Skip to main content
Log in

Recent toxicological investigations of metal or metal oxide nanoparticles in mammalian models in vitro and in vivo: DNA damaging potential, and relevant physicochemical characteristics

  • Review Paper
  • Published:
Molecular & Cellular Toxicology Aims and scope Submit manuscript

Abstract

Concomitant with the increase in production and application of various nanomaterials, researches on their cytotoxic and genotoxic potential have become well established, as exposure to these nanoscaled materials may contribute to detrimental health effects. Positive indications of the damaging effects of nanoparticles on DNA are likely to be inconsistent in in vitro systems, and thus the implementation of in vivo investigations has been achieved. This review summarizes the current results, both in vitro and in vivo, of the genotoxic effects of potential metal or metal oxide nanoparticles, including the oxides of aluminium, iron, silica, titanium, and zinc, as well as silver, gold, cobalt, quantum dots, and so forth. They present indications of different types of DNA damage, ranging from chromosomal aberrations, through DNA strand breaks, oxidative DNA damage, to mutations. Their toxicological profiles are definitely associated with physicochemical characters, depending upon the characterization methods by which they are analyzed, in particular, microscopy techniques. Besides physicochemical properties, we also discuss significant parameters that may influence genotoxic response, including toxicity assays/endpoint tests, exposure duration and route of exposure, and experimental conditions. We describe advantages and disadvantages of particular characterization methods, as well as the appropriateness of methodologies for investigating physicochemical characters. Therefore, recommendations on particle characterization are further emphasized, to provide better understanding of genotoxic potential.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Singh, N. et al. NanoGenotoxicology: the DNA damaging potential of engineered nanomaterials. Biomaterials 30:3891–3914 (2009).

    CAS  PubMed  Google Scholar 

  2. Woodrow Wilson Database, http://www.Nanotechproject.Org. (2009).

  3. Lux report. Nanomaterials state of the market: stealth success, broad impact. Available from: http://portal.Luxresearchinc.Com/research/document/3735. (2008).

    Google Scholar 

  4. Imasaka, K., Kanatake, Y., Ohshiro, Y., Suehiro, M. & Hara, M. Production of carbon nanoonions and nanotubes using an intermittent arc discharge in water. Thin Solid Films 506–507:250–254 (2006).

    Google Scholar 

  5. Warner, J. H. et al. Rotating fullerene chains in carbon nanopeapods. Nano lett 8:2328–2335 (2008).

    CAS  PubMed  Google Scholar 

  6. Royal Society and Royal Academy of Engineering Report. Nanoscience and nanotechnologies: opportunities and uncertainties. Available from: http://www. Nanotec.Org.Uk/finalReport.Htm. (2004).

    Google Scholar 

  7. Department for Environment, Food and Rural Affairs Report. Characterising the potential risks posed by engineered nanoparticles- a 2nd UK Government research report. Available from: http://www.Defra. Gov.Uk/environment/nanotech/research/pdf/nanopar ticles-riskreport07.Pdf. (2007).

    Google Scholar 

  8. European Scientific Committee on Emerging and Newly Identified Health Risks Report. Opinion on: the appropriateness of existing methodologies to assess the potential risks associated with engineered or adventitious nanotechnologies. Available from: http://ec.Europa.Eu/health/ph_risk/committees/04sc enihr/docs/scenihr_o_003b.Pdf. (2006).

    Google Scholar 

  9. European Scientific Committee on Emerging and Newly Identified Health Risks Report. Opinion on: risk assessment of products of nanotechnologies. Available from: http://ec.Europa.Eu/health/ph_risk/ committees/04_scenihr/docs/scenihr_o_023.Pdf. (2009).

    Google Scholar 

  10. Nel, A., Xia, T., Madler, L. & Li, N. Toxic potential of materials at the nanolevel. Science 311:622–627 (2006).

    CAS  PubMed  Google Scholar 

  11. Sayes, C. M., Reed, K. L. & Warheit, D. B. Assessing toxicity of fine and nanoparticles: comparing in vitro measurements to in vivo pulmonary toxicity profiles. Toxicological Sci: an official journal of the Society of Toxicology 97:163–180 (2007).

    CAS  Google Scholar 

  12. Xia, T. et al. Comparison of the abilities of ambient and manufactured nanoparticles to induce cellular toxicity according to an oxidative stress paradigm. Nano Lett 6:1794–1807 (2006).

    CAS  PubMed  Google Scholar 

  13. Jurkkscahat, K., Ji, X., Crossley, A., Compton, R. G. & Banks, C. E. Super-washing does not leave single walled carbon nanotubes iron-free. Analyst 132:21–23 (2007).

    Google Scholar 

  14. OECD, Draft of the guidance manual for the testing of manufactured NMs: OECD’s sponsorship programme — ENV/JM/MONO(2009)20/Rev. (2010).

    Google Scholar 

  15. Park, H. & Grassian, V. H. Commercially manufactured engineered nanomaterials for environmental and health studies: important insights provided by independent characterization. Environ Toxicol Chem/ SETAC 29:715–721 (2010).

    CAS  Google Scholar 

  16. Domingos, R. F. et al. Characterizing manufactured nanoparticles in the environment: multimethod determination of particle sizes. Environ Sci Technol 43: 7277–7284 (2009).

    CAS  PubMed  Google Scholar 

  17. Cumberland, S. A. & Lead, J. R. Particle size distributions of silver nanoparticles at environmentally relevant conditions. J Chromatogr. A 1216:9099–9105 (2009).

    CAS  PubMed  Google Scholar 

  18. Oberdorster, G., Oberdorster, E. & Oberdorster, J. Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Persp 113:823–839 (2005).

    CAS  Google Scholar 

  19. Donaldson, K., Murphy, F. A., Duffin, R. & Poland, C. A. Asbestos, carbon nanotubes and the pleural mesothelium: a review of the hypothesis regarding the role of long fibre retention in the parietal pleura, inflammation and mesothelioma. Part Fibre Toxicol 7:5 (2010).

    PubMed Central  PubMed  Google Scholar 

  20. Poland, C. A. et al. Carbon nanotubes introduced into the abdominal cavity of mice show asbestos-like pathogenicity in a pilot study. Nat Nanotechnol 3: 423–428 (2008).

    CAS  PubMed  Google Scholar 

  21. Pal, S., Tak, Y. K. & Song, J. M. Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the Gram-negative bacterium Escherichia coli. Appl Environ Microb 73:1712–1720 (2007).

    CAS  Google Scholar 

  22. Sayes, C. M. et al. Correlating nanoscale titania structure with toxicity: a cytotoxicity and inflammatory response study with human dermal fibroblasts and human lung epithelial cells. Toxicological Sci: an official journal of the Society of Toxicology 92:174–185 (2006).

    CAS  Google Scholar 

  23. Handy, R. D., Owen, R. & Valsami-Jones, E. The ecotoxicology of nanoparticles and nanomaterials: current status, knowledge gaps, challenges, and future needs. Ecotoxicology 17:315–325 (2008).

    CAS  PubMed  Google Scholar 

  24. Handy, R. D. et al. The ecotoxicology and chemistry of manufactured nanoparticles. Ecotoxicology 17:287–314 (2008).

    CAS  PubMed  Google Scholar 

  25. Duval, J. F. et al. Analysis of the interfacial properties of fibrillated and nonfibrillated oral streptococcal strains from electrophoretic mobility and titration measurements: evidence for the shortcomings of the ‘classical soft-particle approach’. Langmuir 21:11268–11282 (2005).

    CAS  PubMed  Google Scholar 

  26. Calvo, P. et al. Long-circulating PEGylated polycyanoacrylate nanoparticles as new drug carrier for brain delivery. Pharm Res 18:1157–1166 (2001).

    CAS  PubMed  Google Scholar 

  27. Crane, M., Handy, R. D., Garrod, J. & Owen, R. Ecotoxicity test methods and environmental hazard assessment for engineered nanoparticles. Ecotoxicology 17:421–437 (2008).

    CAS  PubMed  Google Scholar 

  28. OECD, Preliminary guidance notes on sample preparation and dosimetry for the safety testing of manufactured nanomaterials-ENV/JM/MONO(2010)25. (2010).

    Google Scholar 

  29. Liu, J., Aruguete, D. M., Murayama, M. & Hochella, M. F., Jr. Influence of size and aggregation on the reactivity of an environmentally and industrially relevant nanomaterial (PbS). Environ Sci Technol 43: 8178–8183 (2009).

    CAS  PubMed  Google Scholar 

  30. Aruguete, D. M. H. M. F. Bacteria-nanoparticle interactions and their environmental implications. Envir Chem 7:3–9 (2010).

    CAS  Google Scholar 

  31. Blinova, I. et al. Ecotoxicity of nanoparticles of CuO and ZnO in natural water. Environ Pollut 158: 41–47 (2010).

    CAS  PubMed  Google Scholar 

  32. Franklin, N. M. et al. Comparative toxicity of nanoparticulate ZnO, bulk ZnO, and ZnCl2 to a freshwater microalga (Pseudokirchneriella subcapitata): the importance of particle solubility. Environ Sci Technol 41:8484–8490 (2007).

    CAS  PubMed  Google Scholar 

  33. Salvati, A. Å. C., dos Santos, T., Varela, J., Pinto, P., Lynch, I. & Dawson, K. A. Experimental and theoretical approach to comparative nanoparticle and small molecule intracellular import, trafficking, and export. Nanomedicine 7:818–826 (2011).

    CAS  PubMed  Google Scholar 

  34. Limbach, L. K. et al. Oxide nanoparticle uptake in human lung fibroblasts: effects of particle size, agglomeration, and diffusion at low concentrations. Environ Sci Technol 39:9370–9376 (2005).

    CAS  PubMed  Google Scholar 

  35. Monopoli, M. P. et al. Physical-chemical aspects of protein corona: relevance to in vitro and in vivo biological impacts of nanoparticles. J Am Chem Soc 133: 2525–2534 (2011).

    CAS  PubMed  Google Scholar 

  36. Baalousha, M. Aggregation and disaggregation of iron oxide nanoparticles: Influence of particle concentration, pH and natural organic matter. Sci Total Environ 407:2093–2101 (2009).

    CAS  PubMed  Google Scholar 

  37. Diebold, U. The surface science of titanium dioxide. Surf Sci Reports 48:53–229 (2003).

    CAS  Google Scholar 

  38. Cho, M., Chung, H., Choi, W., Yoon, J. Linear correlation between inactivation of E. coli and OH radical concentration in TiO2 photocatalytic disinfection. Water Res 38:1069–1077 (2004).

    CAS  PubMed  Google Scholar 

  39. Zhang, A. P. & Sun, Y. P. Photocatalytic killing effect of TiO2 nanoparticles on Ls-174-t human colon carcinoma cells. World J gastroentero:WJG 10:3191–3193 (2004).

    CAS  Google Scholar 

  40. Tsaousi, A., Jones, E. & Case, C. P. The in vitro genotoxicity of orthopaedic ceramic (Al2O3) and metal (CoCr alloy) particles. Mut Res 697:1–9 (2010).

    CAS  Google Scholar 

  41. Di Virgilio, A. L., Reigosa, M., Arnal, P. M. & Fernandez Lorenzo de Mele, M. Comparative study of the cytotoxic and genotoxic effects of titanium oxide and aluminium oxide nanoparticles in Chinese hamster ovary (CHO-K1) cells. Journal Hazard Mater 177:711–718 (2010).

    Google Scholar 

  42. Demir, E. et al. Determination of TiO2, ZrO2, and Al2O3 nanoparticles on genotoxic responses in human peripheral blood lymphocytes and cultured embyronic kidney cells. J Tox Env Health. Part A 76:990–1002 (2013).

    CAS  Google Scholar 

  43. Balasubramanyam, A. et al. Evaluation of genotoxic effects of oral exposure to aluminum oxide nanomaterials in rat bone marrow. Mut Res 676:41–47 (2009).

    CAS  Google Scholar 

  44. Song, M. F., Li, Y. S., Kasai, H. & Kawai, K. Metal nanoparticle-induced micronuclei and oxidative DNA damage in mice. J Clin Biochem Nutr 50:211–216 (2012).

    CAS  PubMed Central  PubMed  Google Scholar 

  45. Bhattacharya, K. et al. Titanium dioxide nanoparticles induce oxidative stress and DNA-adduct formation but not DNA-breakage in human lung cells. Part Fibre Toxicol 6:17 (2009).

    PubMed Central  PubMed  Google Scholar 

  46. Guichard, Y. et al. Cytotoxicity and genotoxicity of nanosized and microsized titanium dioxide and iron oxide particles in Syrian hamster embryo cells. Ann Occup Hyg 56:631–644 (2012).

    CAS  PubMed  Google Scholar 

  47. Sayes, C. M. et al. Changing the dose metric for inhalation toxicity studies: short-term study in rats with engineered aerosolized amorphous silica nanoparticles. Inhal Toxicol 22:348–354 (2010).

    CAS  PubMed  Google Scholar 

  48. Choi, H., Kim, Y., Song, M., Song, M. & Ryu, J. Genotoxicity of nano-silica in mammalian cell lines. J Toxicol Environ Health Sci 3:7–13 (2011).

    Google Scholar 

  49. Trouiller, B. et al. Titanium dioxide nanoparticles induce DNA damage and genetic instability in vivo in mice. Cancer Res 69:8784–8789 (2009).

    CAS  PubMed  Google Scholar 

  50. Falck, G. C. et al. Genotoxic effects of nanosized and fine TiO2. Hum Exp Toxicol 28:339–352 (2009).

    CAS  PubMed  Google Scholar 

  51. Wang, J. J., Sanderson, B. J. & Wang, H. Cyto- and genotoxicity of ultrafine TiO2 particles in cultured human lymphoblastoid cells. Mut Res 628:99–106 (2007).

    CAS  Google Scholar 

  52. Naya, M. et al. In vivo genotoxicity study of titanium dioxide nanoparticles using comet assay following intratracheal instillation in rats. Regul Toxicol Pharm: RTP 62:1–6 (2012).

    CAS  Google Scholar 

  53. Saber, A. T. et al. Nanotitanium dioxide toxicity in mouse lung is reduced in sanding dust from paint. Part Fibre Toxicol 9:4 (2012).

    CAS  PubMed Central  PubMed  Google Scholar 

  54. Sharma, V. et al. DNA damaging potential of zinc oxide nanoparticles in human epidermal cells. Toxicol Lett 185:211–218 (2009).

    CAS  PubMed  Google Scholar 

  55. Guan, R. et al. Cytotoxicity, oxidative stress, and genotoxicity in human hepatocyte and embryonic kidney cells exposed to ZnO nanoparticles. Nanoscale Res Lett 7:602 (2012).

    PubMed Central  PubMed  Google Scholar 

  56. Kwon, J. Y. et al. Lack of genotoxic potential of ZnO nanoparticles in in vitro and in vivo tests. Mut Res 761C:1–9 (2014).

    Google Scholar 

  57. Valdiglesias, V. et al. Neuronal cytotoxicity and genotoxicity induced by zinc oxide nanoparticles. Environ Int 55:92–100 (2013).

    CAS  PubMed  Google Scholar 

  58. Kim, Y. S. et al. Twenty-eight-day oral toxicity, genotoxicity, and gender-related tissue distribution of silver nanoparticles in Sprague-Dawley rats. Inhal Toxicol 20:575–583 (2008).

    CAS  PubMed  Google Scholar 

  59. AshaRani, P. V., Low Kah Mun, G., Hande, M. P. & Valiyaveettil, S. Cytotoxicity and genotoxicity of silver nanoparticles in human cells. ACS nano 3:279–290 (2009).

    CAS  PubMed  Google Scholar 

  60. Tiwari, D. K., Jin, T. & Behari, J. Dose-dependent in-vivo toxicity assessment of silver nanoparticle in Wistar rats. Toxicol Mech Method 21:13–24 (2011).

    CAS  Google Scholar 

  61. Li, J. J. et al. Gold nanoparticles induce oxidative damage in lung fibroblasts in vitro. Adv Mater 20: 138–142 (2008).

    CAS  Google Scholar 

  62. Girgis, E. et al. Nanotoxicity of gold and gold-cobalt nanoalloy. Chem Res Toxicol 25:1086–1098 (2012).

    CAS  PubMed  Google Scholar 

  63. Schulz, M. et al. Investigation on the genotoxicity of different sizes of gold nanoparticles administered to the lungs of rats. Mut Res 745:51–57 (2012).

    CAS  Google Scholar 

  64. Ponti, J. et al. Genotoxicity and morphological transformation induced by cobalt nanoparticles and cobalt chloride: an in vitro study in Balb/3T3 mouse fibroblasts. Mutagenesis 24:439–445 (2009).

    CAS  PubMed  Google Scholar 

  65. Papageorgiou, I. et al. The effect of nano- and micronsized particles of cobalt-chromium alloy on human fibroblasts in vitro. Biomaterials 28:2946–2958 (2007).

    CAS  PubMed  Google Scholar 

  66. Alarifi, S. et al. Reactive oxygen species-mediated DNA damage and apoptosis in human skin epidermal cells after exposure to nickel nanoparticles. Biol Trace Element Res 157:84–93 (2014).

    CAS  Google Scholar 

  67. Park, S. et al. Cellular toxicity of various inhalable metal nanoparticles on human alveolar epithelial cells. Inhal Toxicol 19 Suppl 1:59–65 (2007).

    CAS  PubMed  Google Scholar 

  68. Khalil, W. K. et al. Genotoxicity evaluation of nanomaterials: dna damage, micronuclei, and 8-hydroxy-2-deoxyguanosine induced by magnetic doped CdSe quantum dots in male mice. Chem Res Toxicol 24: 640–650 (2011).

    CAS  PubMed  Google Scholar 

  69. Wang, L. et al. Bioeffects of CdTe quantum dots on human umbilical vein endothelial cells. J Nanosci Nanotechno 10:8591–8596 (2010).

    CAS  Google Scholar 

  70. Dunford, R. et al. Chemical oxidation and DNA damage catalysed by inorganic sunscreen ingredients. FEBS Lett 418:87–90 (1997).

    CAS  PubMed  Google Scholar 

  71. Hirakawa, K. et al. Photo-irradiated titanium dioxide catalyzes site specific DNA damage via generation of hydrogen peroxide. Free Radical Res 38:439–447 (2004).

    CAS  Google Scholar 

  72. Konaka, R. et al. Irradiation of titanium dioxide generates both singlet oxygen and superoxide anion. Free Radic Biol Med 27:294–300 (1999).

    CAS  PubMed  Google Scholar 

  73. Konaka, R. et al. Ultraviolet irradiation of titanium dioxide in aqueous dispersion generates singlet oxygen. Redox Rep 6:319–325 (2001).

    CAS  PubMed  Google Scholar 

  74. Park, E. J. et al. Oxidative stress and apoptosis induced by titanium dioxide nanoparticles in cultured BEAS-2B cells. Toxicol Lett 180:222–229 (2008).

    CAS  PubMed  Google Scholar 

  75. Cai, R. et al. Induction of cytotoxicity by photoexcited TiO2 particles. Cancer Res 52:2346–2348 (1992).

    CAS  PubMed  Google Scholar 

  76. Peters, K. et al. Effects of nano-scaled particles on endothelial cell function in vitro: studies on viability, proliferation and inflammation. J Mater Sci Mater 15:321–325 (2004).

    CAS  Google Scholar 

  77. Afaq, F., Abidi, P., Matin, R. & Rahman, Q. Cytotoxicity, pro-oxidant effects and antioxidant depletion in rat lung alveolar macrophages exposed to ultrafine titanium dioxide. J Appl Toxicol 18:307–312 (1998).

    CAS  PubMed  Google Scholar 

  78. Rahman, Q. et al. Evidence that ultrafine titanium dioxide induces micronuclei and apoptosis in Syrian hamster embryo fibroblasts. Environ Health Persp 110:797–800 (2002).

    CAS  Google Scholar 

  79. Kang, S. J., Kim, B. M., Lee, Y. J. & Chung, H. W. Titanium dioxide nanoparticles trigger p53-mediated damage response in peripheral blood lymphocytes. Environ Mol Mutagen 49:399–405 (2008).

    CAS  PubMed  Google Scholar 

  80. Karlsson, H. L., Cronholm, P., Gustafsson, J. & Moller, L. Copper oxide nanoparticles are highly toxic: a comparison between metal oxide nanoparticles and carbon nanotubes. Chem Res Toxicol 21:1726–1732 (2008).

    CAS  PubMed  Google Scholar 

  81. Xu, A., Chai, Y., Nohmi, T. & Hei, T. K. Genotoxic responses to titanium dioxide nanoparticles and fullerene in gpt delta transgenic MEF cells. Part Fibre Toxicol 6:3 (2009).

    PubMed Central  PubMed  Google Scholar 

  82. Theogaraj, E. et al. An investigation of the photoclastogenic potential of ultrafine titanium dioxide particles. Mut Res 634:205–219 (2007).

    CAS  Google Scholar 

  83. Gurr, J. R., Wang, A. S., Chen, C. H. & Jan, K. Y. Ultrafine titanium dioxide particles in the absence of photoactivation can induce oxidative damage to human bronchial epithelial cells. Toxicology 213:66–73 (2005).

    CAS  PubMed  Google Scholar 

  84. Qi, Q. et al. Properties of humidity sensing ZnO nanorodsbase sensor fabricated by screen-printing. SENSOR ACTUAT B-CHEM 133:638–643 (2008).

    CAS  Google Scholar 

  85. Kwon, J. Y. et al. Lack of genotoxic potential of ZnO nanoparticles in in vitro and in vivo tests. Mut Res 761:1–9 (2014).

    CAS  Google Scholar 

  86. Jeng, H. A. & Swanson, J. Toxicity of metal oxide nanoparticles in mammalian cells. J Environ Sci Heal A 41:2699–2711 (2006).

    CAS  Google Scholar 

  87. Dufour, E. K. et al. Clastogenicity, photo-clastogenicity or pseudo-photo-clastogenicity: Genotoxic effects of zinc oxide in the dark, in pre-irradiated or simultaneously irradiated Chinese hamster ovary cells. Mut Res 607:215–224 (2006).

    CAS  Google Scholar 

  88. He, Q. et al. An anticancer drug delivery system based on surfactant-templated mesoporous silica nanoparticles. Biomaterials 31:3335–3346 (2010).

    CAS  PubMed  Google Scholar 

  89. Liong, M. et al. Multifunctional inorganic nanoparticles for imaging, targeting, and drug delivery. ACS nano 2:889–896 (2008).

    CAS  PubMed Central  PubMed  Google Scholar 

  90. Kaewamatawong, T. et al. Acute and subacute pulmonary toxicity of low dose of ultrafine colloidal silica particles in mice after intratracheal instillation. Toxicol Pathol 34:958–965 (2006).

    CAS  PubMed  Google Scholar 

  91. Lin, W., Huang, Y. W., Zhou, X. D. & Ma, Y. In vitro toxicity of silica nanoparticles in human lung cancer cells. Toxicol Appl Pharm 217:252–259 (2006).

    CAS  Google Scholar 

  92. Chang, J. S., Chang, K. L., Hwang, D. F. & Kong, Z. L. In vitro cytotoxicitiy of silica nanoparticles at high concentrations strongly depends on the metabolic activity type of the cell line. Environ Sci Technol 41:2064–2068 (2007).

    CAS  PubMed  Google Scholar 

  93. Jin, Y., Kannan, S., Wu, M. & Zhao, J. X. Toxicity of luminescent silica nanoparticles to living cells. Chem Res Toxicol 20:1126–1133 (2007).

    CAS  PubMed  Google Scholar 

  94. Chen, M. & von Mikecz, A. Formation of nucleoplasmic protein aggregates impairs nuclear function in response to SiO2 nanoparticles. Exp Cell Res 305: 51–62 (2005).

    CAS  PubMed  Google Scholar 

  95. Valko, M. et al. Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chem-biol Interact 160:1–40 (2006).

    CAS  PubMed  Google Scholar 

  96. Barnes, C. A. et al. Reproducible comet assay of amorphous silica nanoparticles detects no genotoxicity. Nano lett 8:3069–3074 (2008).

    CAS  PubMed  Google Scholar 

  97. Wang, J. J., Sanderson, B. J. & Wang, H. Cytotoxicity and genotoxicity of ultrafine crystalline SiO2 particulate in cultured human lymphoblastoid cells. Environ Mol Mutagen 48:151–157 (2007).

    CAS  PubMed  Google Scholar 

  98. Stevens, R. G., Jones, D. Y., Micozzi, M. S. & Taylor, P. R. Body iron stores and the risk of cancer. N Engl J Med 319:1047–1052 (1988).

    CAS  PubMed  Google Scholar 

  99. Toyokuni, S. Iron-induced carcinogenesis: the role of redox regulation. Free Radic Biol Med 20:553–566 (1996).

    CAS  PubMed  Google Scholar 

  100. Toyokuni, S. Iron and carcinogenesis: from Fenton reaction to target genes. Redox Rep 7:189–197 (2002).

    CAS  PubMed  Google Scholar 

  101. Gupta, A. K. & Curtis, A. S. Surface modified superparamagnetic nanoparticles for drug delivery: interaction studies with human fibroblasts in culture. J Mater Sci Mater 15:493–496 (2004).

    CAS  Google Scholar 

  102. Berry, C. C., Wells, S., Charles, S. & Curtis, A. S. Dextran and albumin derivatised iron oxide nanoparticles: influence on fibroblasts in vitro. Biomaterials 24:4551–4557 (2003).

    CAS  PubMed  Google Scholar 

  103. Bulte, J. W. et al. Magnetodendrimers allow endosomal magnetic labeling and in vivo tracking of stem cells. Nat Biotechnol 19:1141–1147 (2001).

    CAS  PubMed  Google Scholar 

  104. Sadeghiani, N., Barbosa, L. S., Silva, L. P., Azevedo, R. B., Morais, P. C., Lacava, Z. G. M. Genotoxicity and inflammatory investigation in mice treated with magnetite nanoparticles surface coated with polyaspartic acid. J Magn Magn Mater 289:466–468 (2005).

    CAS  Google Scholar 

  105. Jain, T. K. et al. Biodistribution, clearance, and biocompatibility of iron oxide magnetic nanoparticles in rats. Mol Pharm 5:316–327 (2008).

    CAS  PubMed  Google Scholar 

  106. Pisanic, T. R. et al. Nanotoxicity of iron oxide nanoparticle internalization in growing neurons. Biomaterials 28:2572–2581 (2007).

    CAS  PubMed  Google Scholar 

  107. Wilhelm, C. et al. Intracellular uptake of anionic suerparamagnetic nanoparticles as a function of their surface coating. Biomaterials 24:1001–1011 (2003).

    CAS  PubMed  Google Scholar 

  108. Berry, C. C. et al. Cell response to dextran-derivatised iron oxide nanoparticles post internalisation. Biomaterials 25:5405–5413 (2004).

    CAS  PubMed  Google Scholar 

  109. Stroh, A. et al. Iron oxide particles for molecular magnetic resonance imaging cause transient oxidative stress in rat macrophages. Free Radic Biol Med 36:976–984 (2004).

    CAS  PubMed  Google Scholar 

  110. Auffan, M. et al. In vitro interactions between DMSAcoated maghemite nanoparticles and human fibroblasts: A physicochemical and cyto-genotoxical study. Environ Sci Technol 40:4367–4373 (2006).

    CAS  PubMed  Google Scholar 

  111. Pan, Y. et al. Gold nanoparticles of diameter 1.4 nm trigger necrosis by oxidative stress and mitochondrial damage. Small 5:2067–2076 (2009).

    CAS  PubMed  Google Scholar 

  112. Ahamed, M. et al. DNA damage response to different surface chemistry of silver nanoparticles in mammalian cells. Toxicol Appl Pharm 233:404–410 (2008).

    CAS  Google Scholar 

  113. Li, J. J., Zou, L., Hartono, D., Ong, C. N., Bay, B. H. & Yung, Y. L. Gold nanoparticles induce oxidative damage in lung fibroblasts in vitro. Adv Mater 20: 138–142 (2008).

    CAS  Google Scholar 

  114. Case, C. P. Chromosomal changes after surgery for joint replacement. J Bone Joint Surg Bm 83:1093–1095 (2001).

    CAS  Google Scholar 

  115. Colognato, R. et al. Comparative genotoxicity of cobalt nanoparticles and ions on human peripheral leukocytes in vitro. Mutagenesis 23:377–382 (2008).

    CAS  PubMed  Google Scholar 

  116. Powell, M. C. & Kanarek, M. S. Nanomaterial health effects-part 1: background and current knowledge. WMJ 105:16–20 (2006).

    PubMed  Google Scholar 

  117. Hardman, R. A toxicologic review of quantum dots: toxicity depends on physicochemical and environmental factors. Environ Health Persp 114:165–172 (2006).

    Google Scholar 

  118. Derfus, A. M., Chan, W. C. W., Bhatis, S. N. Probing the cytotoxicity of semiconductor quantum dots. Nano lett 4:11–18 (2004).

    CAS  Google Scholar 

  119. Li, K. G. et al. Intracellular oxidative stress and cadmium ions release induce cytotoxicity of unmodified cadmium sulfide quantum dots. Toxicol In Vitro 23: 1007–1013 (2009).

    CAS  PubMed  Google Scholar 

  120. Waisberg, M., Joseph, P., Hale, B. & Beyersmann, D. Molecular and cellular mechanisms of cadmium carcinogenesis. Toxicology 192:95–117 (2003).

    CAS  PubMed  Google Scholar 

  121. Rousseau, M. C., Straif, K. & Siemiatycki, J. IARC carcinogen update. Environ Health Persp 113:A580–581 (2005).

    Google Scholar 

  122. Flora, S. J., Mittal, M. & Mehta, A. Heavy metal induced oxidative stress & its possible reversal by chelation therapy. Indian J Med Res 128:501–523 (2008).

    CAS  PubMed  Google Scholar 

  123. Jacobsen, N. R. et al. Lung inflammation and genotoxicity following pulmonary exposure to nanoparticles in ApoE-/-mice. Part Fibre Toxicol 6:2 (2009).

    PubMed Central  PubMed  Google Scholar 

  124. Hirst, S. M. et al. Anti-inflammatory properties of cerium oxide nanoparticles. Small 5:2848–2856 (2009).

    CAS  PubMed  Google Scholar 

  125. Pierscionek, B. K. et al. Nanoceria have no genotoxic effect on human lens epithelial cells. Nanotechnology 21:035102 (2010).

    PubMed  Google Scholar 

  126. Lopez-Moreno, M. L. et al. Evidence of the differential biotransformation and genotoxicity of ZnO and CeO2 nanoparticles on soybean (Glycine max) plants. Environ Sci Technol 44:7315–7320 (2010).

    CAS  PubMed Central  PubMed  Google Scholar 

  127. Asharani, P. V., Xinyi, N., Hande, M. P. & Valiyaveettil, S. DNA damage and p53-mediated growth arrest in human cells treated with platinum nanoparticles. Nanomedicine (Lond) 5:1–64 (2010).

    Google Scholar 

  128. Piddubnyak, V. et al. Oligo-3-hydroxybutyrates as potential carriers for drug delivery. Biomaterials 25: 5271–5279 (2004).

    CAS  PubMed  Google Scholar 

  129. He, L. et al. In vitro evaluation of the genotoxicity of a family of novel MeO-PEG-poly(D,L-lactic-coglycolic acid)-PEG-OMe triblock copolymer and PLGA nanoparticles. Nanotechnology 20:455102 (2009).

    PubMed  Google Scholar 

  130. Chauhan, A. S., Diwan, P. V., Jain, N. K. & Tomalia, D. A. Unexpected in vivo anti-inflammatory activity observed for simple, surface functionalized poly (amidoamine) dendrimers. Biomacromolecules 10: 1195–1202 (2009).

    CAS  PubMed  Google Scholar 

  131. Song, Y., Li, X. & Du, X. Exposure to nanoparticles is related to pleural effusion, pulmonary fibrosis and granuloma. Eur Respir J 34:559–567 (2009).

    CAS  PubMed  Google Scholar 

  132. Brain, J. D., Kreyling, W. & Gehr, P. To the editors: express concern about the recent paper by Song et al. Eur Respir J 35:226–227 (2010).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Im-Soon Kim or Young Rok Seo.

Additional information

These authors contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koedrith, P., Boonprasert, R., Kwon, J.Y. et al. Recent toxicological investigations of metal or metal oxide nanoparticles in mammalian models in vitro and in vivo: DNA damaging potential, and relevant physicochemical characteristics. Mol. Cell. Toxicol. 10, 107–126 (2014). https://doi.org/10.1007/s13273-014-0013-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13273-014-0013-z

Keywords

Navigation