Skip to main content

Revised Procedure of the Bacterial Reverse Mutation Test for Genotoxic Evaluation of Nanoparticles

  • Protocol
  • First Online:
Genotoxicity and DNA Repair

Abstract

A recent review of in vitro genotoxicity testing strategies for nanoparticles (NPs) revealed that the conventional Bacterial Reverse Mutation Test (Ames test) primarily yielded negative results, whereas the other in vitro genotoxicity assays were usually positive. Accordingly, the efficiency of the test for NP evaluation was questioned, as was the NP entrance in bacterial cells. Indeed, prokaryotes are unable to perform endocytosis and NPs are too large to be transported through the pores of the cell wall. However, regardless of whether they have been internalized, the mutagenic potential of free radicals, produced intrinsically or indirectly by NPs adsorbed onto the bacterial cell walls, should be detected by the Bacterial Reverse Mutation Test.

Another phenomenon that can explain the low test efficiency is the lack of interactions between NPs and cells due to strong NP aggregation in the exposure medium of the assay and the presence of electrostatic repulsive forces between NPs and bacteria, which both carry overall negative charge. This hypothesis is supported by our recent study that revealed the mutagenic potential of NP-TiO2 using a revised procedure of the Bacterial Reverse Mutation Test, which improves the NP-cell interactions and the sensitivity of the test.

In this chapter, we provide several recommendations for the genotoxic evaluation of NPs and propose a revised version of the Bacterial Reverse Mutation Test more in line with the specific properties of NPs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ames BN, Gurney EG, Miller JA et al (1972) Carcinogens as frameshift mutagens: metabolites and derivatives of 2-acetylaminofluorene and other aromatic amine carcinogens. Proc Natl Acad Sci U S A 69:3128–3132

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Ames BN, Lee FD, Durston WE (1973) An improved bacterial test system for the detection and classification of mutagens and carcinogens. Proc Natl Acad Sci U S A 70:782–786

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Ames BN, Durston WE, Yamasaki E et al (1973) Carcinogens are mutagens: a simple test system combining liver homogenates for activation and bacteria for detection. Proc Natl Acad Sci U S A 70:2281–2285

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Maron D, Ames BN (1984) Revised methods for the Salmonella mutagenicity test. Mutat Res 113:173–215

    Article  Google Scholar 

  5. Levin DE, Hollstein M, Christman MF et al (1982) A new Salmonella tester strain (TA102) with AT base pairs at the site of mutation detects oxidative mutagens. Proc Natl Acad Sci U S A 79:7445–7449

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. OECD No. 471 (1997) Organization for economic development and cooperation guidelines for testing of chemicals, Paris, France

    Google Scholar 

  7. Margolin B, Kaplan N, Zeiger E (1981) Statistical analysis of the Ames Salmonella/microcosm test. Proc Natl Acad Sci U S A 78:3779–3783

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Stead A, Hasselblad J, Claxton L (1981) Modeling the Ames test. Mutat Res 85:13–27

    Article  CAS  PubMed  Google Scholar 

  9. Gatehouse D, Haworth S, Cebula T et al (1994) Recommendations for the performance of bacterial mutation assays. Mutat Res 312:217–233

    Article  CAS  PubMed  Google Scholar 

  10. Mortelmans K, Zeiger E (2000) The Ames Salmonella/microcosm mutagenicity assay. Mutat Res 455:29–60

    Article  CAS  PubMed  Google Scholar 

  11. Tejs S (2008) The Ames test: a methodological short review. Environ Biotechnol 4:7–14

    Google Scholar 

  12. Gatehouse D (2012) Bacterial mutagenicity assays: test methods. In: Parry JM, Parry EM (eds) Genetic toxicology: principles and methods, methods in molecular biology, vol 817. Springer Science, Heidelberg

    Google Scholar 

  13. Pillco A, de la Peña E (2014) Bacterial reverse mutation test: why, when and how to use. In: Sierra LM, Gaivao I (eds) Genotoxicity and DNA repair: a practical approach. Springer Science, Heidelberg

    Google Scholar 

  14. Mortelmans K, Haworth S, Lawlor T et al (1986) Salmonella mutagenicity tests: II. Results from the testing of 270 chemicals. Environ Mutagen 8(Suppl 7):1–119

    Article  CAS  PubMed  Google Scholar 

  15. Zeiger E, Anderson B, Haworth S et al (1987) Salmonella mutagenicity tests: III. Results from the testing of 255 chemicals. Environ Mutagen 9(9):1–110

    Article  CAS  PubMed  Google Scholar 

  16. Zeiger E, Anderson B, Haworth S et al (1988) Salmonella mutagenicity tests: IV. Results from the testing of 300 chemicals. Environ Mutagen 9(Suppl 12):1–158

    Article  Google Scholar 

  17. Zeiger E, Anderson B, Haworth S et al (1992) Salmonella mutagenicity tests: V. Results from the testing of 311 chemicals. Environ Mol Mutagen 19(Suppl 21):1–141

    Google Scholar 

  18. Green MHL, Muriel WJ (1976) Mutagen testing using Trp+ reversion in E. coli. Mutat Res 38:3–32

    Article  CAS  PubMed  Google Scholar 

  19. Hubbard SA, Green MHL, Gatehouse D et al (1984) The Fluctuation test in bacteria. In: Kilbey BJ, Legator M, Nichols W, Ramel C (eds) Handbook of mutagenicity test procedures, 2nd edn. Elsevier, Amsterdam

    Google Scholar 

  20. Gilbert RI (1980) The analysis of fluctuation tests. Mutat Res 74:283–289

    Article  Google Scholar 

  21. Flückiger-Isler S, Kamber M (2014) The Ames II and Ames MPF Penta I assay: a liquid microplate format modification of the classic Ames test. In: Sierra LM, Gaivao I (eds) Genotoxicity and DNA repair: a practical approach. Springer Science, Heidelberg

    Google Scholar 

  22. Environment Canada (1993) Protocole-Test de fluctuation. Laboratoire C&P (CSL). Montreal, Canada

    Google Scholar 

  23. Thompson ED, Melampy PJ (1981) An examination of the quantitative suspension assay for mutagenesis with strains of Salmonella typhimurium. Environ Mutagen 3:453–465

    Article  CAS  PubMed  Google Scholar 

  24. Hugues TJ, Simmons DM, Monteith LG et al (1987) Vaporization technique to measure mutagenic activity of volatile organic chemicals in the Ames/Salmonella assay. Environ Mutagen 9:421–441

    Article  Google Scholar 

  25. Araki A, Noquchi T, Kato F et al (1994) Improved method for mutagenicity testing of gaseous compounds by using gas sampling bag. Mutat Res 307:335–344

    Article  CAS  PubMed  Google Scholar 

  26. Gonzalez L, Lison D, Kirsch-Volders M (2008) Genotoxicity of engineered nanomaterials: critical review. Nanotoxicology 2:252–273

    Article  Google Scholar 

  27. Singh N, Manshian B, Jenkins GJS et al (2009) NanoGenotoxicology: the DNA damaging potential of engineered nanomaterial. Biomaterials 30:3891–3914

    Article  CAS  PubMed  Google Scholar 

  28. Botta A, Benameur L (2011) Nanoparticle toxicity mechanisms: genotoxicity. In: Marano F, Lahmani M, Houdy P (eds) Nanoethics and nanotoxicology. Springer, Heidelberg

    Google Scholar 

  29. Doak SH, Manshian B, Jenkins GJS et al (2012) In vitro genotoxicity testing strategy for nanomaterials and the adaptation of current OECD guidelines. Mutat Res 745:104–111

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Magdolenova Z, Collins A, Kumar A et al (2013) Mechanisms of genotoxicity. A review of in vitro and in vivo studies with engineered nanoparticles. Nanotoxicology. doi: 10.3109/17435390.2013.773464

    Google Scholar 

  31. Landsiedel R, Kapp MD, Schulz M et al (2009) Genotoxicity investigations on nanomaterials: methods, preparation and characterization of test material, potential artifacts and limitations—many questions, some answers. Mutat Res 681:241–258

    Article  CAS  PubMed  Google Scholar 

  32. Woodruff RS, Li Y, Yan J et al (2012) Genotoxicity evaluation of titanium dioxide nanoparticles using the Ames test and Comet assay. J Appl Toxicol 32:934–943

    Article  CAS  PubMed  Google Scholar 

  33. Kumar A, Pandey AK, Singh SS et al (2011) Cellular uptake and mutagenic potential of metal oxide nanoparticles in bacterial cells. Chemosphere 83:1124–1132

    Article  CAS  PubMed  Google Scholar 

  34. Clift MJD, Raemy DO, Endes C et al (2012) Can the Ames test provide an insight into nano-object mutagenicity? Investigating the interaction between nano-objects and bacteria. Nano-toxicology. doi: 10.3109/17435390.2012.741725

    Google Scholar 

  35. Derjaguin BV, Landau LD (1941) Acta Physicochim. URSS 14:733–742

    Google Scholar 

  36. Verwey EJW, Overbeek JTG (1948) Theory of the stability of lyophobic colloids. Elsevier, Amsterdam

    Google Scholar 

  37. Pagnout C, Jomini S, Dadhwal M et al (2012) Role of electrostatic interactions in the toxicity of titanium dioxide nanoparticles toward Escherichia coli. Colloids Surf B Biointerfaces 92:315–321

    Article  CAS  PubMed  Google Scholar 

  38. Jomini S, Labille J, Bauda P et al (2012) Modifications of the bacterial reverse mutation test reveals mutagenicity of TiO2 nanoparticles and byproducts from a sunscreen TiO2-based nanocomposite. Toxicol Lett 215:54–61

    Article  CAS  PubMed  Google Scholar 

  39. Jiang W, Saxena A, Song B et al (2004) Elucidation of functional groups on gram-positive and gram-negative bacterial surfaces using infrared spectroscopy. Langmuir 20:11433–11442

    Article  CAS  PubMed  Google Scholar 

  40. Fatin-Rouge N, Starchev K, Buffle J (2004) Size effects on diffusion processes within agarose gels. Biophys J 86:2710–2719

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Chen-Ming L (2008) Nanoparticle mobility in viscoelastic media. Ph.D thesis, University of Iowa

    Google Scholar 

  42. Hengge-Aronis R (1993) Survival of hunger and stress: the role of RpoS in early stationary phase gene regulation in E. coli. Cell 72:165–168

    Article  CAS  PubMed  Google Scholar 

  43. Lange R, Hengge-Aronis R (1991) Identification of a central regulator of stationary-phase gene expression in Escherichia coli. Mol Microbiol 5:49–59

    Article  CAS  PubMed  Google Scholar 

  44. Yatvin MB, Gipp JJ, Klessig DR et al (1986) Hyperthermic sensitivity and growth stage in Escherichia coli. Radiat Res 106:78–88

    Article  CAS  PubMed  Google Scholar 

  45. PROSPECT (2009) Evaluation and assignment of nanoparticle dispersion/characterisation methodologies. In: Ecotoxicology Test Protocols for representative Nanomaterials in support of the OECD Sponsorship programme

    Google Scholar 

  46. OECD (2008) List of manufactured nanomaterials and list of endpoints for phase one of the OECD testing programme, ENV/JM/MONO (2008) 13/REV, No. 6

    Google Scholar 

  47. PROSPEcT (2010) Protocol for nanoparticle dispersion. In: Ecotoxicology Test Protocols for representative Nanomaterials in support of the OECD Sponsorship programme

    Google Scholar 

  48. BS ISO 14887 (2000) Sample preparation—dispersing procedures for powders in liquids. International organization for standardization, Geneva, Switzerland

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christophe Pagnout .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Pagnout, C., Jomini, S., Bauda, P. (2014). Revised Procedure of the Bacterial Reverse Mutation Test for Genotoxic Evaluation of Nanoparticles. In: Sierra, L., Gaivão, I. (eds) Genotoxicity and DNA Repair. Methods in Pharmacology and Toxicology. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1068-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1068-7_3

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1067-0

  • Online ISBN: 978-1-4939-1068-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics