 19–26, 1993

    Google Scholar 

  14. James CD, Carlbom E, Dumanski JP, Hansen M, Nordenskjold M, Collins VP, Cavenee WK: Clonal genomic alterations in glioma malignancy stages. Cancer Res 48(19): 5546–5551, 1988

    Google Scholar 

  15. Biernat W, Tohma Y, Yonekawa Y, Kleihues P, Ohgaki H: Alterations of cell cycle regulatory genes in primary (de novo) and secondary glioblastomas. Acta Neuropathol (Berl) 94(4): 303–309, 1997

    Google Scholar 

  16. Reifenberger G, Ichimura K, Reifenberger J, Elkahloun AG, Meltzer PS, Collins VP: Refined mapping of 12q13-q15 amplicons in human malignant gliomas suggests CDK4/SAS and MDM2 as independent amplification targets. Cancer Res 56(22): 5141–5145, 1996

    Google Scholar 

  17. Ichimura K, Bolin MB, Goike HM, Schmidt EE, Moshref A, Collins VP: Deregulation of the p14ARF/MDM2/p53 pathway is a prerequisite for human astrocytic gliomas with G1-S transition control gene abnormalities. Cancer Res 60(2): 417–424, 2000

    Google Scholar 

  18. McCormack BM, Miller DC, Budzilovich GN, Voorhees GL, Ransohoff J: Treatment and survival of low-grade astrocytoma in adults – 1977–1988. Neurosurgery 31(4): 636–642, 1992

    Google Scholar 

  19. Simpson JR, Horton J, Scott C, Curran WJ, Rubin P, Fischbach J, Isaacson S, Rotman M, Asbell SO, Nelson JS et al.: Influence of location and extent of surgical resection on survival of patients with glioblastoma multiforme: results of three consecutive Radiation Therapy Oncology Group (RTOG) clinical trials. Int J Rad Oncol Biol Phys 26(2): 239–244, 1993

    Google Scholar 

  20. Libermann TA, Nusbaum HR, Razon N, Kris R, Lax I, Soreq H, Whittle N, Waterfield MD, Ullrich A, Schlessinger J: Amplification, enhanced expression and possible rearrangement of EGF receptor gene in primary human brain tumours of glial origin. Nature 313(5998): 144–147, 1985

    Google Scholar 

  21. Oren M: Decision making by p53: life, death and cancer. Cell Death Differ 10(4): 431–442, 2003

    Google Scholar 

  22. Prives C, Hall PA: The p53 pathway. J Pathol 187(1): 112–126, 1999

    Google Scholar 

  23. Bates S, Phillips AC, Clark PA, Stott F, Peters G, Ludwig RL, Vousden KH: p14(ARF) links the tumour suppressors RB and p53. Nature 395(6698): 124–125, 1998

    Google Scholar 

  24. Zhang Y, Xiong Y, Yarbrough WG: ARF promotes MDM2 degradation and stabilizes p53: ARF-INK4a locus deletion impairs both the Rb and p53 tumor suppression pathways. Cell 92(6): 725–734, 1998

    Google Scholar 

  25. Pines J: The cell cycle kinases. Semin Cancer Biol 5(4): 305–313, 1994

    Google Scholar 

  26. Lundberg AS, Weinberg RA: Control of the cell cycle and apoptosis. Eur J Cancer 35(14): 1886–1894, 1999

    Google Scholar 

  27. Sherr CJ, Roberts JM: CDK inhibitors: positive and negative regulators of G1-phase progression. Genes Dev 13(12): 1501–1512, 1999

    Google Scholar 

  28. Zhang HS, Dean DC: Rb-mediated chromatin structure regulation and transcriptional repression. Oncogene 20(24): 3134–3138, 2001

    Google Scholar 

  29. Fleming TP, Saxena A, Clark WC, Robertson JT, Oldfield EH, Aaronson SA, Ali IU: Amplification and/or overexpression of platelet-derived growth factor receptors and epidermal growth factor receptor in human glial tumors. Cancer Res 52(16): 4550–4553, 1992

    Google Scholar 

  30. Chaffanet M, Chauvin C, Laine M, Berger F, Chedin M, Rost N, Nissou MF, Benabid AL: EGF receptor ampli-fication and expression in human brain tumours. Eur J Cancer 28(1): 11–17, 1992

    Google Scholar 

  31. Yamazaki H, Ohba Y, Tamaoki N, Shibuya M: A deletion mutation within the ligand binding domain is responsible for activation of epidermal growth factor receptor gene in human brain tumors. Jpn J Cancer Res 81(8): 773–779, 1990

    Google Scholar 

  32. Sugawa N, Ekstrand AJ, James CD, Collins VP: Identical splicing of aberrant epidermal growth factor receptor transcripts from amplified rearranged genes in human glioblastomas. Proc Natl Acad Sci USA 87(21): 8602–8606, 1990

    Google Scholar 

  33. Ekstrand AJ, James CD, Cavenee WK, Seliger B, Pettersson RF, Collins VP: Genes for epidermal growth factor receptor, transforming growth factor alpha, and epidermal growth factor and their expression in human gliomas in vivo. Cancer Res 51(8): 2164–2172, 1991

    Google Scholar 

  34. Ekstrand AJ, Sugawa N, James CD, Collins VP: Amplified and rearranged epidermal growth factor receptor genes in human glioblastomas reveal deletions of sequences encoding portions of the N-and/or C-terminal tails. Proc Natl Acad Sci USA 89(10): 4309–4313, 1992

    Google Scholar 

  35. Wong AJ, Ruppert JM, Signer SH, Grzeschik CH, Humphrey PA, Bigner DS, Vogelstein B: Structural alterations of the epidermal growth factor receptor gene in human gliomas. Proc Natl Acad Sci USA 89(7): 2965–2969, 1992

    Google Scholar 

  36. Ekstrand AJ, Longo N, Hamid ML, Olson JJ, Liu L, Collins VP, James CD: Functional characterization of an EGF receptor with a truncated extracellular domainexpressed in glioblastomas with EGFR gene amplification. Oncogene 9(8): 2313–2320, 1994

    Google Scholar 

  37. Humphrey PA, Gangarosa LM, Wong AJ, Archer GE, Lund-Johansen M, Bjerkvig R, Laerum OD, Friedman HS, Bigner DD: Deletion-mutant epidermal growth factor receptor in human gliomas: effects of type II mutation on receptor function. Biochem Biophys Res Commun 178(3): 1413–1420, 1991

    Google Scholar 

  38. Nishikawa R, Ji XD, Harmon RC, Lazar CS, Gill GN, Cavenee WK, Huang HJ: A mutant epidermal growth factor receptor common in human glioma confers enhanced tumorigenicity. Proc Natl Acad Sci USA 91(16): 7727–7731, 1994

    Google Scholar 

  39. Maehama T, Dixon JE: The tumor suppressor, PTEN/ MMAC1, dephosphorylates the lipid second messenger, phosphatidylinositol 3,4,5-trisphosphate. J Biol Chem 273(22): 13375–13378, 1998

    Google Scholar 

  40. Franke TF, Hornik CP, Segev L, Shostak GA, Sugimoto C: PI3K/Akt and apoptosis: size matters. Oncogene 22(56): 8983–8998, 2003

    Google Scholar 

  41. Scheid MP, Woodgett JR: PKB/AKT: functional insights from genetic models. Nat Rev Mol Cell Biol 2(10): 760–768, 2001

    Google Scholar 

  42. Rajasekhar VK, Viale A, Socci ND, Wiedmann M, Hu X, Holland EC: Oncogenic Ras and Akt signaling contribute to glioblastoma formation by differential recruitment of existing mRNAs to polysomes. Mol Cell 12(4): 889–901, 2003

    Google Scholar 

  43. Frankel RH, Bayona W, Koslow M, Newcomb EW: p53 mutations in human malignant gliomas: comparison of loss of heterozygosity with mutation frequency. Cancer Res 52(6): 1427–1433, 1992

    Google Scholar 

  44. Rasheed BK, McLendon RE, Herndon JE, Friedman HS, Friedman AH, Bigner DD, Bigner SH: Alterations of the TP53 gene in human gliomas. Cancer Res 54(5): 1324–1330, 1994

    Google Scholar 

  45. Riemenschneider MJ, Buschges R, Wolter M, Reifenberger J, Bostrom J, Kraus JA, Schlegel U, Reifenberger G: Amplification and overexpression of the MDM4 (MDMX) gene from 1q32 in a subset of malignant gliomas without TP53 mutation or MDM2 amplification. Cancer Res 59(24): 6091–6096, 1999

    Google Scholar 

  46. Jen J, Harper JW, Bigner SH, Bigner DD, Papadopoulos N, Markowitz S, Willson JK, Kinzler KW, Vogelstein B: Deletion of p16 and p15 genes in brain tumors. Cancer Res 54(24): 6353–6358, 1994

    Google Scholar 

  47. Ueki K, Ono Y, Henson JW, Efird JT, von Deimling A, Louis DN: CDKN2/p16 or RB alterations occur in the majority of glioblastomas and are inversely correlated. Cancer Res 56(1): 150–153, 1996

    Google Scholar 

  48. Schmidt EE, Ichimura K, Messerle KR, Goike HM, Collins VP: Infrequent methylation of CDKN2A (MTS1/ p16) and rare mutation of both CDKN2A and CDKN2B(MTS2/p15) in primary astrocytic tumours. Br J Cancer 75(1): 2–8, 1997

    Google Scholar 

  49. Li YJ, Hoang-Xuan K, Delattre JY, Poisson M, Thomas G, Hamelin R: Frequent loss of heterozygosity on chromosome 9, and low incidence of mutations of cyclin-dependent kinase inhibitors p15 (MTS2) and p16 (MTS1) genes in gliomas. Oncogene 11(3): 597–600, 1995

    Google Scholar 

  50. Zhang Y, Xiong Y: Mutations in human ARF exon 2 disrupt its nucleolar localization and impair its ability to block nuclear export of MDM2 and p53. Mol Cell 3(5): 579–591, 1999

    Google Scholar 

  51. Nakamura M, Watanabe T, Klangby U, Asker C, Wiman K, Yonekawa Y, Kleihues P, Ohgaki H: p14ARF deletion and methylation in genetic pathways to glioblastomas. Brain Pathol 11(2): 159–168, 2001

    Google Scholar 

  52. Fueyo J, Gomez-Manzano C, Bruner JM, Saito Y, Zhang B, Zhang W, Levin VA, Yung WK, Kyritsis AP: Hypermethylation of the CpG island of p16/CDKN2 correlates with gene inactivation in gliomas. Oncogene 13(8): 1615–1619, 1996

    Google Scholar 

  53. Nakamura M, Yonekawa Y, Kleihues P, Ohgaki H: Promoter hypermethylation of the RB1 gene in glioblastomas. Lab Invest 81(1): 77–82, 2001

    Google Scholar 

  54. Costello JF, Plass C, Arap W, Chapman VM, Held WA, Berger MS, Su Huang HJ, Cavenee WK: Cyclin-dependent kinase 6 (CDK6) amplification in human gliomas identified using two-dimensional separation of genomic DNA. Cancer Res 57(7): 1250–1254, 1997

    Google Scholar 

  55. Buschges R, Weber RG, Actor B, Lichter P, Collins VP, Reifenberger G: Amplification and expression of cyclin D genes (CCND1, CCND2 and CCND3) in human malignant gliomas. Brain Pathol 9(3): 435–442; discussion 432–433, 1999

    Google Scholar 

  56. Koopmann J, Maintz D, Schild S, Schramm J, Louis DN, Wiestler OD, von Deimling A: Multiple polymorphisms, but no mutations, in the WAF1/CIP1 gene in human brain tumours. Br J Cancer 72(5): 1230–1233, 1995

    Google Scholar 

  57. Hermanson M, Funa K, Hartman M, Claesson-Welsh L, Heldin CH, Westermark B, Nister M: Platelet-derived growth factor and its receptors in human glioma tissue: expression of messenger RNA and protein suggests the presence of autocrine and paracrine loops. Cancer Res 52(11): 3213–3219, 1992

    Google Scholar 

  58. Lokker NA, Sullivan CM, Hollenbach SJ, Israel MA, Giese NA: Platelet-derived growth factor (PDGF) autocrine signaling regulates survival and mitogenic pathways in glioblastoma cells: evidence that the novel PDGF-C and PDGF-D ligands may play a role in the development of brain tumors. Cancer Res 62(13): 3729–3735, 2002

    Google Scholar 

  59. Uhrbom E, Hesselager G, Nister M, Westermark B: Induction of brain tumors in mice using a recombinant platelet-derived growth factor B-chain retrovirus. Cancer Res 58(23): 5275–5279, 1998

    Google Scholar 

  60. Kumabe T, Sohma Y, Kayama T, Yoshimoto T, Yamamoto T: Amplification of alpha-platelet-derived growth factor receptor gene lacking an exon coding for a portion of the extracellular region in a primary brain tumor of glial origin. Oncogene 7(4): 627–633, 1992

    Google Scholar 

  61. Smith JS, Wang XY, Qian J, Hosek SM, Scheithauer BW, Jenkins RB, James CD: Amplification of the plateletderived growth factor receptor-A (PDGFRA) gene occurs in oligodendrogliomas with grade IV anaplastic features. J Neuropathol Exp Neurol 59(6): 495–503, 2000

    Google Scholar 

  62. Wong AJ, Bigner SH, Bigner DD, Kinzler KW, Hamilton SR, Vogelstein B: Increased expression of the epidermal growth factor receptor gene in malignant gliomas is invariably associated with gene amplification. Proc Natl Acad Sci USA 84(19): 6899–6903, 1987

    Google Scholar 

  63. Liu L, Ichimura K, Pettersson EH, Goike HM, Collins VP: The complexity of the 7p12 amplicon in human astrocytic gliomas: detailed mapping of 246 tumors. J Neuropathol Exp Neurol 59(12): 1087–1093, 2000

    Google Scholar 

  64. Bigner SH, Wong AJ, Mark J, Muhlbaier LH, Kinzler KW, Vogelstein B, Bigner DD: Relationship between gene ampli-fication and chromosomal deviations in malignant human gliomas. Cancer Genet Cytogenet 29(1): 165–170, 1987

    Google Scholar 

  65. Liu L, Ichimura K, Pettersson EH, Collins VP: Chromosome 7 rearrangements in glioblastomas; loci adjacent to EGFR are independently amplified. J Neuropathol Exp Neurol 57(12): 1138–1145, 1998

    Google Scholar 

  66. Moscatello DK, Holgado-Madruga M, Godwin AK, Ramirez G, Gunn G, Zoltick PW, Biegel JA, Hayes RL, Wong AJ: Frequent expression of a mutant epidermal growth factor receptor in multiple human tumors. Cancer Res 55(23): 5536–5539, 1995

    Google Scholar 

  67. Johns TG, Stockert E, Ritter G, Jungbluth AA, Huang HJ, Cavenee WK, Smyth FE, Hall CM, Watson N, Nice EC, Gullick WJ, Old LJ, Burgess AW, Scott AM: Novel monoclonal antibody specific for the de2-7 epidermal growth factor receptor (EGFR) that also recognizes the EGFR expressed in cells containing amplification of the EGFR gene. Int J Cancer 98(3): 398–408, 2002

    Google Scholar 

  68. Jungbluth AA, Stockert E, Huang HJ, Collins VP, Coplan K, Iversen K, Kolb D, Johns TJ, Scott AM, Gullick WJ, Ritter G, Cohen L, Scanlan MJ, Cavenee WK, Old LJ: A monoclonal antibody recognizing human cancers with amplification overexpression of the human epidermal growth factor receptor. Proc Natl Acad Sci USA 100(2): 639–644, 2003

    Google Scholar 

  69. Pedersen MW, Meltorn M, Damstrup L, Poulsen HS: The type III epidermal growth factor receptor mutation. Biological significance and potential target for anti-cancer therapy. Ann Oncol 12(6): 745–760, 2001

    Google Scholar 

  70. Chang CP, Lazar CS, Walsh BJ, Komuro M, Collawn JF, Kuhn LA, Tainer JA, Trowbridge IS, Farquhar MG, Rosenfeld MG, et al.: Ligand-induced internalization of the epidermal growth factor receptor is mediated by multiple endocytic codes analogous to the tyrosine motif found in constitutively internalized receptors. J Biol Chem 268(26): 19312–19320, 1993

    Google Scholar 

  71. Li J, Yen C, Liaw D, Podsypanina K, Bose S, Wang SI, Puc J, Miliaresis C, Rodgers L, McCombie R, Bigner SH, Giovanella BC, Ittmann M, Tycko B, Hibshoosh H, Wigler MH, Parsons R: PTEN, a putative protein tyrosine phosphatase gene mutated in human brain, breast, and prostate cancer. Science 275(5308): 1943–1947, 1997

    Google Scholar 

  72. Li DM, Sun H: TEP1, encoded by a candidate tumor suppressor locus, is a novel protein tyrosine phosphatase regulated by transforming growth factor beta. Cancer Res 57(11): 2124–2129, 1997

    Google Scholar 

  73. Steck PA, Pershouse MA, Jasser SA, Yung WK, Lin H, Ligon AH, Langford LA, Baumgard ML, Hattier T, Davis T, Frye C, Hu R, Swedlund B, Teng DH, Tavtigian SV: Identification of a candidate tumour suppressor gene, MMAC1, at chromosome 10q23.3 that is mutated in multiple advanced cancers. Nature Genetics 15(4): 356–362, 1997

    Google Scholar 

  74. Wang SI, Puc J, Li J, Bruce JN, Cairns P, Sidransky D, Parsons R: Somatic mutations of PTEN in glioblastoma multiforme. Cancer Res 57(19): 4183–4186, 1997

    Google Scholar 

  75. Liu W, James CD, Frederick L, Alderete BE, Jenkins RB: PTEN/MMAC1 mutations and EGFR amplification in glioblastomas. Cancer Res 57(23): 5254–5257, 1997

    Google Scholar 

  76. Rasheed BK, Stenzel TT, McLendon RE, Parsons R, Friedman AH, Friedman HS, Bigner DD, Bigner SH: PTEN gene mutations are seen in high-grade but not in low-grade gliomas. Cancer Res 57(19): 4187–4190, 1997

    Google Scholar 

  77. Bostrom J, Cobbers JM, Wolter M, Tabatabai G, Weber RG, Lichter P, Collins VP, Reifenberger G: Mutation of the PTEN (MMAC1) tumor suppressor gene in a subset of glioblastomas but not in meningiomas with loss of chromosome arm 10q. Cancer Res 58(1): 29–33, 1998

    Google Scholar 

  78. Chiariello E, Roz L, Albarosa R, Magnani I, Finocchiaro G: PTEN/MMAC1 mutations in primary glioblastomas and short-term cultures of malignant gliomas. Oncogene 16(4): 541–545, 1998

    Google Scholar 

  79. Duerr EM, Rollbrocker B, Hayashi Y, Peters N, Meyer-Puttlitz B, Louis DN, Schramm J, Wiestler OD, Parsons R, Eng C, von Deimling A: PTEN mutations in gliomas and glioneuronal tumors. Oncogene 16(17): 2259–2264, 1998

    Google Scholar 

  80. Schmidt EE, Ichimura K, Goike HM, Moshref A, Liu L, Collins VP: Mutational profile of the PTEN gene in primary human astrocytic rumors and cultivated xenografts. J Neuropathol Exp Neurol 58(11): 1170–1183, 1999

    Google Scholar 

  81. Holland EC, Celestino J, Dai C, Schaefer L, Sawaya RE, Fuller GN: Combined activation of Ras and Akt in neural progenitors induces glioblastoma formation in mice. Nat Genet 25(1): 55–57, 2000

    Google Scholar 

  82. Vasen HF, Sanders EA, Taal BG, Nagengast FM, Griffioen G, Menko FH, Kleibeuker JH, Houwing-Duistermaat JJ, Meera Khan P: The risk of brain tumours in hereditary non-polyposis colorectal cancer (HNPCC). Int J Cancer 65(4): 422–425, 1996

    Google Scholar 

  83. Chan TL, Yuen ST, Chung LP, Ho JW, Kwan K, Fan YW, Chan AS, Leung SY: Germline hMSH2 and differential somatic mutations in patients with Turcot's syndrome. Genes Chrom Cancer 25(2): 75–81, 1999

    Google Scholar 

  84. Kanamori M, Kon H, Nobukuni T, Nomura S, Sugano K, Mashiyama S, Kumabe T, Yoshimoto T, Meuth M, Sekiya T, Murakami Y: Microsatellite instability and the PTENl gene mutation in a subset of early onset gliomas carrying germline mutation or promoter methylation of the hMLHl gene. Oncogene 19(12): 1564–1571, 2000

    Google Scholar 

  85. Leung SY, Yuen ST, Chan TL, Chan AS, Ho JW, Kwan K, Fan YW, Hung KN, Chung LP, Wyllie AH: Chromosomal instability and p53 inactivation are required for genesis of glioblastoma but not for colorectal cancer in patients with germline mismatch repair gene mutation. Oncogene 19(35): 4079–4083, 2000

    Google Scholar 

  86. Alonso M, Hamelin R, Kirn M, Porwancher K, Sung T, Parhar P, Miller DC, Newcomb EW: Microsatellite instability occurs in distinct subtypes of pediatric but not adult central nervous system tumors. Cancer Res 61(5): 2124–2128, 2001

    Google Scholar 

  87. Mertens F, Johansson B, Hoglund M, Mitelman F: Chromosomal imbalance maps of malignant solid tumors: a cytogenetic survey of 3185 neoplasms. Cancer Res 57(13): 2765–2780, 1997

    Google Scholar 

  88. Bigner SH, Mark J, Burger PC, Mahaley MS Jr, Bullard DE, Muhlbaier LH, Bigner DD: Specific chromosomal abnormalities in malignant human gliomas. Cancer Res 48(2): 405–411, 1988

    Google Scholar 

  89. Koschny R, Koschny T, Froster UG, Krupp W, Zuber MA: Comparative genomic hybridization in glioma: a meta-analysis of 509 cases. Cancer Genet Cytogenet 135(2): 147–159, 2002

    Google Scholar 

  90. Snijders AM, Nowak N, Segraves R, Blackwood S, Brown N, Conroy J, Hamilton G, Hindle AK, Huey B, Kimura K, Eaw S, Myambo K, Palmer J, Ylstra B, Yue JP, Gray JW, Jain AN, Pinkel D, Albertson DG: Assembly of microarrays for genome-wide measurement of DNA copy number. Nat Genet 29(3): 263–264, 2001

    Google Scholar 

  91. Buckley PG, Mantripragada KK, Benetkiewicz M, Tapia-Paez I, Diaz De Stahl T, Rosenquist M, Ali H, Jarbo C, De Bustos C, Hirvela C, Sinder Wilen B, Fransson I, Thyr C, Johnsson BI, Bruder CE, Menzel U, Hergersberg M, Mandahl N, Blennow E, Wedell A, Beare DM, Collins JE, Dunham I, Albertson D, Pinkel D, Bastian BC, Faruqi AF, Lasken RS, Ichimura K, Collins VP, Dumanski JP: A full-coverage, high-resolution human chromosome 22 genomic microarray for clinical and research applications. Hum Mol Genet 11(25): 3221–3229, 2002

    Google Scholar 

  92. Reifenberger J, Reifenberger G, Liu L, James CD, Wechsler W, Collins VP: Molecular genetic analysis of oligodendroglial tumors shows preferential allelic deletions on 19q and 1p. Am J Pathol 145(5): 1175–1190, 1994

    Google Scholar 

  93. Smith JS, Alderete B, Minn Y, Borell TJ, Perry A, Mohapatra G, Hosek SM, Kimmel D, O'Fallon J, Yates A, Feuerstein BG, Burger PC, Scheithauer BW, Jenkins RB: Localization of common deletion regions on 1p and 19q in human gliomas and their association with histological subtype. Oncogene 18(28): 4144–4152, 1999

    Google Scholar 

  94. Alonso ME, Bello MJ, Lomas J, Gonzalez-Gomez P, Arjona D, De Campos JM, Gutierrez M, Isla A, Vaquero J, Rey JA: Absence of mutation of the p73 gene in astrocytic neoplasms. Int J Oncol 19(3): 609–612, 2001

    Google Scholar 

  95. Watanabe T, Huang H, Nakamura M, Wischhusen J, Weller M, Kleihues P, Ohgaki H: Methylation of the p73 gene in gliomas. Acta Neuropathol (Berl) 104(4): 357–362, 2002

    Google Scholar 

  96. Kanno H, Shuin T, Kondo K, Yamamoto I, Ito S, Shinonaga M, Yoshida M, Yao M: Somatic mutations of the von Hippel-Lindau tumor suppressor gene and loss of heterozygosity on chromosome 3p in human glial tumors. Cancer Res 57(6): 1035–1038, 1997

    Google Scholar 

  97. Miyakawa A, Ichimura K, Schmidt EE, Varmeh-Ziaie S, Collins VP: Multiple deleted regions on the long arm of chromosome 6 in astrocytic tumours. Br J Cancer 82(3): 543–549, 2000

    Google Scholar 

  98. Saitoh Y, Bruner JM, Levin VA, Kyritsis AP: Identification of allelic loss on chromosome arm 6p in human astrocytomas by arbitrarily primed polymerase chain reaction. Genes Chrom Cancer 22(3): 165–170, 1998

    Google Scholar 

  99. Rasheed BKA, McLendon RE, Friedman HS, Friedman AH, Fuchs HE, Bigner DD, Bigner SH: Chromosome 10 deletion mapping in human gliomas: a common deletion region in 10q25. Oncogene 10(11): 2243–2246, 1995

    Google Scholar 

  100. Albarosa R, Colombo BM, Roz L, Magnani I, Polio B, Cirenei N, Giani C, Conti AM, DiDonato S, Finocchiaro G: Deletion mapping of gliomas suggest the presence of two small regions for candidate tumor-suppressor genes in a 17-cM interval on chromosome 10q. Am J Hum Genet 58(6): 1260–1267, 1996

    Google Scholar 

  101. Kimmelman AC, Ross DA, Liang BC: Loss of heterozygosity of chromosome 10p in human gliomas. Genomics 34(2): 250–254, 1996

    Google Scholar 

  102. Sonoda Y, Murakami Y, Tominaga T, Kayama T, Yoshimoto T, Sekiya T: Deletion mapping of chromosome 10 in human glioma. Jpn J Cancer Res 87(4): 363–367, 1996

    Google Scholar 

  103. Ichimura K, Schmidt EE, Miyakawa A, Goike HM, Collins VP: Distinct patterns of deletion on 10p and 10q suggest involvement of multiple tumor suppressor genes in the development of astrocytic gliomas of different malignancy grades. Genes Chromosomes Cancer 22(1): 9–15, 1998

    Google Scholar 

  104. Wechsler DS, Shelly CA, Petroff CA, Dang CV: MXI1, a putative tumor suppressor gene, suppresses growth of human glioblastoma cells. Cancer Res 57(21): 4905–4912, 1997

    Google Scholar 

  105. Fults D, Pedone CA, Thompson GE, Uchiyama CM, Gumpper KL, Iliev D, Vinson VL, Tavtigian SV, Perry WL III: Microsatellite deletion mapping on chromosome 10q and mutation analysis of MMAC1, FAS, and MXI1 in human glioblastoma multiforme. Int J Oncol 12(4): 905–910, 1998

    Google Scholar 

  106. Mollenhauer J, Wiemann S, Scheurlen W, Korn B, Hayashi Y, Wilgenbus KK, von Deimling A, Poustka A: DMBT1, a new member of the SRCR superfamily, on chromosome 10q25.3–26.1 is deleted in malignant brain tumours. Nat Genet 17(1): 32–39, 1997

    Google Scholar 

  107. Mollenhauer J, Herbertz S, Holmskov U, Tolnay M, Krebs I, Merlo A, Schroder HD, Maier D, Breitling F, Wiemann S, Grone HJ, Poustka A: DMBT1 encodes a protein involved in the immune defense and in epithelial differentiation and is highly unstable in cancer. Cancer Res 60(6): 1704–1710, 2000

    Google Scholar 

  108. Sasaki H, Betensky RA, Cairncross JG, Louis DN: DMBT1 polymorphisms: relationship to malignant glioma tumorigenesis. Cancer Res 62(6): 1790–1796, 2002

    Google Scholar 

  109. Mueller W, Mollenhauer J, Stockhammer F, Poustka A, von Deimling A: Rare mutations of the DMBT1 gene in human astrocytic gliomas. Oncogene 21(38): 5956–5959, 2002

    Google Scholar 

  110. Pang JC, Dong Z, Zhang R, Liu Y, Zhou LF, Chan BW, Poon WS, HK: Mutation analysis of DMBT1 in glioblastoma, medulloblastoma and oligodendroglial tumors. Int J Cancer 105(1): 76–81, 2003

    Google Scholar 

  111. Chernova OB, Hunyadi A, Malaj E, Pan H, Crooks C, Roe B, Cowell JK: A novel member of the WDrepeat gene family, WDR1 1, maps to the 10q26 region and is disrupted by a chromosome translocation in human glioblastoma cells. Oncogene 20(38): 5378–5392, 2001

    Google Scholar 

  112. Kalachikov S, Evgrafov O, Ross B, Winawer M, Barker-Cummings C, Martinelli Boneschi F, Choi C, Morozov P, Das K, Teplitskaya E, Yu A, Cayanis E, Penchaszadeh G, Kottmann AH, Pedley TA, Hauser WA, Ottman R, Gilliam TC: Mutations in LGI1 cause autosomal-dominant partial epilepsy with auditory features. Nat Genet 30(3): 335–341, 2002

    Google Scholar 

  113. Kon H, Sonoda Y, Kumabe T, Yoshimoto T, Sekiya T, Murakami Y: Structural and functional evidence for the presence of tumor suppressor genes on the short arm of chromosome 10 inhuman gliomas. Oncogene 16(2): 257–263, 1998

    Google Scholar 

  114. Voesten AM, Bijleveld EH, Westerveld A, Hulsebos TJ: Fine mapping of a region of common deletion on chromosome arm 10p in human glioma. Genes Chromosomes Cancer 20(2): 167–172, 1997

    Google Scholar 

  115. Jeng YM, Hsu HC: KLF6, a putative tumor suppressor gene, is mutated in astrocytic gliomas. Int J Cancer 105(5): 625–629, 2003

    Google Scholar 

  116. Nakamura M, Yang F, Fujisawa H, Yonekawa Y, Kleihues P, Ohgaki H: Loss of heterozygosity on chromosome 19 in secondary glioblastomas. J Neuropathol Exp Neurol 59(6): 539–543, 2000

    Google Scholar 

  117. Smith JS, Tachibana I, Lee HK, Qian J, Pohl U, Mohrenweiser HW, Borell TJ, Hosek SM, Soderberg CL, von Deimling A, Perry A, Scheithauer BW, Louis DN, Jenkins RB: Mapping of the chromosome 19 q-arm glioma tumor suppressor gene using fluorescence in situ hybridization and novel microsatellite markers. Genes Chrom Cancer 29(1): 16–25, 2000

    Google Scholar 

  118. Smith JS, Tachibana I, Pohl U, Lee HK, Thanarajasingam U, Portier BP, Ueki K, Ramaswamy S, Billings SJ, Mohrenweiser HW, Louis DN, Jenkins RB: A transcript map of the chromosome 19q-arm glioma tumor suppressor region. Genomics 64(1): 44–50, 2000

    Google Scholar 

  119. Pohl U, Smith JS, Tachibana I, Ueki K, Lee HK, Ramaswamy S, Wu Q, Mohrenweiser HW, Jenkins RB, Louis DN: EHD2, EHD3 and EHD4 encode novel members of a highly conserved family of EH domaincontaining proteins. Genomics 63(2): 255–262, 2000

    Google Scholar 

  120. Hartmann C, Johnk L, Kitange G, Wu Y, Ashworth LK, Jenkins RB, Louis DN: Transcript map of the 3.7-Mb D19S112-D19S246 candidate tumor suppressor region on the long arm of chromosome 19. Cancer Res 62(14): 4100–4108, 2002

    Google Scholar 

  121. Hoang-Xuan K, Merel P, Vega F, Hugot JP, Cornu P, Delattre JY, Poisson M, Thomas G, Delattre O: Analysis of the NF2 tumor-suppressor gene and of chromosome 22 deletions in gliomas. Int J Cancer 60(4): 478–481, 1995

    Google Scholar 

  122. Oskam NT, Bijleveld EH, Hulsebos TJ: Aregion ofcommon deletion in 22q13.3 in human glioma associated with astrocytoma progression. Int J Cancer 85(3): 336–339, 2000

    Google Scholar 

  123. Ino Y, Silver JS, Blazejewski L, Nishikawa R, Matsutani M, von Deimling A, Louis DN: Common regions of deletion on chromosome 22q12.3-q13.1 and 22q13.2 in human astrocytomas appear related to malignancy grade. J Neuropathol Exp Neurol 58(8): 881–885, 1999

    Google Scholar 

  124. Ino Y, Wahrer DC, Bell DW, Haber DA, Louis DN: Mutation analysis of the hCHK2 gene in primary human malignant gliomas. Neurogenetics 3(1): 45–46, 2000

    Google Scholar 

  125. Bell DW, Varley JM, Szydlo TE, Kang DH, Wahrer DC, Shannon KE, Lubratovich M, Verselis SJ, Isselbacher KJ, Fraumeni JF, Birch JM, Li FP, Garber JE, Haber DA: Heterozygous germ line hCHK2 mutations in Li-Fraumeni syndrome. Science 286(5449): 2528–2531, 1999

    Google Scholar 

  126. Sonoda Y, lizuka M, Yasuda J, Makino R, Ono T, Kayama T, Yoshimoto T, Sekiya T: Loss of heterozygosity at 11pl5 in malignant glioma. Cancer Res 55(10): 2166–2168, 1995

    Google Scholar 

  127. Hu J, Pang JC, long CY, Lau B, Yin XL, Poon WS, Jiang CC, Zhou LF, Ng HK: High-resolution genome-wide allelotype analysis identifies loss of chromosome 14q as a recurrent genetic alteration in astrocytic tumours. Br J Cancer 87(2): 218–224, 2002

    Google Scholar 

  128. Rickman DS, Bobek MP, Misek DE, Kuick R, Blaivas M, Kurnit DM, Taylor J, Hanash SM: Distinctive molecular profiles of high-grade and low-grade gliomas based on oligonucleotide microarray analysis. Cancer Res 61(18): 6885–6891, 2001

    Google Scholar 

  129. Khatua S, Peterson KM, Brown KM, Lawlor C, Santi MR, LaFleur B, Dressman D, Stephan DA, MacDonald TJ: Overexpression of the EGFR/FKBP12HIF-2alpha pathway identified in childhood astrocytomas by angiogenesis gene profiling. Cancer Res 63(8): 1865–1870, 2003

    Google Scholar 

  130. Kim S, Dougherty ER, Shmulevich L, Hess KR, Hamilton SR, Trent JM, Fuller GN, Zhang W: Identification of combination gene sets for glioma classification. Mol Cancer Ther 1(13): 1229–1236, 2002

    Google Scholar 

  131. Huang H, Colella S, Kurrer M, Yonekawa Y, Kleihues P, Ohgaki H: Gene expression profiling of low-grade diffuse astrocytomas by cDNA arrays. Cancer Res 60(24): 6868–6874, 2000

    Google Scholar 

  132. van den Boom J, Wolter M, Kuick R, Misek DE, Youkilis AS, Wechsler DS, Sommer C, Reifenberger G, Hanash SM: Characterization of gene expression profiles associated with glioma progression using oligonucleotide-based microarray analysis and real-time reverse transcriptionpolymerase chain reaction. Am J Pathol 163(3): 1033–1043, 2003

    Google Scholar 

  133. Godard S, Getz G, Delorenzi M, Farmer P, Kobayashi H, Desbaillets I, Nozaki M, Diserens AC, Hamou MF, Dietrich PY, Regli L, Janzer RC, Bucher P, Stupp R, de Tribolet N, Domany E, Hegi ME: Classification of human astrocytic gliomas on the basis of gene expression: a correlated group of genes with angiogenic activity emerges as a strong predictor of subtypes. Cancer Res 63(20): 6613–6625, 2003

    Google Scholar 

  134. Fuller GN, Hess KR, Rhee CH, Yung WK, Sawaya RA, Bruner JM, Zhang W: Molecular classification of human diffuse gliomas by multidimensional scaling analysis of gene expression profiles parallels morphology-based classification, correlates with survival, and reveals clinicallyrelevant novel glioma subsets. Brain Pathol 12(1): 108–116, 2002

    Google Scholar 

  135. Markert JM, Fuller CM, Gillespie GY, Bubien JK, McLean LA, Hong RL, Lee K, Gullans SR, Mapstone TB, Benos DJ: Differential gene expression profiling in human brain tumors. Physiol Genomics 5(1): 21–33, 2001

    Google Scholar 

  136. Muller S, Kunkel P, Lamszus K, Ulbricht U, Lorente GA, Nelson AM, von Schack D, Chin DJ, Lohr SC, Westphal M, Melcher T: A role for receptor tyrosine phosphatase zeta in glioma cell migration. Oncogene 22(43): 6661–6668, 2003

    Google Scholar 

  137. Mischel PS, Shai R, Shi T, Horvath S, Lu KV, Choe G, Seligson D, Kremen TJ, Palotie A, Liau LM, Cloughesy TF, Nelson SF: Identification of molecular subtypes of glioblastoma by gene expression profiling. Oncogene 22(15): 2361–2373, 2003

    Google Scholar 

  138. Nutt CL, Mani DR, Betensky RA, Tamayo P, Cairncross JG, Ladd C, Pohl U, Hartmann C, McLaughlin ME, Batchelor TT, Black PM, von Deimling A, Pomeroy SL, Golub TR, Louis DN: Gene expression-based classification of malignant gliomas correlates better with survival than histological classification. Cancer Res 63(7): 1602–1607, 2003

    Google Scholar 

  139. Shai R, Shi T, Kremen TJ, Horvath S, Liau LM, Cloughesy TF, Mischel PS, Nelson SF: Gene expression profiling identifies molecular subtypes of gliomas. Oncogene 22(31): 4918–4923, 2003

    Google Scholar 

  140. Ljubimova JY, Lakhter AJ, Loksh A, Yong WH, Riedinger MS, Miner JH, Sorokin LM, Ljubimov AV, Black KL: Overexpression of alpha4 chain-containing laminins in human glial tumors identified by gene microarray analysis. Cancer Res 61(14): 5601–5610, 2001

    Google Scholar 

  141. Tanwar MK, Gilbert MR, Holland EC: Gene expression microarray analysis reveals YKL-40 to be a potential serum marker for malignant character in human glioma. Cancer Res 62(15): 4364–4368, 2002

    Google Scholar 

  142. Watanabe K, Sato K, Biernat W, Tachibana O, von Ammon K, Ogata N, Yonekawa Y, Kleihues P, Ohgaki H: Incidence and timing of p53 mutations during astrocytoma progression in patients with multiple biopsies. Clin Cancer Res 3(4): 523–530, 1997

    Google Scholar 

  143. Reifenberger J, Ring GU, Gies U, Cobbers L, Oberstrass J, An HX, Niederacher D, Wechsler W, Reifenberger G: Analysis of p53 mutation and epidermal growth factor receptor amplification in recurrent gliomas with malignant progression. J Neuropathol Exp Neurol 55(7): 822–831, 1996

    Google Scholar 

  144. Tohma Y, Gratas C, Biernat W, Peraud A, Fukuda M, Yonekawa Y, Kleihues P, Ohgaki H: PTEN (MMAC1) mutations are frequent in primary glioblastomas (de novo) but not in secondary glioblastomas. J Neuropathol Exp Neurol 57(7): 684–689, 1998

    Google Scholar 

  145. Fujisawa H, Reis RM, Nakamura M, Colella S, Yonekawa Y, Kleihues P, Ohgaki H: Loss of heterozygosity on chromosome 10 is more extensive in primary (de novo) than in secondary glioblastomas. Lab Invest 80(1): 65–72, 2000

    Google Scholar 

  146. Watanabe K, Tachibana O, Sata K, Yonekawa Y, Kleihues P, Ohgaki H: Overexpression of the EGF receptor and p53 mutations are mutually exclusive in theevolution of primary and secondary glioblastomas. Brain Pathol 6(3): 217–223, discussion 223–214, 1996

    Google Scholar 

  147. Galanis E, Buckner J, Kimmel D, Jenkins R, Alderete B, O'Fallon J, Wang CH, Scheithauer BW, James CD: Gene amplification as a prognostic factor in primary and secondary high-grade malignant gliomas. Int J Oncol 13(4): 717–7241, 1998

    Google Scholar 

  148. James CD, Galanis E, Frederick L, Kimmel DW, Cunningham JM, Atherton-Skaff PJ, O'Fallon JR, Jenkins RB, Buckner JC, Hunter SB, Olson JJ, Scheithauer BW: Tumor suppressor gene alterations in malignant gliomas: histopathological associations and prognostic evaluation. Int J Oncol 15(3): 547–553, 1999

    Google Scholar 

  149. Kraus JA, Glesmann N, Beck M, Krex D, Klockgether T, Schackert G, Schlegel U: Molecular analysis of the PTEN, TP53 and CDKN2A tumor suppressor genes in long-term survivors of glioblastoma multiforme. J Neurooncol 48(2): 89–94, 2000

    Google Scholar 

  150. Newcomb EW, Bhalla SK, Parrish CL, Hayes RL, Cohen H, Miller DC: bcl-2 protein expression in astrocytomas in relation to patient survival and p53 gene status. Acta Neuropathol (Berl) 94(4): 369–375, 1997

    Google Scholar 

  151. Olson JJ, Barnett D, Yang J, Assietti R, Cotsonis G, James CD: Gene amplification as a prognostic factor in primary brain tumors. Clin Cancer Res 4(1): 215–22, 1998

    Google Scholar 

  152. Raffel C, Frederick E, O'Fallon JR, Atherton-Skaff P, Perry A, Jenkins RB, James CD: Analysis of oncogene and tumor suppressor gene alterations in pediatric malignant astrocytomas reveals reduced survival for patients with PTEN mutations. Clin Cancer Res 5(12): 4085–4090, 1999

    Google Scholar 

  153. Backlund LM, Nilsson BR, Goike HM, Schmidt EE, Eiu E, Ichimura K, Collins VP: Short postoperative survival for glioblastoma patients with a dysfunctional Rb1 pathway in combination with no wild-type PTEN. Clin Cancer Res 9(11): 4151–4158, 2003

    Google Scholar 

  154. Peraud A, Watanabe K, Plate KH, Yonekawa Y, Kleihues P, Ohgaki H: p53 mutations versus EGF receptor expression in giant cell glioblastomas. J Neuropathol Exp Neurol 56(11): 1236–1241, 1997

    Google Scholar 

  155. Meyer-Puttlitz B, Hayashi Y, Waha A, Rollbrocker B, Bostrom J, Wiestler OD, Louis DN, Reifenberger G, von Deimling A: Molecular genetic analysis of giant cell glioblastomas. Am J Pathol 151(3): 853–857, 1997

    Google Scholar 

  156. Reis RM, Konu-Eebleblicioglu D, Lopes JM, Kleihues P, Ohgaki H: Genetic profile of gliosarcomas. Am J Pathol 156(2): 425–432, 2000

    Google Scholar 

  157. Biernat W, Aguzzi A, Sure U, Grant JW, Kleihues P, Hegi ME: Identical mutations of the p53 tumor suppressor gene in the gliomatous and the sarcomatous components of gliosarcomas suggest a common origin from glial cells. J Neuropathol Exp Neurol 54(5): 651–656, 1995

    Google Scholar 

  158. Listernick R, Charrow J, Gutmann DH: Intracranial gliomas in neurofibromatosis type 1. Am J Med Genet 89(1): 38–44, 1999

    Google Scholar 

  159. Alshail E, Rutka JT, Becker LE, Hoffman HJ: Optic chiasmatic-hypothalamic glioma. Brain Pathol 7(2): 799–806, 1997

    Google Scholar 

  160. Jenkins RB, Kimmel DW, Moertel CA, Schultz CG, Scheithauer BW, Kelly PJ, Dewald GW: A cytogenetic study of 53 human gliomas. Cancer Genet Cytogenet 39(2): 253–279, 1989

    Google Scholar 

  161. Bigner SH, McLendon RE, Fuchs H, McKeever PE, Friedman HS: Chromosomal characteristics of childhood brain tumors. Cancer Genet Cytogenet 97(2): 125–134, 1997

    Google Scholar 

  162. Zattara-Cannoni H, Gambarelli D, Lena G, Dufour H, Choux M, Grisoli F, Vagner-Capodano AM: Are juvenile pilocytic astrocytomas benign tumors? A cytogenetic study in 24 cases. Cancer Genet Cytogenet 104(2): 157–160, 1998

    Google Scholar 

  163. Sanoudou D, Tingby O, Ferguson-Smith MA, Collins VP, Coleman N: Analysis of pilocytic astrocytoma by comparative genomic hybridization. Br J Cancer 82(6): 1218–1222, 2000

    Google Scholar 

  164. James CD, He J, Carlbom E, Mikkelsen T, Ridderheim PA, Cavenee WK, Collins VP: Eoss of genetic information in central nervous system rumors common to children and young adults. Genes Chrom Cancer 2(2): 94–102, 1990

    Google Scholar 

  165. Gutmann DH, Donahoe J, Brown T, James CD, Perry A: Loss of neurofibromatosis 1 (NF1) gene expression in NF1-associated pilocytic astrocytomas. Neuropathol Appl Neurobiol 26(4): 361–367, 2000

    Google Scholar 

  166. Kluwe L, Hagel C, Tatagiba M, Thomas S, Stavrou D, Ostertag H, von Deimling A, Mautner VF: Loss of NF1 alleles distinguish sporadic from NF1-associated pilocytic astrocytomas. J Neuropathol Exp Neurol 60(9): 917–920, 2001

    Google Scholar 

  167. Patt S, Gries H, Giraldo M, Cervos-Navarro J, Martin H, Jamsch W, Brockmoller J: p53 gene mutations in human astrocytic brain tumors including pilocytic astrocytomas. Hum Pathol 27(6): 586–589, 1996

    Google Scholar 

  168. Phelan CM, Liu L, Ruttledge MH, Muntzning K, Ridderheim PA, Collins VP: Chromosome 17 abnormalities and lack of TP53 mutations in paediatric central nervous system tumours. Hum Genet 96(6): 684–690, 1995

    Google Scholar 

  169. Uhlmann K, Rohde K, Zeller C, Szymas J, Vogel S, Marczinek K, Thiel G, Nurnberg P, Laird PW: Distinct methylation profiles of glioma subtypes. Int J Cancer 106(1): 52–59, 2003

    Google Scholar 

  170. Gonzalez–Gomez P, Bello MJ, Lomas J, Arjona D, Alonso ME, Aminoso C, De Campos JM, Vaquero J, Sarasa JL, Casartelli C, Rey JA: Epigenetic changes in pilocytic astrocytomas and medulloblastomas. Int J Mol Med 11(5): 655–660, 2003

    Google Scholar 

  171. Giannini C, Scheithauer BW, Burger PC, Brat DJ, Wollan PC, Lach B, O'Neill BP: Pleomorphic xanthoastrocytoma: what do we really know about it? Cancer 85(9): 2033–2045, 1999

    Google Scholar 

  172. Reifenberger G, Kaulich K, Wiestler OD, Blumcke I: Expression of the CD34 antigen in pleomorphic xanthoastrocytomas. Acta Neuropathol (Berl) 105(4): 358–364, 2003

    Google Scholar 

  173. Paulus W, Lisle DK, Tonn JC, Wolf HK, Roggendorf W, Reeves SA, Louis DN: Molecular genetic alterations in pleomorphic xanthoastrocytoma. Acta Neuropathol (Berl) 91(3): 293–297, 1996

    Google Scholar 

  174. Kaulich K, Blaschke B, Numann A, von Deimling A, Wiestler OD, Weber RG, Reifenberger G: Genetic alterations commonly found in diffusely infiltrating cerebral gliomas are rare or absent in pleomorphic xanthoastrocytomas. J Neuropathol Exp Neurol 61(12): 1092–1099, 2002

    Google Scholar 

  175. Giannini C, Hebrink D, Scheithauer BW, Dei Tos AP, James CD: Analysis of p53 mutation and expression in pleomorphic xanthoastrocytoma. Neurogenetics 3(3): 159–162, 2001

    Google Scholar 

  176. Malkin D. Li-Fraumeni Syndrome: In: Vogelstein B, Kinzler KW (eds) The Genetic Basis of Cancer. McGraw-Hill, Health Professions Division, New York, London, 1998, pp. 393–422

    Google Scholar 

  177. Li YJ, Sanson M, Hoang-Xuan K, Delattre JY, Poisson M, Thomas G, Hamelin R: Incidence of germ-line p53 mutations in patients with gliomas. Int J Cancer 64(6): 383–387, 1995

    Google Scholar 

  178. Gutmann DH, Collins FS: Neurofibromatosis Type 1. In: Vogelstein B, Kinzler KW (eds), The Genetic Basis of Cancer. McGraw-Hill, Health Professions Division, New York, London, 1998, pp 423–442

    Google Scholar 

  179. MacCollin M, Gusella J: Neurofibromatosis Type 2. In: Vogelstein B, Kinzler KW (eds), The Genetic Basis of Cancer. McGraw-Hill, Health Professions Division, New York, London, 1998, pp 443–454

    Google Scholar 

  180. Al-Saleem T, Wessner LL, Scheithauer BW, Patterson K, Roach ES, Dreyer SJ, Fujikawa K, Bjornsson J, Bernstein J, Henske EP: Malignant tumors of the kidney, brain, and soft tissues in children and young adults with the tuberous sclerosis complex. Cancer 83(10): 2208–2216, 1998

    Google Scholar 

  181. Eng C, Parsons R: Cowden Syndrome. In: Vogelstein B, Kinzler KW (eds), The Genetic Basis of Cancer. McGraw-Hill, Health Professions Division, New York, London, 1998, pp 519–526

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ichimura, K., Ohgaki, H., Kleihues, P. et al. Molecular pathogenesis of astrocytic tumours. J Neurooncol 70, 137–160 (2004). https://doi.org/10.1007/s11060-004-2747-2

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11060-004-2747-2

Navigation