Skip to main content
Log in

Comparative investigation of iron oxide nanoparticles and microparticles using the in vitro bacterial reverse mutation and in vivo Allium chromosome aberration and comet assays

  • Research paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Iron oxide-Fe2O3 nanoparticles-NPs and microparticles-MPs widely used in medical applications were comparatively investigated for in vitro mutagenicity and in vivo cytotoxicity/genotoxicity using the Ames test in Salmonella typhimurium strains (125, 250, 500, 750, 1,000 µg/mL) and chromosome aberration/comet assays in Allium cepa (all concentrations but 1,000 µg/mL), for the first time. Neither of the particles was mutagenic in all the bacterial strains in the media without (-S9) mix. However, with the S9 mix, a significant increase was determined in the reverting colonies in some concentrations in TA 97a. In TA 102, all the concentrations but 125 µg/mL also revealed a significant increase. These effects were regarded as weak mutagens since they were < twofold of the negative value. In the Allium test, almost all concentrations of NPs and MPs significantly decreased mitotic index (MI) compared to the negative control at all treatment times (down to 6.06% at 250 µg/mL and 6.40% at 750 µg/mL at 48 h, respectively). The frequency of aberrations significantly increased following all concentrations of NPs in all treatment periods (the highest was 62.03%). However, only a few concentrations of MPs induced significant aberrations (the highest was 32.18%). In the comet assay, while the two lowest concentrations of NPs were more effective in DNA damage, Fe2O3 MPs significantly increased DNA damage at more treatment points at both treatment periods. Both particles were also characterized morphologically and physicochemically. The results revealed that further investigations using different organisms and test systems are necessary for the safer usage of these particles.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

We can share our data upon reasonable request.

References

  1. Arias LS, Pessan JP, Vieira APM, Lima TMTD, Delbem ACB, Monteiro DR (2018) Iron oxide nanoparticles for biomedical applications: a perspective on synthesis, drugs, antimicrobial activity, and toxicity. Antibiotics 7(2):46. https://doi.org/10.3390/antibiotics7020046

    Article  CAS  Google Scholar 

  2. Kargozar S, Mozafari M (2018) Nanotechnology and nanomedicine: start small, think big. Mater Tod Proc 5(7):15492–15500. https://doi.org/10.1016/j.matpr.2018.04.155

    Article  CAS  Google Scholar 

  3. Chandrakala V, Aruna V, Angajala G (2022) Review on metal nanoparticles as nanocarriers: current challenges and perspectives in drug delivery systems. Emergent Mater 5:1593–1615. https://doi.org/10.1007/s42247-021-00335-x

    Article  CAS  Google Scholar 

  4. Singh N, Nelson BC, Scanlan LD, Coskun E, Jaruga P, Doak SH (2017) Exposure to engineered nanomaterials: impact on DNA repair pathways. Int J Mol Sci 18:1515. https://doi.org/10.3390/ijms18071515

    Article  CAS  Google Scholar 

  5. Suri S, Ruan G, Winter J, Schmidt CE (2013) Chapter I.2.19 - microparticles and nanoparticles. biomaterials science (third edition), 360–388. https://doi.org/10.1016/B978-0-08-087780-8.00034-6

  6. Li W, Zhang L, Ge X, Xu B, Zhang W, Qu L, Weitz DA (2018) Microfluidic fabrication of microparticles for biomedical applications. Chem Soc Rev 47(15):5646–5683

    Article  CAS  Google Scholar 

  7. Wu W, Wu Z, Yu T, Jiang C, Kim WS (2015) Recent progress on magnetic iron oxide nanoparticles: synthesis, surface functional strategies, and biomedical applications. Sci Technol Adv Mater 16(2):023501. https://doi.org/10.1088/1468-6996/16/2/023501

    Article  CAS  Google Scholar 

  8. Assadian E, Dezhampanah H, Seydi E, Pourahmad J (2019) Toxicity of Fe2Onanoparticles on human blood lymphocytes. J Biochem Mol Toxicol 33(6):e22303. https://doi.org/10.1002/jbt.22303

  9. Kaygisiz ŞY, Ciğerci İH (2017) Genotoxic evaluation of different sizes of iron oxide nanoparticles and ionic form by smart, allium, and comet assay. Toxicol Ind Health 33(10):802–809. https://doi.org/10.1177/0748233717722907

    Article  CAS  Google Scholar 

  10. Ansari MO, Parveen N, Ahmad MF, Wani AL, Afrin S, Rahman Y, Shadab GGHA (2019) Evaluation of DNA interaction, genotoxicity, and oxidative stress induced by iron oxide nanoparticles both in vitro and in vivo: attenuation by thymoquinone. Sci Rep 9(1):1–14. https://doi.org/10.1038/s41598-019-43188-5

    Article  CAS  Google Scholar 

  11. Choudhuri S, Kaur T, Jain S, Sharma C, Asthana S (2021) A review on genotoxicity in connection to infertility and cancer. Chem-Biol Interact 345:109531

    Article  CAS  Google Scholar 

  12. Singh SP, Rahman MF, Murty USN, Mahboob M, Grover P (2013) comparative study of genotoxicity and tissue distribution of nano and micron sized iron oxide in rats after acute oral treatment. Toxicol Appl Pharmacol 266(1):56–66. https://doi.org/10.1016/j.taap.2012.10.016

    Article  CAS  Google Scholar 

  13. Sadiq R, Khan QM, Mobeen A, Hashmat AJ (2015) In vitro toxicological assessment of iron oxide, aluminum oxide, and copper nanoparticles in prokaryotic and eukaryotic cell types. Drug Chem Toxicol 38(2):152–161. https://doi.org/10.3109/01480545.2014.919584

    Article  CAS  Google Scholar 

  14. Rajiv S, Jerobin J, Saranya V, Nainawat M, Sharma A, Makwana P, Chandrasekaran N (2016) Comparative cytotoxicity and genotoxicity of cobalt (II, III) oxide, iron (III) oxide, silicon dioxide, and aluminum oxide nanoparticles on human lymphocytes in vitro. Hum Exp Toxicol 35(2):170–183. https://doi.org/10.1177/0960327115579208

    Article  CAS  Google Scholar 

  15. Ciğerci IH, Ali MM, Kaygısız ŞY, Kaya B, Liman R (2018) Genotoxic assessment of different sizes of iron oxide nanoparticles and ionic iron in earthworm (Eisenia hortensis) coelomocytes by comet assay and micronucleus test. Bull Environ Contam Toxicol 101:105–109. https://doi.org/10.1007/s00128-018-2364-y

    Article  CAS  Google Scholar 

  16. Askri D, Cunin V, Beal D, Berthier S, Chovelon B, Arnaud J, Lehmann SG (2019) Investigating the toxic effects induced by iron oxide nanoparticles on neuroblastoma cell line: an integrative study combining cytotoxic, genotoxic and proteomic tools. Nanotoxicology 13(8):1021–1040. https://doi.org/10.1080/17435390.2019.1621399

    Article  CAS  Google Scholar 

  17. Zielinska A, Carreiro F, Oliveira AM, Neves A, Pires B, Venkatesh DN, Souto EB (2020) Polymeric nanoparticles: production, characterization, toxicology and ecotoxicology. Molecules 25(16):3731

    Article  CAS  Google Scholar 

  18. Sikdar D, Roy K, Debnath SC (2022) Green and sustainable biosynthesis of iron oxide nanoparticle (ion) from pomegranate seed and the development of highly reinforced ion based natural rubber (nr) nanocomposite in presence of epoxidized natural rubber (enr) as compatibilizer. Curr Res Green Sustain Chem 5:100256. https://doi.org/10.1016/j.crgsc.2021.100256

    Article  CAS  Google Scholar 

  19. Ahmad W, Joshi HC, Pandey S, Kumar V, Verma M (2023) An overview of green methods for Fe2O3 nanoparticle synthesis and their applications. Int Nano Lett 13(2):117–130

    Article  CAS  Google Scholar 

  20. Maron DM, Ames BN (1983) Revised methods for the salmonella mutagenicity test. Mutat Res-Environ Mutagen 113(3–4):173–215. https://doi.org/10.1016/0165-1161(83)90010-9

    Article  CAS  Google Scholar 

  21. OECD (Organization for Economic Cooperation and Development) (2020) Test guideline no. 471: bacterial reverse mutation test. https://doi.org/10.1787/9789264071247-en

  22. Mortelmans K, Zeiger E (2000) The ames salmonella/microsome mutagenicity assay. Mutat Res - Rev Mutat Res 455:29–60. https://doi.org/10.1016/S0027-5107(00)00064-6

    Article  CAS  Google Scholar 

  23. Zeiger E (2019) The test that changed the world: the ames test and the regulation of chemicals. Mutation Mutat Res-Genet Toxicol Environ Mutagen 841:43–48. https://doi.org/10.1016/j.mrgentox.2019.05.007

    Article  CAS  Google Scholar 

  24. Du X, Gao S, Hong L, Zheng X, Zhou Q, Wu J (2019) Genotoxicity evaluation of titanium dioxide nanoparticles using the mouse lymphoma assay and the ames test. Mutat Res-Genet Toxicol Environ Mutagen 838:22–27. https://doi.org/10.1016/j.mrgentox.2018.11.015

    Article  CAS  Google Scholar 

  25. Maity S, Chatterjee A, Guchhait R, De S, Pramanick K (2020) Cytogenotoxic potential of hazardous material, polystyrene microparticles on Allium cepa L. J Hazard Mater 385:121560. https://doi.org/10.1016/j.jhazmat.2019.121560

    Article  CAS  Google Scholar 

  26. Fiskesjo G (1985) The allium test as a standard in environmental monitoring. Hereditas 102:99–112. https://doi.org/10.1111/j.1601-5223.1985.tb00471.x

    Article  CAS  Google Scholar 

  27. Banti CN, Hadjikakou SK (2019) Evaluation of genotoxicity by micronucleus assay in vitro and by Allium cepa test in vivo. Bio-protoc 9(14):e3311. https://doi.org/10.21769/BioProtoc.3311

  28. Grant WF (1982) Chromosome aberration assays in allium: a report of the us environmental protection agency gene-tox program. Mutat Res-Rev in Genet Toxicol 99(3):273–291. https://doi.org/10.1016/0165-1110(82)90046-X

    Article  CAS  Google Scholar 

  29. Singh NP, McCoy MT, Tice RR, Schneider EL (1988) A simple technique for quantitation of low levels of DNA damage in individual cells. Exp Cell Res 175:184–191. https://doi.org/10.1016/0014-4827(88)90265-0

    Article  CAS  Google Scholar 

  30. Akbas E, Unal F, Yuzbasioglu D (2022) Genotoxic effects gadobutrol and gadoversetamide active substances used in magnetic resonance imaging in human peripheral lymphocytes in vitro. Drug Chem Toxicol 45(6):2471–2482. https://doi.org/10.1080/01480545.2021.1957913

    Article  CAS  Google Scholar 

  31. Ghosh M, Jana A, Sinha S, Jothiramajayam M, Nag A, Chakraborty A, Mukherjee A (2016) Effects of zno nanoparticles in plants: cytotoxicity, genotoxicity, deregulation of antioxidant defenses, and cell-cycle arrest. Mutat Res-Genet Toxicol Environ Mutagen 807:25–32. https://doi.org/10.1016/j.mrgentox.2016.07.006

    Article  CAS  Google Scholar 

  32. Ozel CA, Unal F, Avuloglu-Yilmaz E, Erikel E, Mirici S, Yuzbasioglu D (2022) Determination of genotoxic damages of picloram and dicamba with comet assay in Allium cepa rooted in tissue culture and distilled water. Mol Biol Rep 49(12):11273–11280. https://doi.org/10.1007/s11033-022-07712-7

    Article  CAS  Google Scholar 

  33. Firbas P, Amon T (2014) Chromosome damage studies in the onion plant Allium cepa L. Caryologia 67(1):25–35

    Article  Google Scholar 

  34. Unal F, Demirtaş Korkmaz F, Suludere Z, Erol O, Yuzbasioglu D (2021) Genotoxicity of two nanoparticles: titanium dioxide and zinc oxide. Gazi Univ J Sci 34(4):948–958. https://doi.org/10.35378/gujs.826911

    Article  Google Scholar 

  35. Cariello NF, Piegorsch WW (1996) The ames test: the two-fold rule revisited. Mutat Res 369:23–31. https://doi.org/10.1016/S0165-1218(96)90044-0

    Article  CAS  Google Scholar 

  36. Mahon GAT, Green MHL, Middleton B, Mitchell I de G, Robinson WD, Tweats DJ (1989) Analysis of data from microbial colony assays, in: d.j. kirkland (ed.), ukems sub-committee on guidelines for mutagenicity testing. report: part iii. statistical evaluation of mutagenicity test data, Cambridge University Press, Cambridge, 28–65

  37. Lee GH, Kim YS, Kwon E, Yun JW, Kang BC (2020) Toxicological evaluation for amorphous silica nanoparticles: genotoxic and non-genotoxic tumor-promoting potential. Pharmaceutics 12:826. https://doi.org/10.3390/pharmaceutics12090826

    Article  CAS  Google Scholar 

  38. Özkul M, Özel ÇA, Yüzbaşıoğlu D, Ünal F (2016) Does 2, 4-dichlorophenoxyacetic Acid (2, 4-D) induce genotoxic effects in tissue cultured allium roots? Cytotechnology 68(6):2395–2405. https://doi.org/10.1007/s10616-016-9956-3

    Article  CAS  Google Scholar 

  39. Liman R, Acikbas Y, Ciğerci İH, Ali MM, Kars MD (2020) Cytotoxic and genotoxic assessment of silicon dioxide nanoparticles by allium and comet tests. Bull Environ Contam Toxicol 104(2):215–221. https://doi.org/10.1007/s00128-020-02783-3

    Article  CAS  Google Scholar 

  40. Stone V, Johnston H, Schins RPF (2009) Development of in vitro systems for nanotoxicology: methodological considerations. Crit Rev Toxicol 39:613–626. https://doi.org/10.1080/10408440903120975

    Article  CAS  Google Scholar 

  41. Choudhuri S, Kaur T, Jain S, Sharma C, Asthana S (2021) A review on genotoxicity in connection to infertility and cancer. Chem-Biol Interact 345:109531. https://doi.org/10.1016/j.cbi.2021.109531

    Article  CAS  Google Scholar 

  42. Alarifi S, Ali D, Al Omar Suliman Y, Ahamed M, Siddiqui MA, Al-Khedhairy AA (2013) Oxidative stress contributes to cobalt oxide nanoparticles-induced cytotoxicity and DNA damage in human hepatocarcinoma cells. Int J Nanomed 8(189):199. https://doi.org/10.2147/IJN.S37924

    Article  CAS  Google Scholar 

  43. Ahmed B, Shahid M, Khan MS, Musarrat J (2018) Chromosomal aberrations, cell suppression, and oxidative stress generation induced by metal oxide nanoparticles in onion (Allium cepa) bulb. Metallomics 10(9):1315–1327. https://doi.org/10.1039/c8mt00093j

    Article  CAS  Google Scholar 

  44. Yu Z, Li Q, Wang J, Yu Y, Wang Y, Zhou Q, Li P (2020) Reactive oxygen species-related nanoparticle toxicity in the biomedical field. Nanoscale Res Lett 15(1):1–14. https://doi.org/10.1186/s11671-020-03344-7

    Article  CAS  Google Scholar 

  45. Brown CS, Kamal M, Nasreen N, Baumuratov A, Sharma P, Antony VB, Moudgil BM (2007) Influence of shape, adhesion and simulated lung mechanics on amorphous silica nanoparticle toxicity. Adv Powder Technol 18(1):69–79

    Article  CAS  Google Scholar 

  46. Jose N, Deshmukh GP, Ravindra MR (2019) Dynamic light scattering: advantages and applications. Act Sci Nutr Health 3(3):50–52

    Google Scholar 

  47. Kwon JY, Koedrith P, Seo YR (2014) Current investigations into the genotoxicity of zinc oxide and silica nanoparticles in mammalian models in vitro and in vivo: carcinogenic/genotoxic potential, relevant mechanisms and biomarkers, artifacts, and limitations. Int J Nanomed 9(2):271–286

    Google Scholar 

  48. Aubrecht J, Osowski JJ, Persaud P, Cheung JR, Ackerman J, Lopes SH, Ku WW (2007) Bioluminescent salmonella reverse mutation assay: a screen for detecting mutagenicity with high throughput attributes. J Mutagenesis 22(5):335–342. https://doi.org/10.1093/mutage/gem022

    Article  CAS  Google Scholar 

  49. Madia F, Kirkland D, Morita T, White P, Asturiol D, Corvi R (2020) Genotoxicity and carcinogenicity database of substances eliciting negative results in the ames test: construction of the database. Mutat Res- Genet Toxicol Environ Mutagen. 854–855:503199. https://doi.org/10.1016/j.mrgentox.2020.503199

    Article  CAS  Google Scholar 

  50. Lopes I, Ribeiro R, Antunes FE, Rocha-Santos TAP, Rasteiro MG, Soares AMVM, Pereira R (2012) Toxicity and genotoxicity of organic and inorganic nanoparticles to the bacteria Vibrio fischeri and Salmonella typhimurium. Ecotoxicol Environ Saf 21(3):637–648. https://doi.org/10.1007/s10646-011-0808-9

    Article  CAS  Google Scholar 

  51. Gomaa IO, Kader MHA, Eldin TAS, Heikal OA (2013) Evaluation of in vitro mutagenicity and genotoxicity of magnetite nanoparticles. Drug Discov Ther 7(3):116–123. https://doi.org/10.5582/ddt.2013.v7.3.116

    Article  CAS  Google Scholar 

  52. Liu Y, Xia Q, Liu Y, Zhang S, Cheng F, Zhong Z, Wang L, Li H, Xiao K (2014) Genotoxicity assessment of magnetic iron oxide nanoparticles with different particle sizes and surface coatings. J Nanotechnol 25(42):425101. https://doi.org/10.1088/0957-4484/25/42/425101

    Article  CAS  Google Scholar 

  53. Yoo J-R, Kim Y-S, Yoon JH, Kwon E, Kang B-C (2017) Genetic toxicological comparison of nano and micro-sized iron oxide nanoparticles. Toxicol Lett 280(S1):S118, ISSN 0378–4274. https://doi.org/10.1016/j.toxlet.2017.07.329

  54. Szalay B, Tatrai E, Nyiro G, Vezer T, Dura G (2012) Potential toxic effects of iron oxide nanoparticles in vivo and in vitro experiments. J Appl Toxicol 32(6):446–453. https://doi.org/10.1002/jat.1779

    Article  CAS  Google Scholar 

  55. Luo X, Zhu W, Cui J, Chen J, Peng L, Xiong J, Wang D (2016) Mutagenicity test of magnetic nanocomposite for interface fixation Nanomater. Nanotechnol 6:1847980416663677. https://doi.org/10.1177/1847980416663677

    Article  Google Scholar 

  56. Greim H, Norppa H (2010) Genotoxicity testing of nanomaterials-conclusions. J Nanotechnol 4:421–424. https://doi.org/10.3109/17435390.2010.518774

    Article  Google Scholar 

  57. Ng CT, Li JJ, Bay BH, Yung LYL (2010) Current studies into the genotoxic effects of nanomaterials. J Nucleic Acids 2010:1–12. https://doi.org/10.4061/2010/947859

  58. Claxton LD, de A. Umbuzeiro G, DeMarini DM (2010) The salmonella mutagenicity assay: the stethoscope of genetic toxicology for the 21st century. Environ Health Perspect 118(11):1515–1522. https://doi.org/10.1289/ehp.1002336

    Article  Google Scholar 

  59. Sinha VS, Kumar N (2014) Assessment of mito-inhibitory and genotoxic effects of two organophosphate pesticides in the root tip cells of Allium cepa L. Ann Plant Sci 3:699–703. ISSN: 2287–688X

  60. Rajeshwari A, Kavitha S, Alex SA, Kumar D, Mukherjee A, Chandrasekaran N, Mukherjee A (2015) Cytotoxicity of aluminum oxide nanoparticles on Allium cepa root tip-effects of oxidative stress generation and biouptake. Environ Sci Pollut Res 22(14):11057–11066. https://doi.org/10.1007/s11356-015-4355-4

    Article  CAS  Google Scholar 

  61. Saquib Q, Faisal M, Alatar AA, Al-Khedhairy AA, Ahmed M, Ansari SM, Ahmad J (2016) Genotoxicity of ferric oxide nanoparticles in Raphanus sativus: deciphering the role of signaling factors, oxidative stress, and cell death. J Environ Sci 47:49–62. https://doi.org/10.1016/j.jes.2015.12.037

    Article  CAS  Google Scholar 

  62. Li J, Hu J, Ma C, Wang Y, Wu C, Huang J, Xing B (2016) Uptake, translocation and physiological effects of magnetic iron oxide (Γ-Fe2O3) nanoparticles in Corn (Zea mays L.). Chemosphere 159:326–334. https://doi.org/10.1016/j.chemosphere.2016.05.083

    Article  CAS  Google Scholar 

  63. Hu J, Guo H, Li J, Gan Q, Wang Y, Xing B (2017) Comparative impacts of iron oxide nanoparticles and ferric ions on the growth of Citrus maxima. Environ Pollut 221:199–208. https://doi.org/10.1016/j.envpol.2016.11.064

    Article  CAS  Google Scholar 

  64. Sampaio LLG, Bogea EPC, Neves EL, Mendes de Araujo EFL, Baia MO, da Silva JO, Malafaia G, de Menezes IPP (2021) Zinc oxide nanoparticles at environmentally relevant concentrations cause cytotoxic and chromosomal damage to Allium cepa root cells. Genet Mol Res 20(1):gmr18690. https://doi.org/10.4238/gmr18690

    Article  CAS  Google Scholar 

  65. Haq I, Kumari V, Kumar S, Raj A, Lohani M, Bhargava RN (2016) Evaluation of the phytotoxic and genotoxic potential of pulp and paper mill effluent using Vigna radiata and Allium cepa. Adv Biol. https://doi.org/10.1155/2016/8065736

    Article  Google Scholar 

  66. Lin XL, Zhao SH, Zhang L, Hu GQ, Sun ZW, Yang WS (2012) Dose-dependent cytotoxicity and oxidative stress induced by “naked” Fe3O4 nanoparticles in human hepatocytes. Chem Res 28:114–118

    CAS  Google Scholar 

  67. Mangalampalli B, Dumala N, Grover P (2018) Allium cepa root tip assay in the assessment of toxicity of magnesium oxide nanoparticles and microparticles. J Environ Sci 66:125–137. https://doi.org/10.1016/j.jes.2017.05.012

    Article  CAS  Google Scholar 

  68. Pakrashi S, Jain N, Dalai S, Jayakumar J, Chandrasekaran PT, Raichur AM, Mukherjee A (2014) In vivo genotoxicity assessment of titanium dioxide nanoparticles by Allium cepa root tip assay at high exposure concentrations. PloS One 9(2):e87789. https://doi.org/10.1371/journal.pone.0087789

    Article  CAS  Google Scholar 

  69. Jimenez-Villarreal J, Rivas-Armendariz DI, Arellano Pérez-Vertti RD, García-Garza R, Betancourt-Martínez ND, Serrano-Gallardo LB, Morán-Martínez J (2017) Relationship between lymphocyte DNA fragmentation and dose of iron oxide (Fe2O3) and silicon oxide (SiO2) nanoparticles. Genet Mol Res 16(1). https://doi.org/10.4238/gmr16019206

  70. Bhattacharya K, Davoren M, Boertz J, Schins RP, Hoffmann E, Dopp E (2009) titanium dioxide nanoparticles induce oxidative stress and DNA-adduct formation but not DNA breakage in human lung cells. Part Fibre Toxicol 6(1):1–11. https://doi.org/10.1186/1743-8977-6-17

    Article  CAS  Google Scholar 

  71. Karlsson HI, Gustafson J, Cronholm P, Möller L (2009) Size-dependent toxicity of metal oxide particles-a comparison between nano-and micrometer size. Toxicol Lett 188:112–118. https://doi.org/10.1016/j.toxlet.2009.03.014

    Article  CAS  Google Scholar 

  72. Goodman CM, McCusker CD, Yilmaz T, Rotello VM (2004) Toxicity of gold nanoparticles functionalized with cationic and anionic side chains. Bioconjugate Chem 15(4):897–900. https://doi.org/10.1021/bc049951i.

    Article  CAS  Google Scholar 

  73. Sukhanova A, Bozrova S, Sokolov P, Berestovoy M, Karaulov A, Nabiev I (2018) Dependence of nanoparticle toxicity on their physical and chemical properties. Nanoscale Res Lett 13(1):1–21. https://doi.org/10.1186/s11671-018-2457-x

    Article  CAS  Google Scholar 

  74. Magdolenova Z, Collins A, Kumar A, Dhawan A, Stone V, Dusinska M (2014) Mechanisms of genotoxicity. A review of in vitro and in vivo studies with engineered nanoparticles. J Nanotechnol 8(3):233–278

    CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the financial support for Allium and Comet tests provided by the Gazi University Scientific Research Projects Coordination Unit (Project no: 05/2019-27).

Author information

Authors and Affiliations

Authors

Contributions

Derya Kizilkaya: Designing and conducting Allium and comet tests, writing, review & editing; Fatma Unal: Conceptualization, resources, funding acquisition, project administration, supervision, writing- review & editing; Ebru Beyzi: Designing, conducting, and writing Ames test-review & editing; Meryem Burcu Kulahci: conducting and writing Ames test; Gokce Calis Ismetoglu: DLS measurements, hydrodynamic diameters and zeta potentials; Deniz Yuzbasioglu: conducting comet assay, writing -review & editing; Zekiye Suludere: Electron microscopy characterization of particles. All authors have read and approved the final version of the manuscript.

Corresponding author

Correspondence to Fatma Unal.

Ethics declarations

Competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kizilkaya, D., Unal, F., Beyzi, E. et al. Comparative investigation of iron oxide nanoparticles and microparticles using the in vitro bacterial reverse mutation and in vivo Allium chromosome aberration and comet assays. J Nanopart Res 25, 173 (2023). https://doi.org/10.1007/s11051-023-05819-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-023-05819-x

Keywords

Navigation