Skip to main content
Log in

Theoretical studies with B12N12 as a toxic gas sensor: a review

  • Review
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

This systematic review presents an overview, from 2011 to 2022, of how pure B12N12 and B12N12-modified nanocages have been used to detect toxic gases from studies based on density functional theory (DFT). Searches were carried out in the ISI Web of Science, Science Direct, and Scopus databases to identify all studies related to B12N12 nanocages and, with the application of exclusion and inclusion criteria, to select articles involving theoretical studies of pure B12N12 and B12N12-modified nanocages as toxic gas sensors. In addition, from our analysis of these articles, we infer that a pure B12N12 nanocage can selectively detect O3, HNO, NO, CO, ClCN, and FCN gases. However, it cannot detect N2O and NH3. In contrast, metal-modified B12N12 nanocage can detect a wider range of gases such as CO, NH3, PH3, AsH3, SO2, O3, COCl2, NCCN, and ClCN. However, few studies have discussed the interference effects due to the presence of other gases in the atmosphere and/or the incorporation of different structural modifications (decorated, doped, and encapsulated) into the cage. Lastly, this systematic review will guide the development of new applications of nanocages in the selective detection of toxic gases.

Graphical Abstract

Schematic representation of the detection of different toxic gases on a B12N12 nanocage surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability

All data generated or analysed during this study are included in this published article.

References

  1. Kroto HW, Heath JR, O’Brien SC, Curl RF, Smalley RE (1985) C60: Buckminsterfullerene. Nature 318:162–163. https://doi.org/10.1038/318162a0

    Article  CAS  Google Scholar 

  2. Kent PRC, Towler MD, Needs RJ, Rajagopal G (2000) Phys Rev B 62:15394. https://doi.org/10.1103/PhysRevB.62.15394

    Article  CAS  Google Scholar 

  3. Lu X, Chen Z (2005) Curved Pi-conjugation, aromaticity, and the related chemistry of small fullerenes (<C60) and single-walled carbon nanotubes. Chem Rev 105:3643–3696. https://doi.org/10.1021/cr030093d

    Article  CAS  Google Scholar 

  4. Enyashin AN (2010) Theoretical studies of inorganic fullerenes and fullerene-like nanoparticles. Isr J Chem 50:468–483. https://doi.org/10.1002/ijch.201000058

    Article  CAS  Google Scholar 

  5. Kaviani S, Shahab S, Sheikhi M, Potkin V, Zhou H (2021) A DFT study of Se-decorated B12N12 nanocluster as a possible drug delivery system for ciclopirox. Comput Theor Chem 1201:113246. https://doi.org/10.1016/j.comptc.2021.113246

    Article  CAS  Google Scholar 

  6. Liao Z, Song G, Yang Z, Ren H (2021) Adsorption and desorption behaviors of hydroxyurea drug on delivery systems of B12N12 fullerene and its Al-, Si- and P-dopings from theoretical perspective. Mol Phys 119:e1921296. https://doi.org/10.1080/00268976.2021.1921296

    Article  CAS  Google Scholar 

  7. Rad AS, Ayub K (2016) Enhancement in hydrogen molecule adsorption on B12N12 nano-cluster by decoration of nickel. Int J Hydrog Energy 41:22182–22191. https://doi.org/10.1016/j.ijhydene.2016.08.158

    Article  CAS  Google Scholar 

  8. Janjua MRSA (2021) Theoretical framework for encapsulation of inorganic B12N12 nanoclusters with alkaline earth metals for efficient hydrogen adsorption: a step forward toward hydrogen storage materials. Inorg Chem 60:2816–2828. https://doi.org/10.1021/acs.inorgchem.0c03730

    Article  CAS  Google Scholar 

  9. Hosseini J, Rastgou A, Moradi R (2017) F-encapsulated B12N12 fullerene as an anode for Li-ion batteries: a theoretical study. J Mol Liq 225:913–918. https://doi.org/10.1016/j.molliq.2016.11.025

    Article  CAS  Google Scholar 

  10. Nejati K, Hosseinian A, Bekhradnia A, Vessally E, Edjlali L (2017) Na-ion batteries based on the inorganic BN nanocluster anodes: DFT studies. J Mol Graph Model 74:1–7. https://doi.org/10.1016/j.jmgm.2017.03.001

    Article  CAS  Google Scholar 

  11. Alvand R, Rezaei-Sameti M (2021) The H+ ions and static electric field effects on the adsorption and detection of cyanogen fluoride on the surface of boron nitride nanocage: a DFT, TD-DFT study. Adsorption 27:91–104. https://doi.org/10.1007/s10450-020-00278-5

    Article  CAS  Google Scholar 

  12. Kalateh K, Abdolmanafi A (2015) Study of B12N12 and AlB11N12 fullerene as H2S absorbent and sensor by computational method. Int J New Chem 2:1–7. https://doi.org/10.22034/IJNC.2015.15629

    Article  Google Scholar 

  13. Rostamoghli R, Vakili M, Banaei A, Pourbashir E, Jalalierad K (2018) Applying the B12N12 nanoparticle as the CO, CO2, H2O and NH3 sensor. Chem Rev Lett 1:31–36. https://doi.org/10.22034/crl.2018.85214

    Article  Google Scholar 

  14. Silva ALP, Silva ACA, Varela Júnior JJG (2022) Putrescine adsorption on pristine and Cu-decorated B12N12 nanocages: a density functional theory study. Comput Theor Chem 1215:113836. https://doi.org/10.1016/j.comptc.2022.113836

    Article  CAS  Google Scholar 

  15. Soltani A, Ramezanitaghartapeh M, Javan MB, Baei MT, Lup ANK, Mahon PJ, Aghaei M (2020) Influence of the adsorption of toxic agents on the optical and electronic properties of B12N12 fullerene in the presence and absence of an external electric field. New J Chem 44:14513–14528. https://doi.org/10.1039/D0NJ01868F

    Article  CAS  Google Scholar 

  16. Rauf HG, Mahmood EA, Majedi S, Sofi M (2019) Adsorption behavior of the Al- and Ga-doped B12N12 nanocages on COn (n=1, 2) and HnX (n=2, 3 and X=O, N): A comparative study. Chem Rev Lett 2:140–150. https://doi.org/10.22034/crl.2020.214660.1029

    Article  Google Scholar 

  17. Barea E, Montoro C, Navarro JAR (2014) Toxic gas removal – metal–organic frameworks for the capture and degradation of toxic gases and vapours. Chem Soc Rev 43:5419–5430. https://doi.org/10.1039/C3CS60475F

    Article  CAS  Google Scholar 

  18. Kinoshita H, Türkan H, Vucinic S, Naqvi S, Bedair R, Rezaee R, Tsatsakis A (2020) Carbon Monoxide Poisoning. Toxicol Rep 7:169–173. https://doi.org/10.1016/j.toxrep.2020.01.005

    Article  CAS  Google Scholar 

  19. Jensen F, Toftlund H (1993) Structure and stability of C24 and B12N12 isomers. Chem Phys Lett 201:89–96. https://doi.org/10.1016/0009-2614(93)85039-Q

    Article  CAS  Google Scholar 

  20. Strout DL (2000) Structure and stability of boron nitrides: isomers of B12N12. J Phys Chem A 104:3364–3366. https://doi.org/10.1021/jp994129a

    Article  CAS  Google Scholar 

  21. Seifert G, Fowler RW, Mitchell D, Porezag D, Frauenheim Th (1997) Boron-nitrogen analogues of the fullerenes: electronic and structural properties. Chem Phys Lett 268:352–358. https://doi.org/10.1016/S0009-2614(97)00214-5

    Article  CAS  Google Scholar 

  22. Xie W, Wang J, Wang J, Wu X, Wang Z, Zhang R-Q (2020) High-angular-momentum orbitals and superatomic characteristics of boron-nitrogen cages. J Phys Chem C 124:3881–3885. https://doi.org/10.1021/acs.jpcc.9b11351

    Article  CAS  Google Scholar 

  23. Oku T, Nishiwaki A (2004) Narita I (2004) Formation and atomic structure of B12N12 nanocage clusters studied by mass spectrometry and cluster calculation. Sci Technol Adv Mater 5:635–645. https://doi.org/10.1016/j.stam.2004.03.017

    Article  CAS  Google Scholar 

  24. Zhu Y-C, Bando Y, Yin L-W, Golberg D (2004) Hollow boron nitride (BN) nanocages and BN-nanocage-encapsulated nanocrystals. Chem Eur J 10:3667–3672. https://doi.org/10.1002/chem.200400002

    Article  CAS  Google Scholar 

  25. Oku T, Nishiwaki A, Narita I (2004) Formation and structure of B28N28 clusters studied by mass spectrometry and molecular orbital calculation. Solid State Commun 130:171–173. https://doi.org/10.1016/j.ssc.2004.02.004

    Article  CAS  Google Scholar 

  26. Oku T, Nishiwaki A, Narita I (2004) Formation and structures of B36N36 and Y@B36N36 clusters studied by high-resolution electron microscopy and mass spectrometry. J Phys Chem Solids 65:369–372. https://doi.org/10.1016/j.jpcs.2003.09.010

    Article  CAS  Google Scholar 

  27. Oku T (2015) Hydrogen storage in boron nitride and carbon nanomaterials. Energies 8:319–337. https://doi.org/10.3390/en8010319

    Article  CAS  Google Scholar 

  28. Oku T, Kuno M, Kitahara H, Narita I (2001) Formation, atomic structures and properties of boron nitride and carbon nanocage fullerene materials. Int J Inorg Materials. 3:597–612. https://doi.org/10.1016/S1466-6049(01)00169-6

    Article  CAS  Google Scholar 

  29. Silva ALP, Silva ACA, Navis CN, Varela Júnior JJG (2021) Theoretical study of putrescine and X12Y12 (X=Al, B and Y=N, P) nanocage interactions. J Nanoparticle Res 23:108. https://doi.org/10.1007/s11051-021-05211-7

    Article  CAS  Google Scholar 

  30. Kaviani S, Shahab S, Sheikhi M (2021) Adsorption of alprazolam drug on the B12N12 and Al12N12 nano-cages for biological applications: a DFT study. Physica E Low Dimens Syst Nanostruct 126:114473. https://doi.org/10.1016/j.physe.2020.114473

    Article  CAS  Google Scholar 

  31. Shamim SUD, Miah MH, Hossain MR, Hasan MM, Hossain MK, Hossain MA, Ahmed F (2022) Theoretical investigation of emodin conjugated doped B12N12 nanocage by means of DFT, QTAIM and PCM analysis. Physica E Low Dimens Syst Nanostruct 136:115027. https://doi.org/10.1016/j.physe.2021.115027

    Article  CAS  Google Scholar 

  32. Zaporotskova IV, Boroznina NP, Parkhomenko YN, Kozhitov LL (2016) Carbon nanotubes: sensor properties. A review Mod Electron Mater 2:95–105. https://doi.org/10.1016/j.moem.2017.02.002

    Article  Google Scholar 

  33. Silva ALP, Varela Júnior JJG (2022) Density functional theory study of Cu-modified B12N12 nanocage as a chemical sensor for carbon monoxide gas. Inorg Chem no prelo. https://doi.org/10.1021/acs.inorgchem.2c01621

    Article  Google Scholar 

  34. Hadipour NL, Peyghan AA, Soleymanabadi H (2015) J Phys Chem C 119:6398–6404. https://doi.org/10.1021/jp513019z

    Article  CAS  Google Scholar 

  35. Beheshtian J, Bagheri Z, Kamfiroozi M, Ahmadi A (2011) Toxic CO detection by B12N12 nanocluster. Microelectronics J 42:1400–1403. https://doi.org/10.1016/j.mejo.2011.10.010

    Article  CAS  Google Scholar 

  36. Beheshtian J, Peyghan AA, Bagheri Z, Kamfiroozi M (2012) Interaction of small molecules (NO, H2, N2, and CH4) with BN nanocluster surface. Struct Chem 23:1567–1572. https://doi.org/10.1007/s11224-012-9970-9

    Article  CAS  Google Scholar 

  37. Beheshtian J, Kamfiroozi M, Bagheri Z, Peyghan AA (2012) B12N12 nano-cage as potential sensor for NO2 detection. Chin J Chem Phys 25:60–64. https://doi.org/10.1088/1674-0068/25/01/60-64

    Article  CAS  Google Scholar 

  38. Peng S, Cho K (2003) Nano Lett 3:513–517. https://doi.org/10.1021/nl034064u

    Article  CAS  Google Scholar 

  39. Silva LB (2004) Fagan SB Mota R. Nano Lett 4:65–67. https://doi.org/10.1021/nl034873d

    Article  CAS  Google Scholar 

  40. Baierle RJ, Schmidt TM, Fazzio A (2007) Solid state Commun 142:49–53. https://doi.org/10.1016/j.ssc.2007.01.036

    Article  CAS  Google Scholar 

  41. Wang R, Zhang D (2008) Aust J Chem 61:941–945. https://doi.org/10.1071/CH08226

    Article  CAS  Google Scholar 

  42. Vadalkar S, Chodvadiya D, Som NN, Vyas KN, Jha PK, Chakraborty B (2022) ChemistrySelect 7:e202103874. https://doi.org/10.1002/slct.202103874

    Article  CAS  Google Scholar 

  43. Peng S, Cho K, Qi P, Dai H (2004) Ab initio study of CNT NO2 gas sensor. Chem Phys Lett 387:271–276. https://doi.org/10.1016/j.cplett.2004.02.026

    Article  CAS  Google Scholar 

  44. Onsori S, Liyaghati-Delshad M (2017) The effects of different Minnesota functionals on the sensitivity of boron nitride nanocluster to nitrogen dioxide. Chem Phys Lett 680:22–27. https://doi.org/10.1016/j.cplett.2017.05.030

    Article  CAS  Google Scholar 

  45. Vessally E, Soleimani-Amiri S, Hosseinian A, Edjlali L, Bekhradnia A (2017) Physica E Low Dimens Syst Nanostruct 87:308–311. https://doi.org/10.1016/j.physe.2016.11.010

    Article  CAS  Google Scholar 

  46. Vahabi V, Soleymanabadi H (2016) A quantum mechanical analysis of the electronic response of bn nanocluster to formaldehyde. J Mex Chem Soc 60:34–39

    CAS  Google Scholar 

  47. Shakerzadeh E (2016) A DFT study on the formaldehyde (H2CO and (H2CO)2) monitoring using pristine B12N12 nanocluster. Physica E Low Dimens Syst Nanostruct 78:1–9. https://doi.org/10.1016/j.physe.2015.11.038

    Article  CAS  Google Scholar 

  48. Baei MT (2013) B12N12 sodalite like cage as potential sensor for hydrogen cyanide. Comput Theor Chem 1024:28–33. https://doi.org/10.1016/j.comptc.2013.09.018

    Article  CAS  Google Scholar 

  49. Solimannejad M, Noormohammadbeigi M (2016) HNO detection by nanosized B12N12 cage: a DFT/TDDFT study. Phys Chem Res 4:693–706. https://doi.org/10.22036/pcr.2016.32637

    Article  CAS  Google Scholar 

  50. Panahyab A, Soleymanabadi H (2016) Ozone adsorption on a BN fullerene-like nano-cage: a DFT study. Main Group Met Chem 15:347–354. https://doi.org/10.3233/MGC-160214

    Article  CAS  Google Scholar 

  51. Bahrami A, Qarai MB, Hadipour NL (2017) The electronic and structural responses of B12N12 nanocage toward the adsorption of some nonpolar X2 molecules: X = (Li, Be, B, N, O, F, Cl, Br, I): A DFT approach. Comput Theor Chem 1108:63–69. https://doi.org/10.1016/j.comptc.2017.03.018

    Article  CAS  Google Scholar 

  52. Vessally E, Behmagham F, Massuomi B, Hosseinian A, Nejati K (2017) Selective detection of cyanogen halides by BN nanocluster: a DFT study. J Mol Model 23:138. https://doi.org/10.1007/s00894-017-3312-1

    Article  CAS  Google Scholar 

  53. Badran HM, Eid KhM, Ammar HY (2020) A DFT study on the effect of the external electric field on ammonia interaction with boron nitride nano-cage. J Phys Chem Solids 141:109399. https://doi.org/10.1016/j.jpcs.2020.109399

    Article  CAS  Google Scholar 

  54. Silva ALP, Varela Júnior JJG (2022) Carbon monoxide interaction with B12N12 nanocage with and without an external electric field: a DFT study. J Nanopart Res 24:1. https://doi.org/10.1007/s11051-021-05382-3

    Article  CAS  Google Scholar 

  55. Peyghan AA, Soleymanabadi H (2015) Computational study on ammonia adsorption on the X12Y12 nano-clusters (X = B, Al and Y = N, P). Curr Sci 108:1910–1914

    CAS  Google Scholar 

  56. Padash R, Rahimi-Nasrabadi M, Rad AS, Sobhani-Nasab A, Jesionowski T, Ehrlich H (2019) A comparative computational investigation of phosgene adsorption on (XY)12 (X = Al, B and Y = N, P) nanoclusters: DFT investigations. J Clust Sci 30:203–218. https://doi.org/10.1007/s10876-018-1479-y

    Article  CAS  Google Scholar 

  57. Noei M (2017) Different electronic sensitivity of BN and AlN nanoclusters to SO2 gas: DFT studies. Vacuum 135:44–49. https://doi.org/10.1016/j.vacuum.2016.10.029

    Article  CAS  Google Scholar 

  58. Baei MT, Ghasemi AS, Lemeski ET, Soltani A, Gholami N (2016) BN nanotube serving as a gas chemical sensor for N2O by parallel electric field. J Clust Sci 27:1081–1096. https://doi.org/10.1007/s10876-016-0969-z

    Article  CAS  Google Scholar 

  59. Farrokhpour H, Jouypazadeh H, Sohroforouzani SV (2020) Interaction of different types of nanocages (Al12N12, Al12P12, B12N12, Be12O12, Mg12O12, Si12C12 and C24) with HCN and ClCN: DFT, TD-DFT, QTAIM, and NBO calculations. Mol Phys 118:e1626506. https://doi.org/10.1080/00268976.2019.1626506

    Article  CAS  Google Scholar 

  60. Rad AS (2017) Application of B12N12 and B12P12 as two fullerene-like semiconductors for adsorption of halomethane: density functional theory study. Semiconductors 51:134–138. https://doi.org/10.1134/S1063782617010225

    Article  CAS  Google Scholar 

  61. Mohammadi MD, Abdullah HY, Kalamse VG, Chaudhari A (2022) Interaction of halomethane CH3Z (Z = F, Cl, Br) with X12Y12 (X = B, Al, Ga & Y = N, P, As) nanocages. Comput Theor Chem 1208:113544. https://doi.org/10.1016/j.comptc.2021.113544

    Article  CAS  Google Scholar 

  62. Soltani A, Javan MB (2015) Carbon monoxide interactions with pure and doped B11XN12 (X = Mg, Ge, Ga) nano-clusters: a theoretical study. RSC Adv 5:90621–90631. https://doi.org/10.1039/C5RA12571E

    Article  CAS  Google Scholar 

  63. Solimannejad M, Kamalinahad S, Shakerzadeh E (2016) Sensing performance of Sc-doped B12N12 nanocage for detecting toxic cyanogen gas: a computational study. Phys Chem Res 4:315–332. https://doi.org/10.22036/pcr.2016.14142

    Article  Google Scholar 

  64. Rahimi F, Zabaradsti A (2017) Photo-induced electron transfer process on pristine and Sc-substituted B12N12 nanocage as H2S chemosensor: a fully DFT and TD-DFT study. J Inorg Organomet Polym 27:1770–1777. https://doi.org/10.1007/s10904-017-0640-7

    Article  CAS  Google Scholar 

  65. Shakerzadeh E, Khodayar E, Noorizadeh S (2016) Theoretical assessment of phosgene adsorption behavior onto pristine, Al- and Ga-doped B12N12 and B16N16 nanoclusters. Comput Mater Sci 118:155–171. https://doi.org/10.1016/j.commatsci.2016.03.016

    Article  CAS  Google Scholar 

  66. Yong Y, Jiang H, Li X, Lv S, Cao J (2016) The cluster-assembled nanowires based on M12N12 (M = Al and Ga) clusters as potential gas sensors for CO, NO, and NO2 detection. Phys Chem Chem Phys 18:21431–21441. https://doi.org/10.1039/C6CP02931K

    Article  CAS  Google Scholar 

  67. Kaewmaraya T, Ngamwongwan L, Moontragoon P, Jarernboon W, Singh D, Ahuja R, Karton A, Hussain T (2021) Novel green phosphorene as a superior chemical gas sensing material. J Hazard Mater 401:123340. https://doi.org/10.1016/j.jhazmat.2020.123340

    Article  CAS  Google Scholar 

  68. Rad AS, Ayub K (2017) O3 and SO2 sensing concept on extended surface of B12N12 nanocages modified by Nickel decoration: a comprehensive DFT study. Solid State Sci 69:22–30. https://doi.org/10.1016/j.solidstatesciences.2017.05.007

    Article  CAS  Google Scholar 

  69. Larki S, Shakerzadeh E, Anota EC, Behjatmanesh-Ardakani R (2019) The Al, Ga and Sc dopants effect on the adsorption performance of B12N12 nanocluster toward pnictogen hydrides. Chem Phys 526:110424. https://doi.org/10.1016/j.chemphys.2019.110424

    Article  CAS  Google Scholar 

  70. Azimi F, Tazikeh-Lemeski E (2020) Exploring adsorption behavior of cyanogen chloride molecule on boron nitride nanocluster from first-principles. Russ J Phys Chem A 94:2141–2147. https://doi.org/10.1134/S0036024420100039

    Article  Google Scholar 

  71. Ammar HY, Eid KhM, Badran HM (2020) Interaction and detection of formaldehyde on pristine and doped boron nitride nano-cage: DFT calculations. Mater Today Commun 25:101408. https://doi.org/10.1016/j.mtcomm.2020.101408

    Article  CAS  Google Scholar 

  72. Hussain S, Hussain R, Mehboob MY, Chatha SAS, Hussain AI, Umar A, Khan MU, Ahmed M, Adnan M, Ayub K (2020) Adsorption of phosgene gas on pristine and copper-decorated B12N12 nanocages: a comparative DFT study. ACS Omega 5:7641–7650. https://doi.org/10.1021/acsomega.0c00507

    Article  CAS  Google Scholar 

  73. Ammar HY, Badran HM, Eid KhM (2020) TM-doped B12N12 nano-cage (TM = Mn, Fe) as a sensor for CO, NO, and NH3 gases: a DFT and TD-DFT study. Mater Today Commun 25:101681. https://doi.org/10.1016/j.mtcomm.2020.101681

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the financial support provided by CAPES, CNPq, and FAPEMA.

Funding

This work is supported by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES—grant No. 88887.472618/2019–00-PROCAD-AM).

Author information

Authors and Affiliations

Authors

Contributions

Adilson L. P. Silva: investigation, writing, reviewing, and editing. Natanael de S. Sousa: investigation, writing. Jaldyr de J. G. Varela Júnior: conceptualization, methodology, resources, supervision, and funding acquisition.

Corresponding author

Correspondence to Jaldyr de Jesus Gomes Varela Júnior.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Silva, A.L.P., de Sousa Sousa, N. & de Jesus Gomes Varela Júnior, J. Theoretical studies with B12N12 as a toxic gas sensor: a review. J Nanopart Res 25, 22 (2023). https://doi.org/10.1007/s11051-023-05667-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-023-05667-9

Keywords

Navigation