Skip to main content
Log in

T-Lymphocyte Subpopulation Composition and the Immune Response in Depression-Like Behavior in ASC Mice

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

A comparative analysis of the contents of CD4+, CD8+, and CD16/32+ cells in the peripheral blood and spleen of intact (non-immunized) ASC mice with a genetically determined depression-like state and mice of the parental CBA strain, without depressive behavior, is presented. ASC mice showed decreases in the relative number of CD16/32+ and CD4+ cells, accumulation of CD8+ cells, and a decrease in the index of immunoreactivity (CD4/CD8). Changes in the subpopulations of study cells in intact ASC mice were accompanied by reduced responses of animals to a T-dependent antigen – sheep erythrocytes (5·108). There were significant reductions in the relative and absolute numbers of IgM-antibody-forming cells (AFC) on post-immunization days 4 and 5 and IgG AFC on day 6 in the spleens of ASC mice, as compared with CBA mice. The possible mechanisms of reductions in immunoreactivity in the genetically determined depression-like state are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. L. Al’perina, A. V. Kulikov, N. K. Popova, and G. V. Idova, “Nature of the immune response in ASC (antidepressant-sensitive catalepsy) mice,” Byull. Eksperim. Biol. Med., 144, No. 8, 188–190 (2007).

    Google Scholar 

  2. E. B. Arushanyan and E. B. Beier, “Relationship between psychoemotional status and the immune system,” Usp. Fiziol. Nauk., 35, No. 4, 49–64 (2004).

    Google Scholar 

  3. D. V. Gazovkina, A. V. Kulikov, E. M. Kondaurova, and N. K. Popova, “Breeding for predisposition to catalepsy increases depression-like behavior in mice,” Genetika, 41, No. 9, 122–1228 (2005).

    Google Scholar 

  4. L. V. Devoino, G. V. Idova, and E. L. Al’perina, Pyschoneuroimmunomodulation. Behavior and Immunity [in Russian], Nauka, Novosibirsk (2009).

  5. L. V. Devoino and R. Yu. Il’yuchenok, Neurotransmitter Systems in Psychoneuroimmunomodulation: Serotonin, Dopamine, GABA, Neuropeptides [in Russian], TsERIS, Novosibirsk (1993).

  6. N. I. Dubrovina, D. R. Zinov’ev, D. V. Zinov’eva, and A. V. Kulikov, “Learning and extinction of a passive avoidance reaction in mice with high predisposition to catalepsy,” Ros. Fiziol. Zh. im. I. M. Sechenova, 94, No. 6, 609–616 (2008).

    CAS  Google Scholar 

  7. G. V. Idova, M. A. Cheido, E. N. Zhukova, et al., “Effects of the type 1-A serotonin receptor agonist 8-OH-DPAT on the immune response,” Byull. Eksperim. Biol. Med., 132, No. 10, 432–434 (2001).

    Google Scholar 

  8. G. V. Idova, T. A. Pavina, E. L. Al’perina, and L. V. Devoino, “Effects of submissive and aggressive types of behavior on changes in the numbers of CD4+ and CD8+ T lymphocytes in bone marrow,” Immunologiya, 1, 24–26, 00

  9. E. M. Kondaurova, D. V. Bazovkina, and A. V. Kulikov, “Studies of the interaction of catalepsy with anxiety, aggression, and depression-like behavior using congenic mouse strains,” Ros. Fiziol. Zh. im. I. M. Sechenova, 96, No. 5, 464–471 (2010).

    CAS  Google Scholar 

  10. A. V. Kulikov, V. S. Naumenko, D. V. Bazovkina, et al., “Effects of the terminal fragment of mouse chromosome 13 on the predisposition to catalepsy and the expression of genes encoding tryptophan hydroxylase 2, the serotonin transporter, and 5-HT1A receptors in the brain,” Byull. Eksperim. Biol. Med., 147, 553–556 (2009).

    Google Scholar 

  11. G. N. Kryzhanovskii, I. G. Akmaev, S. V. Magaeva, and S. G. Morozov, Neuroimmunoendocrine Interactions in Health and Disease [in Russian], Med. Kniga, Moscow (2010).

    Google Scholar 

  12. V. Ya. Semke, T. P. Vetlugina, T. I. Nevidimova, et al., Clinical Neuroimmunopathology [in Russian], RASKO, Tomsk (2003).

  13. M. V. Tenditnik, A. V. Shurlygina, E. V. Mel’nikova, et al., “Changes in the subpopulation composition of lymphocytes in the immunocompetent organs of mice in conditions of chronic social stress,” Ros. Fiziol. Zh. im. I. M. Sechenova, 90, No. 12, 1522–1529 (2004).

    CAS  Google Scholar 

  14. L. Capuron, A. Miller, and M. R. Irwin, “Psychoneuroimmunology of depressive disorder: mechanisms and clinical implications,” Psychoneuroimmunol., 1, 509–530 (2007).

    Article  Google Scholar 

  15. B. W. Dunlop and C. B. Nemeroff, “The role of dopamine in pathophysiology of depression,” Arch. Gen. Psychiatry, 64, No. 3, 327–337 (2007).

    Article  PubMed  CAS  Google Scholar 

  16. H. Enger, M. T. Bailey, A. Engler, and J. F. Sheridan, “Effects of repeated social stress on leukocyte distribution in bone marrow, peripheral blood and spleen,” J. Neuroimmunol., 148, No. 1–2, 106–115 (2004).

    Article  Google Scholar 

  17. J. Hennig, H. Becker, and P. Netter, “5-HT agonist-induced changes in peripheral immune cells in healthy volunteers: the impact of personality,” Behav. Brain Res., 73, No. 1–2, 359–363 (1995).

    Article  Google Scholar 

  18. G. V. Idova and S. M. Davydova, “Involvement of presynaptic 5-HT1A receptors in immunomodulation in conditions of psychoemotional tension,” Neurosci. Behav. Physiol., 40, No. 5, 495–499 (2010).

    Article  PubMed  CAS  Google Scholar 

  19. M. R. Irwin and A. H. Miller, “Depressive disorders and immunity: 20 years of progress and discovery,” Brain Behav. Immun., 21, No. 4, 374–383 (2007).

    Article  PubMed  CAS  Google Scholar 

  20. G. S. Ladics, “Primary immune response to sheep red blood cells (SRBS) as the conventional T-cell dependent antibody response (TDAR) test,” J. Immunotoxicol., 4, No. 2, 149–152 (2007).

    Article  PubMed  Google Scholar 

  21. C. A. Ottaway and A. J. Husband, “The influence of neuroendocrine pathways on lymphocyte migration,” Immunol. Today, 5, No. 1, 511–517 (1994).

    Article  Google Scholar 

  22. D. H. Overstreet, R. C. Commissaris, R. De La Garza, et al., “Involvement of 5-HT1A receptors in animal tests of anxiety and depression: evidence from genetic models,” Stress, 6, No. 2, 101–110 (2003).

    Article  PubMed  CAS  Google Scholar 

  23. J. M. Petitto, “Behavioral genetics and immunity,” in: Psychoneuroimmunology, Elsevier Acad. Press, San Diego (2001), Vol. 2, pp. 173–186.

  24. M. A. Tikhonova, E. L. Alperina, T. G. Tolstikova, et al., “Effects of chronic fluoxetine treatment on catalepsy and the immune response in mice with a genetic predisposition to freezing reactions: the roles of types 1A and 2A serotonin receptors and the tph2 and SERT genes,” Neurosci. Behav. Physiol., 40, No. 5, 521–527 (2010).

    Article  PubMed  CAS  Google Scholar 

  25. J. Veenstra-Vender Weele, G. M. Anderson, and E. H. Cook, Jr., “Pharmacogenetics and the serotonin system: initial studies and future direction,” Eur. J. Pharmacol., 410, No. 2–3, 165–181 (2000).

    Article  Google Scholar 

  26. M. E. I. Yacoubi and J. M. Vaugeois, “Genetic rodent models of depression,” Curr. Opin. Pharmacol., 7, No. 1, 3–7 (2007).

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. V. Idova.

Additional information

Translated from Rossiiskii Fiziologicheskii Zhurnal imeni I. M. Sechenova, Vol. 98, No. 2, pp. 194–201, February, 2012.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Idova, G.V., Al’perina, E.L., Gevorgyan, M.M. et al. T-Lymphocyte Subpopulation Composition and the Immune Response in Depression-Like Behavior in ASC Mice. Neurosci Behav Physi 43, 946–950 (2013). https://doi.org/10.1007/s11055-013-9833-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11055-013-9833-x

Keywords

Navigation