Skip to main content
Log in

Deciphering the detection and electrochemical sensing of the environmental pollutant CO gas with Ga12As12 and Al12As12 nanostructured materials: an insight from first-principle calculations

  • Computation & theory
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The unbalanced ratio of the environmental components adversely impacts the ecosystem because of dangerous gases at high levels. One of them, CO gas is the colourless, tasteless, and odourless gas that becomes difficult to identify by human sensory organs. Its accidental inhalation causes serious health problems. To overcome the dangerous and adverse effects of CO gas, the utilization of novel inorganic Al12As12 and Ga12As12 nanocages has not yet been thoroughly investigated. To fill this gap, a comparative investigation of the sensing capability of both nanocages is accomplished by employing first-principle DFT and TD-DFT computations. The calculated adsorption energy values manifest both nanocages’ remarkable adsorption response. The explored molecular electronic properties: the energy gap (~ 2.21 eV), softness (~ 0.45 eV), hardness(~ 1.11 eV), electrophilicity index(~ 10.64 eV), electrical conductivity (~ 1.98 × 109), and recovery time (~ 1.63 × 10−12 s−1) values ascertain the comparatively high reactivity and sensing response of the Ga12As12 nanocage towards CO gas. NBO analysis explored the presence of more effective ICT network in Ga12As12 nanocage by showing the effective interactions towards CO gas. UV–Vis analysis and NCI analysis explored the comparative maximum absorbance wavelength (550.04 nm) along with minimum excitation energy (2.25 eV) and comparatively highest noncovalent interactions, respectively, by Ga12As12 nanocage complexes. The thermodynamic analysis explored the spontaneity of the interaction process for both the systems but comparatively highest values of ∆fH0 and ∆rG0 for Ga12As12 nanocage complexes that indicate the increased strength of the reaction mechanism. So, all the investigation parameters have proved the Ga12As12 nanocage and Al12As12 nanocage are helpful for environmental monitoring to detect CO gas, and the Ga12As12 nanocage is a promising influential sensing material and exhibits comparatively high sensitivity.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

Data availability

Data available within the article or its supplementary materials.

References

  1. Kundu R, Narula R, Paul R, Mukherjee S (2019) Environmental biotechnology for soil and wastewater implications on ecosystems. Springer

    Book  Google Scholar 

  2. Mahajan S, Jagtap S (2020) Metal-oxide semiconductors for carbon monoxide (CO) gas sensing: a review. Appl Mater Today 18:100483

    Article  Google Scholar 

  3. Jacob MT, Nasser N, Michaux KN, Flore Y, Siaka T (2022) Zigbee-based wireless smart device for enclosed space real-time air quality monitoring: experiment, data analysis and risk assessment. Indoor Air Qual Asses Smart Environ 30:55–70

    Google Scholar 

  4. Javanmardi S, Nasresfahani S, Sheikhi MH (2019) Facile synthesis of PdO/SnO2/CuO nanocomposite with enhanced carbon monoxide gas sensing performance at low operating temperature. Mater Res Bull 118:110496

    Article  CAS  Google Scholar 

  5. Chen Y, Qin H, Hu J (2018) CO sensing properties and mechanism of Pd doped SnO2 thick-films. Appl Surf Sci 428:207–217

    Article  CAS  Google Scholar 

  6. Amilan Jose D, Sharma N, Sakla R, Kaushik R, Gadiyaram S (2019) Fluorescent nanoprobes for the sensing of gasotransmitters hydrogen sulfide (H2S), nitric oxide (NO) and carbon monoxide (CO). Methods 168:62–75

    Article  CAS  PubMed  Google Scholar 

  7. Mohammadi MD, Abdullah HY, Bhowmick S, Biskos G (2021) Theoretical investigation of X12O12 (X= Be, Mg, and Ca) in sensing CH2N2: a DFT study. Comput Theor Chem 1198:113168

    Article  CAS  Google Scholar 

  8. Mohammadi MD, Abdullah HY, Bhowmick S, Biskos G (2021) Theoretical investigation of X12O12 (X = Be, Mg, and Ca) in sensing CH2N2: a DFT study. Comput Theor Chem 1198:113168

    Article  CAS  Google Scholar 

  9. Mohammadi MD, Abdullah HY, Suvitha A (2021) The adsorption of 1-chloro-1, 2, 2, 2-tetrafluoroethane onto the pristine, Al-, and Ga-doped boron nitride nanosheet. Iran J Sci Technol Trans A Sci 45(4):1287–1300

    Article  Google Scholar 

  10. Raissi H, Yoosefian M, Mollania F, Khoshkhou S (2013) Electronic structures, intramolecular interactions, and aromaticity of substituted 1-(2-iminoethylidene) silan amine: a density functional study. Struct Chem 24(1):123–137

    Article  CAS  Google Scholar 

  11. Khaliq F, Ayub K, Mahmood T, Muhammad S, Tabassum S, Gilani MA (2021) First example of lanthanum as dopant on Al12N12 and Al12P12 nanocages for improved electronic and nonlinear optical properties with high stability. Mater Sci Semicond Process 135:106122

    Article  CAS  Google Scholar 

  12. Ullah F, Kosar N, Ali A, Mahmood T, Ayub K (2020) Alkaline earth metal decorated phosphide nanoclusters for potential applications as high performance NLO materials; A first principle study. Phys E 118:113906

    Article  CAS  Google Scholar 

  13. Hussain S, ShahidChatha SA, Hussain AI, Hussain R, Mehboob MY, Gulzar T et al (2020) Designing novel Zn-decorated inorganic B12P12 nanoclusters with promising electronic properties: a step forward toward efficient CO2 sensing materials. ACS Omega 5(25):15547–15556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Farrokhpour H, Jouypazadeh H, Vakili SS (2020) Interaction of different types of nanocages (Al12N12, Al12P12, B12N12, Be12O12, Mg12O12, Si12C12 and C24) with HCN and ClCN: DFT, TD-DFT, QTAIM, and NBO calculations. Mol Phys 118(4):1626506

    Article  Google Scholar 

  15. Zhi-Feng L, Xue-Ling L, Li-Ren L, Huo-Yan L, Jiang ZH (2011) A density-functional theory for (BAs) n clusters (n= 1–14): structures, stabilities and electronic properties. Chin Phys B 20(2):023101

    Article  Google Scholar 

  16. Ektarawong A, Simak SI, Alling B (2017) First-principles prediction of stabilities and instabilities of compounds and alloys in the ternary B-As-P system. Phys Rev B 96(2):024202

    Article  Google Scholar 

  17. Guo L (2011) Structural, energetic, and electronic properties of hydrogenated aluminum arsenide clusters. J Nanopart Res 13(5):2029–2039

    Article  CAS  Google Scholar 

  18. Syum Z, Woldeghebriel H (2014) The structure and electronic properties of (GaAs)n and Al/In-doped (GaAs)n (n=2–20) clusters. Comput Theor Chem 1048:7–17

    Article  CAS  Google Scholar 

  19. Chang C, Patzer ABC, Sedlmayr E, Steinke T, Sülzle D (2001) Computational evidence for stable inorganic fullerene-like structures of ceramic and semiconductor materials. Chem Phys Lett 350(5):399–404

    Article  CAS  Google Scholar 

  20. Mohammadi MD, Abdullah HY, Bhowmick S, Biskos G (2021) A comprehensive investigation of the intermolecular interactions between CH2N2 and X12Y12 (X = B, Al, Ga; Y = N, P, As) nanocages. Can J Chem 99(9):733–741

    Article  CAS  Google Scholar 

  21. DoustMohammadi M, Abdullah HY, Kalamse VG, Chaudhari A (2022) Interaction of halomethane CH3Z (Z = F, Cl, Br) with X12Y12 (X = B, Al, Ga & Y = N, P, As) nanocages. Comput Theor Chem 1208:113544

    Article  CAS  Google Scholar 

  22. Mohammadi MD, Abdullah HY, Kalamse V, Chaudhari A (2021) Adsorption of alkali and alkaline earth ions on nanocages using density functional theory. Comput Theor Chem 1204:113391

    Article  CAS  Google Scholar 

  23. Hussain S, Hussain R, Mehboob MY, Chatha SAS, Hussain AI, Umar A et al (2020) Adsorption of phosgene gas on pristine and copper-decorated B12N12 nanocages: a comparative DFT study. ACS Omega 5(13):7641–7650

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Padash R, Sobhani-Nasab A, Rahimi-Nasrabadi M, Mirmotahari M, Ehrlich H, Rad AS et al (2018) Is it possible to use X12Y12 (X = Al, B, and Y = N, P) nanocages for drug-delivery systems? A DFT study on the adsorption property of 4-aminopyridine drug. Appl Phys A 124(9):1–11

    Article  Google Scholar 

  25. Shyma Mary Y, Sheena Mary Y, Ullah Z (2022) Computational study of sorbic acid drug adsorption onto coronene/fullerene/fullerene-like X12Y12 (X= Al, B and Y= N, P) nanocages: DFT and molecular docking investigations. J Clust Sci 33(4):1809–1819

    Article  CAS  Google Scholar 

  26. Agwupuye JA, Neji PA, Louis H, Odey JO, Unimuke TO, Bisiong EA et al (2021) Investigation on electronic structure, vibrational spectra, NBO analysis, and molecular docking studies of aflatoxins and selected emerging mycotoxins against wild-type androgen receptor. Heliyon 7(7):e07544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Padash R, Rahimi-Nasrabadi M, Shokuhi Rad A, Sobhani-Nasab A, Jesionowski T, Ehrlich H (2019) A comparative computational investigation of phosgene adsorption on (XY) 12 (X= Al, B and Y= N, P) nanoclusters: DFT investigations. J Clust Sci 30:203–218

    Article  CAS  Google Scholar 

  28. Yong Y, Li C, Li X, Li T, Cui H, Lv S (2015) Ag7Au6 cluster as a potential gas sensor for CO, HCN, and NO detection. J Phys Chem C 119(13):7534–7540

    Article  CAS  Google Scholar 

  29. Wu RQ, Yang M, Lu YH, Feng YP, Huang ZG, Wu QY (2008) Silicon carbide nanotubes as potential gas sensors for CO and HCN detection. J Phys Chem C 112(41):15985–15988

    Article  CAS  Google Scholar 

  30. Mousavi H, Mortazavi Y, Khodadadi AA, Saberi MH, Alirezaei S (2021) Enormous enhancement of Pt/SnO2 sensors response and selectivity by their reduction, to CO in automotive exhaust gas pollutants including CO, NOx and C3H8. Appl Surf Sci 546:149120

    Article  CAS  Google Scholar 

  31. Mohammadi MD, Abbas F, Louis H, Mathias GE, Unimuke TO (2022) Trapping of CO, CO2, H2S, NH3, NO, NO2, and SO2 by polyoxometalate compound. Comput Theor Chem 1215:113826

    Article  CAS  Google Scholar 

  32. DoustMohammadi M, Louis H, Chukwu UG, Bhowmick S, Rasaki ME, Biskos G (2023) Gas-Phase Interaction of CO, CO2, H2S, NH3, NO, NO2, and SO2 with Zn12O12 and Zn24 Atomic Clusters. ACS Omega 8(23):20621–20633

    Article  CAS  Google Scholar 

  33. Habib IY, Tajuddin AA, Noor HA, Lim CM, Mahadi AH, Kumara NTRN (2019) Enhanced Carbon monoxide-sensing properties of Chromium-doped ZnO nanostructures. Sci Rep 9(1):9207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Frisch MJ, Trucks GW, Schlegel HB, Scuseria G, Robb MA, Cheeseman JR et al (2009) Revision D. 01. Gaussian. Inc, Wallingford

  35. Dennington RD, Keith TA, Millam JM (2008) GaussView 5.0. 8

  36. Grimme S, Ehrlich S, Goerigk L (2011) Effect of the damping function in dispersion corrected density functional theory. J Comput Chem 32(7):1456–1465

    Article  CAS  PubMed  Google Scholar 

  37. Condon-Baxendale T, Ploysongsri N, Petchmark M, Ruangpornvisuti V (2023) Adsorption, sensing and catalytic properties of the pristine C24N24 nanocage to small gas molecules: a DFT-D3 investigation. Vacuum 209:111798

    Article  CAS  Google Scholar 

  38. Allal H, Belhocine Y, Rahali S, Damous M, Ammouchi N (2020) Structural, electronic, and energetic investigations of acrolein adsorption on B36 borophene nanosheet: a dispersion-corrected DFT insight. J Mol Model 26:1–12

    Article  Google Scholar 

  39. Rad AS, Ayub K (2016) Adsorption of pyrrole on Al12N12, Al12P12, B12N12, and B12P12 fullerene-like nano-cages; a first principles study. Vacuum 131:135–141

    Article  Google Scholar 

  40. Javed M, Khan MU, Hussain R, Ahmed S, Ahamad T (2023) Deciphering the electrochemical sensing capability of novel Ga12As12 nanocluster towards chemical warfare phosgene gas: insights from DFT. RSC Adv 13(41):28885–28903

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Zhurko G, Zhurko D (2009) ChemCraft, version 1.6

  42. Hanwell MD, Curtis DE, Lonie DC, Vandermeersch T, Zurek E, Hutchison GR (2012) Avogadro: an advanced semantic chemical editor, visualization, and analysis platform. J Cheminform 4(1):17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Glendening E, Reed A, Carpenter J, Weinhold F (1998) NBO Version 3.1

  44. Lu T, Chen F (2012) Multiwfn: a multifunctional wavefunction analyzer. J Comput Chem 33(5):580–592

    Article  PubMed  Google Scholar 

  45. Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph 14(1):33–38

    Article  CAS  PubMed  Google Scholar 

  46. Unimuke TO, Louis H, Eno EA, Agwamba EC, Adeyinka AS (2022) Meta-hybrid density functional theory prediction of the reactivity, stability, and IGM of azepane, oxepane, thiepane, and halogenated cycloheptane. ACS Omega 7(16):13704–13720

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Mardiana-Idayu A, Riffat SB (2011) An experimental study on the performance of enthalpy recovery system for building applications. Energy Build 43(9):2533–2538

    Article  Google Scholar 

  48. Yanai T, Tew DP, Handy NC (2004) A new hybrid exchange–correlation functional using the Coulomb-attenuating method (CAM-B3LYP). Chem Phys Lett 393(1):51–57

    Article  CAS  Google Scholar 

  49. Chai JD, Head-Gordon M (2008) Long-range corrected hybrid density functionals with damped atom–atom dispersion corrections. Phys Chem Chem Phys 10(44):6615–6620

    Article  CAS  PubMed  Google Scholar 

  50. Louis H, Egemonye TC, Unimuke TO, Inah BE, Edet HO, Eno EA et al (2022) Detection of carbon, sulfur, and nitrogen dioxide pollutants with a 2D Ca12O12 nanostructured material. ACS Omega 7(39):34929–34943

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Nemati-Kande E, Abbasi M, Mohammadi MD (2020) DFT studies on the interactions of pristine, Al and Ga-doped boron nitride nanosheets with CH3X (X=F, Cl and Br). J Mol Struct 1199:126962

    Article  CAS  Google Scholar 

  52. Louis H, Guo L-J, Zhu S, Hussain S, He T (2019) Computational study on interactions between CO2 and (TiO2) n clusters at specific sites. Chin J Chem Phys 32(6):674–686

    Article  CAS  Google Scholar 

  53. Yao W, Guan H, Zhang K, Wang G, Wu X, Jia Z (2022) Nb-doped PtS2 monolayer for detection of C2H2 and C2H4 in on-load tap-changer of the oil-immersed transformers: a first-principles study. Chem Phys Lett 802:139755

    Article  CAS  Google Scholar 

  54. Xie X, Zhang L, Zhang W, Tayebee R, Hoseininasr A, Vatanpour HH et al (2020) Fabrication of temperature and pH sensitive decorated magnetic nanoparticles as effective biosensors for targeted delivery of acyclovir anti-cancer drug. J Mol Liq 309:113024

    Article  CAS  Google Scholar 

  55. Liu W, Qiu X, Song Y, Zhang X, Tian S, Liu L (2022) Adsorption behaviour of CF4 and COF2 gas on the GaN monolayer doped with Pt catalytic: a first-principles study. Surf Sci 719:122032

    Article  CAS  Google Scholar 

  56. Agwamba EC, Eba M-BA, Alshdoukhi IF, Shawabkeh A, Hossain I, Ikenyirimba OJ et al (2024) Molecular modeling of Si60 fullerene and Nb-doped Si60 fullerene nanomaterials for SO2, NO2 and CO2 gas sensing. Mater Sci Eng B 299:117022

    Article  CAS  Google Scholar 

  57. Louis H, Etiese D, Unimuke TO, Owen AE, Rajee AO, Gber TE et al (2022) Computational design and molecular modeling of the interaction of nicotinic acid hydrazide nickel-based complexes with H2S gas. RSC Adv 12(47):30365–30380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Chandrasekaran A, Betouras JJ (2022) Effect of disorder on density of states and conductivity in higher-order Van Hove singularities in two-dimensional bands. Phys Rev B 105:075144

    Article  CAS  Google Scholar 

  59. Kim C, Kim B, Lee SM, Jo C, Lee YH (2002) Electronic structures of capped carbon nanotubes under electric fields. Phys Rev 65(16):165418

    Article  Google Scholar 

  60. Pearson RG (1984) The transition metal-carbon monoxide bond. Inorg Chem 23(26):4675–4679

    Article  CAS  Google Scholar 

  61. Parr RG, Szentpály LV, Liu S (1999) Electrophilicity index. J Am Chem Soc 121(9):1922–1924

    Article  CAS  Google Scholar 

  62. Sundari CD, Ivansyah AL, Floweri O, Arcana IM, Iskandar F (2022) Insights into the intermolecular interactions and temperature-concentration dependence of transport in ionic liquid-based EMI–TFSI/LiTFSI electrolytes. N J Chem 46(8):3966–3977

    Article  CAS  Google Scholar 

  63. Soltani A, Raz SG, Rezaei VJ, DehnoKhalaji A, Savar M (2012) Ab initio investigation of Al- and Ga-doped single-walled boron nitride nanotubes as ammonia sensor. Appl Surf Sci 263:619–625

    Article  CAS  Google Scholar 

  64. Castillo F, Faúndez R, Tapia J, Verdugo C, Preite M, Chávez I et al (2022) Revisiting cyclophanes: experimental characterization and theoretical elucidation of the chain length influence on their structure and reactivity. New J Chem 46(14):6609–6621

    Article  CAS  Google Scholar 

  65. Undiandeye UJ, Louis H, Gber TE, Egemonye TC, Agwamba EC, Undiandeye IA et al (2022) Spectroscopic, conformational analysis, structural benchmarking, excited state dynamics, and the photovoltaic properties of Enalapril and Lisinopril. J Indian Chem Soc 99(7):100500

    Article  CAS  Google Scholar 

  66. Tayebee R, Nasr AH (2020) Studying adsorption and detoxification of sulfur mustard chemical warfare onto ZnO nanostructures. J Mol Liq 319:114357

    Article  CAS  Google Scholar 

  67. Baildya N, Ghosh NN, Chattopadhyay AP (2021) Environmentally hazardous gas sensing ability of MoS2-nanotubes: an insight from the electronic structure and transport properties. Nanoscale Adv 3(15):4528–4535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Athar M, Patnaik A (2022) Through-bond-driven through-space interactions in a fullerene C60 noncovalent dyad: an unusual strong binding between spherical and planar π electron clouds and culmination of dyadic fractals. J Phys Chem A 126(23):3629–3641

    Article  CAS  PubMed  Google Scholar 

  69. Duston TB, Pike RD, Welch DA, Nicholas AD (2022) Pyridine interaction with γ-CuI: synergy between molecular dynamics and molecular orbital approaches to molecule/surface interactions. Phys Chem Chem Phys 24(13):7950–7960

    Article  CAS  PubMed  Google Scholar 

  70. Zhong S, He X, Liu S, Wang B, Lu T, Rong C et al (2022) Toward density-based and simultaneous description of chemical bonding and noncovalent interactions with Pauli energy. J Phys Chem A 126(15):2437–2444

    Article  CAS  PubMed  Google Scholar 

  71. Opoku F, Aniagyei A, Akoto O, Kwaansa-Ansah EE, Asare-Donkor NK, Adimado AA (2022) Effect of van der Waals stacking in CdS monolayer on enhancing the hydrogen production efficiency of SiH monolayer. Mater Adv 3(11):4629–4640

    Article  CAS  Google Scholar 

  72. Inah BE, Louis H, Benjamin I, Unimuke TO, Adeyinka AS (2022) Computational study on the interactions of functionalized C24NC (NC=C, –OH, –NH2, –COOH, and B) with chloroethylphenylbutanoic acid. Can J Chem 101(1):11–24

    Article  Google Scholar 

  73. Louis H, Ita BI, Nzeata NI (2019) Approximate solution of the Schrödinger equation with Manning-Rosen plus Hellmann potential and its thermodynamic properties using the proper quantization rule. Eur Phys J Plus 134(7):315

    Article  Google Scholar 

  74. Fu M, Tayebee R, Saberi S, Nourbakhsh N, Esmaeili E, Maleki B et al (2021) Studying adsorption and cellular toxicity of boron nitride nanostructure versus melphalan anti-ovarian cancer drug. Curr Mol Med 21(8):698–705

    Article  CAS  PubMed  Google Scholar 

  75. Xu P, Cui L, Gao S, Na N, Ebadi AG (2022) A theoretical study on sensing properties of in-doped ZnO nanosheet toward acetylene. Mol Phys 120(5):e2002957

    Article  Google Scholar 

  76. Qureshi S, Asif M, Sajid H, Gilani MA, Ayub K, Arshad M et al (2022) Electrochemical sensing of heptazine graphitic C3N4 quantum dot for chemical warfare agents; a quantum chemical approach. Mater Sci Semicond Process 148:106753

    Article  CAS  Google Scholar 

  77. DoustMohammadi M, Abdullah HY (2020) Adsorption of 1-chloro-1,2,2,2-tetrafluoroethane on pristine, Al, Ga-doped boron nitride nanotubes: a study involving PBC-DFT, NBO analysis, and QTAIM. Can J Chem 99(1):51–62

    Article  Google Scholar 

  78. DoustMohammadi M, Abdullah HY (2020) The adsorption of chlorofluoromethane on pristine, and Al- and Ga-doped boron nitride nanosheets: a DFT, NBO, and QTAIM study. J Mol Model 26(10):287

    Article  CAS  Google Scholar 

  79. Qureshi S, Asif M, Sajid H, Gilani MA, Ayub K, Mahmood T (2022) First-principles study for electrochemical sensing of neurotoxin hydrazine derivatives via hg-C3N4 quantum dot. Surf Interfaces 30:101913

    Article  CAS  Google Scholar 

  80. Fan L, Cheng Z, Du J, DelirKheirollahiNezhad P (2022) A computational study on the Al-doped CuO nanocluster for CO gas sensor applications. Monatshefte für Chemie-Chemical Monthly. 153(4):321–329

    Article  CAS  Google Scholar 

  81. Eno EA, Patrick-Inezi FA, Louis H, Gber TE, Unimuke TO, Agwamba EC et al (2022) Theoretical investigation and antineoplastic potential of Zn (II) and Pd (II) complexes of 6-methylpyridine-2-carbaldehyde-N (4)-ethylthiosemicarbazone. Chem Phys Impact 5:100094

    Article  Google Scholar 

  82. El-Mageed HRA, Ibrahim MAA (2021) Elucidating the adsorption and detection of amphetamine drug by pure and doped Al12N12, and Al12P12nano-cages, a DFT study. J Mol Liq 326:115297

    Article  CAS  Google Scholar 

  83. Nwagu AD, Louis H, Edet HO, Benjamin I, Osabor VN, Adeyinka AS (2023) Computational study on nickel doped encapsulated Mg, K, Ca on pristine C24 nanocage for gas sensing applications. Mater Sci Semicond Process 157:107334

    Article  CAS  Google Scholar 

  84. Padash R, Esfahani MR, Rad AS (2021) The computational quantum mechanical study of sulfamide drug adsorption onto X12Y12 fullerene-like nanocages: detailed DFT and QTAIM investigations. J Biomol Struct Dyn 39(15):5427–5437

    Article  CAS  PubMed  Google Scholar 

  85. Li Y, Xu Y, Li X (2022) The sensing mechanism of HCHO gas sensor based on transition metal doped graphene: insights from DFT study. Sens Actuators A 338:113460

    Article  CAS  Google Scholar 

  86. Amin MR, Strobel P, Schnick W, Schmidt PJ, Moewes A (2022) Energy levels of Eu2+ states in the next-generation LED-phosphor SrLi2Al2O2N2:Eu2+. J Mater Chem C 10(26):9740–9747

    Article  CAS  Google Scholar 

  87. Mary YS, Varghese HT, Panicker CY, Girisha M, Sagar BK, Yathirajan HS et al (2015) Vibrational spectra, HOMO, LUMO, NBO, MEP analysis and molecular docking study of 2, 2-diphenyl-4-(piperidin-1-yl) butanamide. Spectrochim Acta Part A Mol Biomol Spectrosc 150:543–556

    Article  CAS  Google Scholar 

  88. Sajid H, Mahmood T, Mahmood MH, Ayub K (2019) Comparative investigation of sensor application of polypyrrole for gaseous analytes. J Phys Org Chem 32(8):e3960

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the Researchers Supporting Project number (RSP2024R6), King Saud University, Riyadh, Saudi Arabia

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed efficiently and dedicatedly in this manuscript, and their credit to this manuscript is summarized as: MJ contributed to the writing—original draft, investigation, validation, visualization, formal analysis, acquisition, and interpretation of data. MUK had substantial contribution to the research design, conceptualization, methodology, project administration, investigation, data curation, supervision, review & editing, and approval of the submitted version of the manuscript. RH had substantial contributions to the formal analysis, visualization, data curation, validation, writing—review & editing. FA had substantial contribution to the formal analysis, interpretation of data, validation, software, writing—review & editing. TA had substantial contributions to the funding, acquisition, software, data curation, resources, investigation, writing—review & editing.

Corresponding authors

Correspondence to Muhammad Usman Khan or Riaz Hussain.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

Not applicable.

Additional information

Handling Editor: Scott Beckman.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2358 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Javed, M., Khan, M.U., Hussain, R. et al. Deciphering the detection and electrochemical sensing of the environmental pollutant CO gas with Ga12As12 and Al12As12 nanostructured materials: an insight from first-principle calculations. J Mater Sci 59, 4548–4570 (2024). https://doi.org/10.1007/s10853-024-09494-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-024-09494-8

Navigation