Skip to main content

Advertisement

Log in

Prevention of Neurodegenerative Damage to the Brain in Rats in Experimental Alzheimer’s Disease by Adaptation to Hypoxia

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

We report here studies addressing the possibility of preventing neurodegenerative changes in the brain using adaptation to periodic hypoxia in rats with experimental Alzheimer’s disease induced by administration of the neurotoxic peptide fragment of β-amyloid (Ab) into the basal magnocellular nucleus. Adaptation to periodic hypoxia was performed in a barochamber (4000 m, 4 h per day, 14 days). The following results were obtained 15 days after administration of Ab. 1. Adaptation to periodic hypoxia significantly blocked Ab-induced memory degradation in rats, as assessed by testing a conditioned passive avoidance reflex. 2. Adaptation to periodic hypoxia significantly restricted increases in oxidative stress, measured spectrophotometrically in the hippocampus in terms of the content of thiobarbituric acid-reactive secondary lipid peroxidation products. 3. Adaptation to periodic hypoxia completely prevented the overproduction of NO in the brains of rats with experimental Alzheimer’s disease, as measured in terms of increases in tissue levels of stable NO metabolites, i.e., nitrites and nitrates. 4. The cerebral cortex of rats given Ab injections after adaptation to periodic hypoxia did not contain neurons with pathomorphological changes or dead neurons (Nissl staining), which were typical in animals with experimental Alzheimer’s disease. Thus, adaptation to periodic hypoxia effectively prevented oxidative and nitrosative stress, protecting against neurodegenerative changes and protecting cognitive functions in experimental Alzheimer’s disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. O. Bachurin, “Medical chemistry of the targeted search for agents for the treatment and prevention of neurodegenerative diseases using Alzheimer’s disease as an example,” in: Neurodegenerative Diseases and Aging [in Russian], I. A. Zavalishin, N. N. Yakhno, and S. I. Gavrilova (eds.), Moscow (2001), pp. 399–454.

  2. A. F. Vanin, “Dinitrosyl complexes of iron and S-nitrosothiols – two possible forms of stabilization and transport of nitric oxide in biological systems,” Biokhimiya, 63, No. 7, 924–938 (1998).

    Google Scholar 

  3. S. A. Elchaninova, N. A. Korenyak, I. V. Smagina, L. E. Pinegin, and B. Ya. Varshavskii, “Discontinuous hypoxia in the treatment of chronic cerebral ischemia,” Zh. Nevrol. Psikhiat. im. S. S. Korsakova, 102, 29–32 (2002).

    CAS  Google Scholar 

  4. A. L. Krushinskii, V. P. Reutov, V. S. Kuzenkov, E. G. Sorokina, V. B. Koshelev, O. E. Fadyukova, L. M. Baider, Z. V. Kuropteva, T. T. Zhumabaeva, L. Kh. Komissarova, T. V. Ryasina, N. S. Kositsyn, and V. G. Pinelis, “Nitric oxide is involved in the mechanisms of short-term adaptation to hypoxia and protective actions during the development of stress lesions in Krushinskii-Molodkina rats,” Izv. Ros. Akad. Nauk. Ser. Biol., 34, No. 3, 329–335 (2007).

    Google Scholar 

  5. V. I. Kulinskii, L. N. Minakina, and T. V. Gavrilina, “Neuroprotective effects of hypoxic preconditioning: the phenomenon and its mechanisms,” Byull. Eksperim. Biol. Med., 133, No. 2, 237–239 (2002).

    Google Scholar 

  6. E. B. Manukhina, F. Viegant,V. I. Torshin, A. V. Goryacheva, I. P. Khomenko, S. V. Kruglov, S. Yu. Mashina, D. A. Pokidyshev, E. V. Popova, M. G. Pshennikova, M. A. Vlasova, O. M. Zelenina, and I. Yu. Malyshev, “Potential non-medication-based approaches to Alzheimer’s disease,” Izv. Ros. Akad. Nauk. Ser. Biol., 31, No. 4, 382–395 (2004).

    Google Scholar 

  7. E. B. Manukhina and I. Yu. Malyshev, “The stress-limiting nitric oxide system,” Ros. Fiziol. Zh. im. I. M. Sechenova, 86, No. 10, 1283–1292 (2000).

    CAS  Google Scholar 

  8. E. B. Manukhina, B. V. Smirin, I. Yu. Malyshev, Zh-K. Stokle, B. Muller, A. P. Solodkov, V. I. Shebeko, and A. F. Vanin, “Deposition of nitric oxide in the cardiovascular system,” Izv. Akad. Nauk. Ser. Biol., 29, No. 5, 585–596 (2002).

    Google Scholar 

  9. S. Yu. Mashina,V. V. Aleksandrov, A. V. Goryacheva, M. A. Vlasova, A. F. Vanin, I. Yu. Malyshev, and E. B. Manukhina, “Adaptation to hypoxia prevents impairments of cerebral circulation in neurodegenerative damage: the role of nitric oxide,” Byull. Eksperim. Biol. Med., 142, No. 8, 132–135 (2006).

    Google Scholar 

  10. F. Z. Meerson, Adaptation Medicine: Mechanisms and Protective Effects of Adaptation, Hypoxia Medical Ltd., Moscow (1993).

    Google Scholar 

  11. F. Z. Meerson, V. G. Pinelis, V. B. Kosheleva, L. Yu. Golubeva, T. V. Ryasina, N. Arsen’eva, A. L. Krushinskii, and T. P. Storozhevykh, “Adaptation to periodic hypoxia restricts subdural hemorrhage in epileptiform convulsions in rats,” Byull. Eksperim. Biol. Med., 116, 572–574 (1993).

    CAS  Google Scholar 

  12. M. G. Pshennikova, E. V. Popkova, D. A. Pokidyshev, I. P. Khomenko, O. M. Zelenina, S. V. Kruglov, E. B. Manukhina, M. V. Shimkovich, A. V. Goryaeva, and I. Yu. Malyshev, “Effects of adaptation to hypoxia on resistance to neurodegenerative brain damage in rats of different genetic strains,” Vestn. Ros. Akad. Med. Nauk., No. 2, 50–55 (2007).

    Google Scholar 

  13. M. G. Pshennikova, E. V. Popkova, I. P. Khomenko, E. B. Manukhina, A. V. Goryacheva, S. Yu. Mashina, D. A. Pokidyshev, and I. Yu. Malyshev, “Comparison of resistance to neurodegenerative brain damage in august rats and the Wistar population,” Byull. Eksperim. Biol. Med., 139, No. 5, 540–542 (2005).

    Article  CAS  Google Scholar 

  14. J. I. Addae, F. F. Youssef, and T. W. Stone, “Neuroprotective role of learning in dementia: a biological explanation,” J. Alzheimer’s Dis., 5, 91–104 (2003).

    CAS  Google Scholar 

  15. R. L. Berghmans, “Anti-Alzheimer drugs: ethical aspects of research and practice,” Tijdschr. Gerontol. Geriatr., 31, 100–106 (2000).

    PubMed  CAS  Google Scholar 

  16. M. Bernaudin, A. S. Nedelec, D. Divoux, E. T. MacKenzie, E. Petit, and P. Schumann-Bard, “Normobaric hypoxia induces tolerance to focal permanent cerebral ischemia in association with an increased expression of hypoxia-inducible factor-1 and its target genes, erythropoietin and VEGF, in the adult mouse brain,” J. Cereb. Blood Flow Metab., 22, 393–403 (2002).

    Article  PubMed  CAS  Google Scholar 

  17. D. Boyd-Kimball, R. Sultana, H. F. Poon, B. C. Lunn, F. Casamenti, G. Pepeu, J. B. Klein, and D. A. Butterfield, “Proteomic identification of proteins specifically oxidized by intracerebral injection of amyloid beta-peptide (1–42) into rat brain: implications for Alzheimer’s disease,” Neurosci., 132, 313–324 (2005).

    Article  CAS  Google Scholar 

  18. H. Braak, U. Rüb, C. Schultz, and K. Del Tredici, “Vulnerability of cortical neurons to Alzheimer’s and Parkinson’s diseases,” J. Alzheimer’s Dis., 9, No. 3, Supplement, 35–44 (2006).

    Google Scholar 

  19. D. A. Butterfield, “Amyloid beta-peptide (1–42)-induced oxidative stress and neurotoxicity: implications for neurodegeneration in Alzheimer’s disease brain. A review,” Free Radic. Res., 36, 1307–1313 (2002).

    Article  PubMed  CAS  Google Scholar 

  20. V. Calabrese, E. Guagliano, M. Sapienza, C. Mancuso, D. A. Butterfield, and A. M. Stella, “Redox regulation of cellular stress response in neurodegenerative disorders,” Ital. J. Biochem., 55, 263–282 (2006).

    PubMed  CAS  Google Scholar 

  21. V. Calabrese, T. E. Bates, and A. M. Stella, “NO synthase and NOdependent signal pathways in brain aging and neurodegenerative disorders: the role of oxidant/antioxidant balance,” Neurochem. Res., 25, 1315–1341 (2000).

    Article  PubMed  CAS  Google Scholar 

  22. C. A. Davies, D. M. Mann, P. Q. Sumpter, and P. O. Yates, “A quantitative morphometric analysis of the neuronal and synaptic content of the frontal and temporal cortex in patients with Alzheimer’s disease,” J. Neurol. Sci., 78, 151–164 (1987).

    Article  PubMed  CAS  Google Scholar 

  23. S. T. De Kosky and S. W. Scheff, “Synapse loss in frontal cortex biopsies in Alzheimer’s disease: correlation with cognitive severity,” Ann. Neurol., 27, 457–464 (1990).

    Article  Google Scholar 

  24. H. Fai Poon, V. Calabrese, G. Scapagnini, and D. A. Butterfield, “Free radicals: Key to brain aging and heme oxygenase as a cellular response to oxidative stress,” J. Gerontol. Series A: Biol. Sci. Med. Sci., 59, M478–M493 (2004).

    Google Scholar 

  25. M. R. Farlow, M. L. Miller, and V. Pejovic, “Treatment options in Alzheimer’s disease: maximizing benefit, managing expectations,” Dement. Geriatr. Cogn. Disord., 25, 408–422, (2008).

    Article  PubMed  CAS  Google Scholar 

  26. R. A. Floyd, “Antioxidants, oxidative stress, and degenerative neurological disorders,” Proc. Soc. Exp. Biol. Med., 222, 236–245 (1999).

    Article  PubMed  CAS  Google Scholar 

  27. N. V. Gulyaeva, M. V. Stepanichev, M. V. Onufriev, I. V. Sergeev, O. S. Mitrokhina, Yu. V. Moiseeva, and E. N. Tkatchouk, “Interval hypoxia training prevents oxidative stress in striatum and locomotor disturbances in a rat model of parkinsonism,” in: Progress in Alzheimer’s and Parkinson’s Diseases, A. Fisher, I. Hahn, and M. Yoshida (eds.), Plenum Press (1998), pp. 717–723.

  28. M. E. Jung, J. W. Simpkins, A. M. Wilson, H. F. Downey, and R. T. Mallet, “Intermittent hypoxia conditioning prevents behavioral deficit and brain oxidative stress in ethanol withdrawn rats,” J. Appl. Physiol. [Epub ahead of print, May 22, 2008].

  29. U. Keil, A. Bonert, C. A. Marques, I. Scherping, J. Weyerman, J. B. Strosznajder, F. Müller-Spahn, C. Haass, C. Czech, L. Pradier, W. E. Müller, and A. Eckert, “Amyloid beta-induced changes in nitric oxide production and mitochondrial activity lead to apoptosis,” J. Biol. Chem., 279, 50310–50320 (2004).

    Article  PubMed  CAS  Google Scholar 

  30. D. S. Kim, J. Y. Kim, and Y. S. Han, “Alzheimer’s disease drug discovery from herbs: neuroprotectivity from beta-amyloid (1–42) insult,” J. Atern. Complement. Med., 13, 333–340 (2007).

    Article  Google Scholar 

  31. A. M. Lin, C. F. Chen, and L. T. Ho, “Neuroprotective effect of intermittent hypoxia on iron-induced oxidative injury in rat brain,” Exp. Neurol., 176, 328–335 (2002).

    Article  PubMed  CAS  Google Scholar 

  32. N. Mahendra and S. Arkin, “Effects of four years of exercise, language, and social interventions on Alzheimer discourse,” J. Commun. Disord., 36, 395–422 (2003).

    Article  PubMed  Google Scholar 

  33. T. Malinski, “Nitric oxide and nitroxidative stress in Alzheimer’s disease,” J. Alzheimer’s Dis., 11, 207–218 (2007).

    CAS  Google Scholar 

  34. S. I. Marklund, N. G. Westman, E. Lundgren, and G. Roos, “Copperand zinc-containing superoxide dismutase, manganese-containing superoxide dismutase, catalase, and glutathione peroxidase in normal and neoplastic human cell lines and normal human tissues,” Cancer Res., 42, 1955–1961 (1982).

    PubMed  CAS  Google Scholar 

  35. P. I. Moreira, M. S. Santos, C. R. Oliveira, J. C. Shenk, A. Nunomura, M. A. Smith, X. Zhu, and G. Perry, “Alzheimer disease and the role of free radicals in the pathogenesis of the disease,” CNS Neurol. Disord. Targets, 7, 3–10 (2008).

    Article  CAS  Google Scholar 

  36. J. A. Neubauer, “Physiological and pathophysiological responses to intermittent hypoxia,” J. Appl. Hypoxia, 90, 1593–1599 (2001).

    CAS  Google Scholar 

  37. H. Ohkawa, N. Ohishi, and K. Yagi, “Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction,” Anal. Biochem., 95, 351–358 (1979).

    Article  PubMed  CAS  Google Scholar 

  38. G. M. Pasinetti, Z. Zhao, W. Qin, L. Ho, Y. Shrishailam, D. Macgrogan, W. Ressmann, N. Humala, X. Liu, C. Romero, B. Stetka, L. Chen, H. Ksiezak-Reding, and J. Wang, “Caloric intake and Alzheimer’s disease. Experimental approaches and therapeutic implications,” Interdiscip. Top. Gerontol., 35, 159–175 (2007).

    PubMed  CAS  Google Scholar 

  39. K. N. Prasad, W. C. Cole, and K. C. Prasad, “Risk factors for Alzheimer’s disease: role of multiple antioxidants, non-steroidal anti-inflammatory and cholinergic agents alone or in combination in prevention and treatment,” J. Am. Coll. Nutr., 21, 506–522 (2002).

    PubMed  CAS  Google Scholar 

  40. D. J. Selkoe, “Alzheimer’s disease is a synaptic failure,” Science, 298, 789–791 (2002).

    Article  PubMed  CAS  Google Scholar 

  41. G. L. Semenza, “O2-regulated gene expression: transcriptional control of cardiorespiratory physiology by HIF-1,” J. Appl. Physiol., 96, 1173–1177 (2004).

    Article  PubMed  CAS  Google Scholar 

  42. T. Soucek, R. Cumming, R. Dargusch, P. Maher, and D. Schubert, “The regulation of glucose metabolism by HIF-1 mediates a neuroprotective response to amyloid beta peptide,” Neuron, 39, 43–56 (2003).

    Article  PubMed  CAS  Google Scholar 

  43. P. J. Whitehouse, D. L. Price, A. W. Clark, J. T. Coyle, and M. R. De- Long, “Alzheimer disease: evidence for selective loss of cholinergic neurons in the nucleus basalis,” Ann. Neurol., 10, 122–126 (1981).

    Article  PubMed  CAS  Google Scholar 

  44. M. M. Zaleska, K. Nagy, and R. A. Floyd, “Iron-induced lipid peroxidation and inhibition of dopamine synthesis in striatum synaptosomes,” Neurochemistry, 14, 597–605 (1989).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. B. Manukhina.

Additional information

Translated from Rossiiskii Fiziologicheskii Zhurnal imeni I. M. Sechenova, Vol. 95, No. 7, pp. 706–715, July, 2009

Rights and permissions

Reprints and permissions

About this article

Cite this article

Manukhina, E.B., Goryacheva, A.V., Barskov, I.V. et al. Prevention of Neurodegenerative Damage to the Brain in Rats in Experimental Alzheimer’s Disease by Adaptation to Hypoxia. Neurosci Behav Physi 40, 737–743 (2010). https://doi.org/10.1007/s11055-010-9320-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11055-010-9320-6

Key words

Navigation