Skip to main content
Log in

The Effects of Severe Hypoxia and Hypoxic Postconditioning on the Glutathione-Dependent Antioxidant System of the Rat Brain

  • Experimental Articles
  • Published:
Neurochemical Journal Aims and scope Submit manuscript

Abstract

In this study we investigated the effects of severe hypobaric hypoxia (SH) and severe hypobaric hypoxia accompanied by postconditioning using mild hypobaric hypoxia (PostC) on the glutathione-dependent antioxidant system in the rat hippocampus and neocortex. SH (3 h, 180 mmHg, 5% O2) led to oxidative stress that was associated with a decrease in the total glutathione level, as well as in antioxidant capacity. PostC (2 h, 360 mmHg, 10% O2) led to incomplete recovery of the total glutathione level and up-regulated glutathione peroxidase activity. In the neocortex, SH did not lead to the development of posthypoxic pathology. A small decrease in total glutathione, glutathione peroxidase activity, and antioxidant capacity on the 1st day after SH was corrected by the 2nd day. In contrast, glutathione reductase activity decreased by the 4th day after exposure to SH. PostC led to a consistent decrease in the total glutathione level but normalized glutathione reductase activity. We found that the studied brain structures develop a specific response to SH. In the hippocampus, SH led to oxidative stress, whereas the neocortex was not affected by exposure to SH. Partial differences between brain areas are based on better antioxidant defense of the neocortex in comparison with the hippocampus. PostC corrects posthypoxic pathology in the hippocampus with involvement of the glutathione- dependent antioxidant system. In the neocortex, PostC did not lead to a significant biochemical response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hayes, J.D. and Mclellan, L.I., Free Radic. Res., 1999, vol. 31, pp. 273–300.

    Article  PubMed  CAS  Google Scholar 

  2. Galkina, O.V., Neurochem. J., 2013, vol. 7, no. 2, pp. 89–97.

    Article  CAS  Google Scholar 

  3. Deponte, M., Biochim. Biophys. Acta, 2013, vol. 1830, pp. 3217–3266.

    Article  PubMed  CAS  Google Scholar 

  4. Brigelius-Flohe, R. and Maiorino, M., Biochim. Biophys. Acta, 2013, vol. 1830, no. 5, pp. 3289–3303.

    Article  PubMed  CAS  Google Scholar 

  5. Dickinson, D.A., Moellering, D.R., Iles, K.E., Patel, R.P., Wigley, A., Darley, V.M., and Forman, H.J., Biol. Chem., 2003, vol. 384, pp. 527–537.

    Article  PubMed  CAS  Google Scholar 

  6. Galano, A. and Alvarez-Idaboy, J.R., RSC Adv., 2011, no. 1, pp. 1763–1771.

    Article  CAS  Google Scholar 

  7. Sies, H., Berndt, C., and Jones, D.P., Annu. Rev. ob Biochem, 2017, pp. 1–34.

    Google Scholar 

  8. Love, S., Brain Pathol., 1999, vol. 9, pp. 119–131.

    Article  PubMed  CAS  Google Scholar 

  9. Rybnikova, E., Vorobyev, M., Pivina, S., and Samoilov, M., Neurosci. Let., 2012, vol. 513, no. 1, pp. 100–105.

    Article  CAS  Google Scholar 

  10. Zhao, H., Sapolsky, R.M., and Steinberg, G.K., J. Cereb. Blood Flow Metab., 2006, vol. 26, no. 9, pp. 1114–1121.

    Article  PubMed  CAS  Google Scholar 

  11. Ren, C., Yan, Z., Wei, D., Gao, X., Chen, X., and Zhao, H., Brain Res., 2009, vol. 1288, pp. 88–94.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Zhang, W., Wang, Y., and Bi, G., Clin. Exp. Pharmacol. Physiol., 2017, vol. 44, no. 6, pp. 656–663.

    Article  PubMed  CAS  Google Scholar 

  13. Fan, Y.Y., Hu, W.W., Nan, F., and Chen, Z., Neurochem. Int., 2017, vol. 107, pp. 43–56.

    Article  PubMed  CAS  Google Scholar 

  14. Vetrovoy, O., Tulkova, E., Sarieva, K., Kotryahova, E., Zenko, M., and Rybnikova, E., Neurosci. Let., 2017, vol. 639, pp. 49–52.

    Article  CAS  Google Scholar 

  15. Danielisova, V., Nemethova, M., Gottlieb, M., and Burda, J., Cell. Mol. Neurobiol., 2006, vol. 26, pp. 1181–1191.

    Article  PubMed  CAS  Google Scholar 

  16. Song, W., Sun, J., Su, B., Yang, R., Dong, H., and Xiong, L., J. Thorac. Cardiovasc. Surg., 2013, vol. 146, no. 3, pp. 688–695.

    Article  PubMed  Google Scholar 

  17. Saad, M.A., Abdelsalam, R.M., Kenawy, S.A., and Attia, A.S., Chem. Biol. Interact., 2015, vol. 232, pp. 21–29.

    Article  PubMed  CAS  Google Scholar 

  18. Rybnikova, E., Sitnik, N., Gluschenko, T., Tjulkova, E., and Samoilov, M.O., Brain Res., 2006, vol. 1089, no. 1, pp. 195–202.

    Article  PubMed  CAS  Google Scholar 

  19. Rybnikova, E., Vorobyev, M., Pivina, S., and Samoilov, M., Neurosci. Let., 2012, vol. 513, no. 1, pp. 100–105.

    Article  CAS  Google Scholar 

  20. Rodrigues, G. and Pellegrino, A., General neurochemical techniques, 1986, p. 568.

    Google Scholar 

  21. Akerboom, T.P.M. and Sies, H., Methods in Enzymology, 1981, vol. 77, p. 373–381.

    Article  PubMed  CAS  Google Scholar 

  22. Levander, O.A. and Smith, A.D., Methods in Enzymology, 2002, pp. 113–121.

    Google Scholar 

  23. Costa, L.G., Hogston, E., Lawrence, D.A., and Reed, D.J., Current Protocols in Toxicology, 2005, pp. 1141–1227.

    Google Scholar 

  24. Prior, R.L., Wu, X., and Schaich, K., J. Agric. Food Chem., 2005, vol. 53, no. 10, pp. 4290–4302.

    Article  PubMed  CAS  Google Scholar 

  25. Tahirovic, I., Sofic, E., Sapcanin, A., Gavrankapetanovic, I., Bach-Rojecky, L., Salkovic-Petrisic, M., Lackovic, Z., Hoyer, S., and Riederer, P., Neurochem. Res., 2007, vol. 32, no. 10, pp. 1709–1717.

    Article  PubMed  CAS  Google Scholar 

  26. Dringen, R., Brandmann, M., Hohnholt, M.C., and Blumrich, E.M., Neurochem. Res., 2015, vol. 40, no. 12, pp. 2570–2582.

    Article  PubMed  CAS  Google Scholar 

  27. Bakhtyukov, A.A., Galkina, O.V., and Eshchenko, N.D., Neurochem. J., 2016, vol. 10, no. 3, pp. 199–204.

    Article  CAS  Google Scholar 

  28. Galkina, O.V., Bakhtyukov, A.A., Akhmetshin, M.O., Prokopenko, V.M., and Eshchenko, N.D., Neurochem. J., 2017, vol. 11, no. 4, pp. 266–271.

    Article  CAS  Google Scholar 

  29. Seiler, A., Schneider, M., Forster, H., Roth, S., Wirth, E.K., Culmsee, C., Plesnila, N., Kremmer, E., Radmark, O., Wurst, W., et al., Cell Metab., 2008, vol. 8, no. 3, pp. 237–248.

    Article  PubMed  CAS  Google Scholar 

  30. Dringen, R., Prog. Neurobiol., 2000, vol. 62, pp. 649–671.

    Article  PubMed  CAS  Google Scholar 

  31. Kislin, M.S., Stroev, S.A., Glushchenko, T.S., Tiul’kova, E.I., Pelto-Huikko, M., and Samoilov, M.O., Biomed Khim., 2013, vol. 59, no. 6, pp. 673–681.

    Article  PubMed  CAS  Google Scholar 

  32. Bandeira, F., Lent, R., and Herculano-Houzel, S., Proc. Natl. Acad. Sci. U.S.A., 2009, vol. 106, no. 33, pp. 14108–14113.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Danielisova, V., Nemethova, M., Gottlieb, M., and Burda, J., Neurochem. Res., 2005, vol. 30, no. 4, pp. 559–565.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. V. Sarieva.

Additional information

Original Russian Text © K.V. Sarieva, A.Y. Lyanguzov, I.I. Zorina, O.V. Galkina, O.V. Vetrovoy, 2018, published in Neirokhimiya, 2018, Vol. 35, No. 3, pp. 241–249.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sarieva, K.V., Lyanguzov, A.Y., Zorina, I.I. et al. The Effects of Severe Hypoxia and Hypoxic Postconditioning on the Glutathione-Dependent Antioxidant System of the Rat Brain. Neurochem. J. 12, 248–255 (2018). https://doi.org/10.1134/S1819712418030121

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1819712418030121

Keywords

Navigation