Skip to main content
Log in

Mixture toxicity of metal oxide nanoparticles and silver ions on Daphnia magna

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Because of the ubiquitous production and use of silver nanoparticles (AgNPs), silver ions (Ag+) released from AgNPs can not only singly pose significant toxicity to aquatic ecosystems but can also mix with other coexisting metal oxide nanoparticles (MONPs), such as ZnO NPs and TiO2 NPs to provoke combined toxicity. However, information regarding the combined impact of MONPs on aquatic organisms is limited. In this study, the impact of exposure to mixtures composed of Ag+ and two different MONPs (i.e., ZnO NPs and TiO2 NPs) on Daphnia magna was examined. The toxicity of the mixtures containing Ag+ concentrations exceeding 0.5–1.5 μg/L and two different MONPs (Ag+-two different MONP mixture) was higher than that of the intrinsic toxicity of each component, indicating a synergistic effect. However, the concentrations of the two different MONPs did not have a strong relationship with the occurrence of the synergistic or antagonistic effect between components in the mixtures. Moreover, the combined risk of the Ag+-two different MONP mixture estimated based on a whole-value risk for the mixture (VaR:192–198) was up to eight times higher than that estimated using a component-based value risk (VaR:736–1623) considering the predicted environmental concentration of Ag+ (20 μg/L). These results imply that the component-based approach could not determine the synergistic effect between the components in the Ag+-two different MONP mixtures. Additionally, when mixed with two different MONPs, Ag+ as a major toxicant induced synergistic effects among the components in the mixture. Therefore, to evaluate the interactive effects and for environmental risk assessment of mixtures, a whole-mixture approach is recommended rather than a component-based approach.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig.ure 3

Similar content being viewed by others

Abbreviations

AgNPs:

silver nanoparticles

Ag+ :

silver ion

ECx :

effective concentration values

ECx mix :

total effective concentration estimated from binary mixtures

HQs:

hazard quotients

MONPs:

metal oxide nanoparticles

OECD:

Organization for Econocmic Co-operation and Development

PEC:

predicted environmental concentration

PNEC:

predicted no effect concentration

STU:

the sum of toxic unit

References

  • Asghari S, Johari SA, Lee JH, Kim YS, Jeon YB, Choi HJ, Moon MC, Yu IJ (2012) Toxicity of various silver nanoparticles compared to silver ions in Daphnia magna. J Nanobiotechnol 10(1):14

    Article  CAS  Google Scholar 

  • Atha DH, Wang H, Petersen EJ, Cleveland D, Holbrook RD, Jaruga P, Dizdaroglu M, Xing B, Nelson BC (2012) Copper oxide nanoparticle mediated DNA damage in terrestrial plant models. Environ Sci Technol 46(3):1819–1827

    Article  CAS  Google Scholar 

  • Aznar R, Barahona F, Geiss O, Ponti J, José Luis T, Barrero-Moreno J (2017) Quantification and size characterization of silver nanoparticles in environmental aqueous samples and consumer products by single particle-ICPMS. Talanta 175:200–208

    Article  CAS  Google Scholar 

  • Beer C, Foldbjerg R, Hayashi Y, Sutherland DS, Autrup H (2012) Toxicity of silver nanoparticles—nanoparticle or silver ion? Toxicol Lett 208(3):286–292

    Article  CAS  Google Scholar 

  • Boenigk J, Beisser D, Zimmermann S, Bock C, Jakobi J, Grabner D, Großmann L, Rahmann S, Barcikowski S, Sures B (2014) Effects of silver nitrate and silver nanoparticles on a planktonic community: general trends after short-term exposure. PLoS One 9(4):e95340

    Article  Google Scholar 

  • Bondarenko O, Juganson K, Ivask A, Kasemets K, Mortimer M, Kahru A (2013) Toxicity of Ag, CuO and ZnO nanoparticles to selected environmentally relevant test organisms and mammalian cells in vitro: a critical review. Arch Toxicol 87(7):1181–1200

    Article  CAS  Google Scholar 

  • Bondarenko O, Heinlaan M, Sihtmäe M, lvask A, Kurvet I, Joonas E, Jemec A, Mannerström M, Heinonen T, Rekulapelly R, Singh S, Zou J, Pyykkö I, Drobne D, Kahru A (2016) Multilaboratory evaluation of 15 bioassays for (eco)toxicity screening and hazard ranking of engineered nanomaterials: FP7 project NANOVALID. Nanotoxicol. 10:1229–1242

    Article  CAS  Google Scholar 

  • Bundschuh M, Filser J, Lüderwald S, McKee MS, Metreveli G, Schaumann GE, Schulz R, Wagner S (2018) Nanoparticles in the environment: where do we come from, where do we go to? Environ Sci Eur 30:6

    Article  Google Scholar 

  • Bunke D, Groß R, Kalberlah F, Oltmanns J, Schwarz M, Reihlen A, Reineke N (2014) Mixtures in the environment – development of assessment strategies for the regulation of chemicals under REACH. The Federal Environment Agency, Dessau-Roßlau

    Google Scholar 

  • Das P, Xenopoulos MA, Williams CJ, Hoque ME, Metcalfe CD (2012) Effects of silver nanoparticles on bacterial activity in natural waters. Environ Toxicol Chem 31(1):122–130

    Article  CAS  Google Scholar 

  • European Commission (EC) (1996) Technical guidance document (TGD) in support of commission directive 93/67/EEC on risk assessment for new notified substances and commission regulation (EC) no 1488/94 on risk assessment for existing substances. Part II: environmental risk assessment. European Commission, Luxembourg

    Google Scholar 

  • Federici G, Shaw BJ, Handy RD (2007) Toxicity of titanium dioxide nanoparticles to rainbow trout (Oncorhynchus mykiss): gill injury, oxidative stress, and other physiological effects. Aquat Toxicol 84(4):415–430

    Article  CAS  Google Scholar 

  • Fleischauer PD, Alan Kan HK, Shepherd JR (1972) Quantum yields of sliver ion reduction on titanium dioxide and zinc oxide single crystals. J Am Chem Soc 94(1):283–285

    Article  CAS  Google Scholar 

  • Franklin NM, Rogers NJ, Apte SC, Batley GE, Gadd GE, Casey PS (2007) Comparative toxicity of nanoparticulate ZnO, bulk ZnO, and ZnCl2 to a freshwater microalga (Pseudokirchneriella subcapitata): the importance of particle solubility. Environ Sci Technol 41:8484–8490

    Article  CAS  Google Scholar 

  • Hachicho N, Hoffmann P, Ahlert K, Heipieper HJ (2014) Effect of silver nanoparticles and silver ions on growth and adaptive response mechanisms of Pseudomonas putida mt-2. FEMS Microbiol Lett 355(1):71–77

    Article  CAS  Google Scholar 

  • Hartmann NB, Baun A (2010) The nano cocktail: ecotoxicological effects of engineered nanoparticles in chemical mixtures. Integr Environ Aseess Manag 6:311–314

    Article  Google Scholar 

  • Hartmann NB, Legros S, Von der Krammer F, Hofmann T, Baun A (2012) The potential of TiO2 nanoparticles as carriers for cadmium uptake in Lumbriculus variegatus and Daphnia magna. Aquat Toxicol 118-119(1–8):1–8

    Article  CAS  Google Scholar 

  • Heinlaan M, Ivask A, Blinova I, Dubourguier H-C, Kahru A (2008) Toxicity of nanosized and vulk ZnO, CuO and TiO2 to bacteria Vibrio fischeri and crustaceans Daphnia magna and Thamnocephalus platyurus. Chemosphere. 71(7):1308–1316

    Article  CAS  Google Scholar 

  • Heys KA, Shore RF, Pereira MG, Jones KC, Martin FL (2016) Risk assessment of environmental mixture effects. RSC Adv 6(53):47844–47857

    Article  CAS  Google Scholar 

  • Jonczyk E, Gilron G (2005) Acute and chronic toxicity testing with Daphnia sp. In: Blaise C, Férard J-F (eds) Small-scale freshwater toxicity investigations volume 1 - toxicity test methods. Springer, Dordrecht, pp 337–393

  • Jung Y, Metreveli G, Park C-B, Baik S, Schaumann GE (2018) Implications of pony lake fulvic acid for the aggregation and dissolution of oppositely charged surface-coated silver nanoparticles and their ecotoxicological effects on Daphnia magna. Environ Sci Technol 52:436–445

    Article  CAS  Google Scholar 

  • Khan FR, Keller W, Yan ND, Welsh PG, Wood CM, McGeer JC (2012) Application of biotic ligand and toxic unit modeling approaches to predict improvements in zooplankton species richness in smelter-damaged lakes near Sudbury, Ontario. Environ Sci Technol 46(3):1641–1649

    Article  CAS  Google Scholar 

  • Kienzler A, Berggren E, Bessems J, Bopp S, Linden S, Worth A (2014) Joint Research Centre (JRC) science and policy reports: assessment of mixtures – review of regulatory requirements and guidance. European Commission, European Union, Luxembourg

    Google Scholar 

  • Lecoanet HF, Bottero JY, Wiesner MR (2004) Laboratory assessment of the mobility of nanomaterials in porous media. Environ Sci Technol 38(19):5164–5169

    Article  CAS  Google Scholar 

  • Liu Y, Baas J, Peijnenburg WJGM, Vijver MG (2016) Evaluating the combined toxicity of Cu and ZnO nanoparticles: utility of the concept of additivity and a nested experimental design. Environ Sci Technol 50(10):5328–5337

    Article  CAS  Google Scholar 

  • Lopes S, Pinheiro C, Soares AMVM, Loureiro S (2016) Joint toxicity prediction of nanoparticles and ionic counterparts: simulating toxicity under a fate scenario. J Hazard Mater 320(Supplement C):1–9

    Article  CAS  Google Scholar 

  • Luo M, Huang Y, Zhu M, Tang Y-N, Ren T, Ren J, Wang H, Li F (2018) Properties of different natural organic matter influence the adsorption and aggregation behavior of TiO2 nanoparticles. J Saudi Chem Soc 22(2):146–154

    Article  CAS  Google Scholar 

  • Mark U, Solbé J (1998) Analysis of the ecetoc aquatic toxicity (EAT) database V — the relevance of Daphnia magna as a representative test species. Chemosphere. 36(1):155–166

    Article  CAS  Google Scholar 

  • Maurer-Jones MA, Gunsolus IL, Murphy CJ, Haynes CL (2013a) Toxicity of engineered nanoparticles in the environment. Anal Chem 85(6):3036–3049

    Article  CAS  Google Scholar 

  • Maurer-Jones MA, Mousavi MPS, Chen LD, Buhlmann P, Haynes CL (2013b) Characterization of silver ion dissolution from silver nanoparticles using fluorous-phase ion-selective electrodes and assessment of resultant toxicity to Shewanella oneidensis. Chem Sci 4(6):2564–2572

    Article  CAS  Google Scholar 

  • Molins-Delgado D, Gago-Ferrero P, Díaz-Cruz MS, Barceló D (2016) Single and joint ecotoxicity data estimation of organic UV filters and nanomaterials toward selected aquatic organisms. Urban groundwater risk assessment. Environ Res 145:126–134

    Article  CAS  Google Scholar 

  • Naasz S, Altenburger R, Kühnel D (2018) Environmental mixtures of nanomaterials and chemicals: the Trojan-horse phenomenon and its relevance for ecotoxicity. Sci Total Environ 635:1170–1181

    Article  CAS  Google Scholar 

  • Newton KM, Puppala HL, Kitchens C, Colvin VL, Klaine SJ (2013) Silver nanoparticle toxicity to Daphnia mgana is a function of dissolved silver concentration. Environ Toxicol Chem 32(10):2356–2364

    Article  CAS  Google Scholar 

  • Organization for Economic Co-operation and Development (OECD), 2004. OECD guideline for testing of chemicals. Guideline 202: Daphnia sp., Acute Immobilisation Test, adopted 13 April 2004

  • Park C-B, Jang J, Kim S, Kim YJ (2017) Single- and mixture toxicity of three organic UV-filters, ethylhexyl methoxycinnamate, octocrylene, and avobenzone on Daphnia magna. Ecotoxicol Environ Saf 137:57–63

    Article  CAS  Google Scholar 

  • Schmidt J, Vogelsberger W (2006) Dissolution kinetics of titanium dioxide nanoparticles: the observation of an unusual kinetic size effect. J Phys Chem B 110(9):3955–3963

    Article  CAS  Google Scholar 

  • Sun TY, Gottschalk F, Hungerbuhler K, Nowack B (2014) Comprehensive probabilistic modelling of environmental emissions of engineered nanomaterials. Environ Pollut 185:69–76

    Article  CAS  Google Scholar 

  • Teklu BM, Hailu A, Wiegant DA, Scholten BS, Van den Brink PJ (2016) Impacts of nutrients and pesticides from small- and large-scale agriculture on the water quality of Lake Ziway, Ethiopia. Environ Sci Pollut Res 25(14):13207–13216

    Article  Google Scholar 

  • Wang Z, Chen J, Li X, Shao J, Peijnenburg WJ (2012) Aquatic toxicity of nanosilver colloids to different trophic organisms: contributions of particles and free silver ion. Environ Toxicol Chem 31(10):2408–2413

    Article  CAS  Google Scholar 

  • Warne MJ, van Dam R (2008) NOEC and LOEC data should no longer be generated or used. Australasian J Ecotoxicol 14:1–5

    Google Scholar 

  • Yang W-W, Miao A-J, Yang L-J (2012) Cd2+toxicity to a green alga Chlamydomonas reinhardtii as influenced by its adsorption on TiO2 engineered nanoparticles. PLoS One 7(3):e32300

    Article  CAS  Google Scholar 

  • Zhang X, Zhou Y, Xu T, Zheng K, Zhang R, Peng Z, Zhang H (2018) Toxic effects of CuO, ZnO and TiO2 nanoparticles in environmental concentration on the nitrogen removal, microbial activity and comminity of Anammox process. Chem Eng J 332:42–48

    Article  CAS  Google Scholar 

  • Zhu X, Zhu L, Chen Y, Tian S (2009) Acute toxicities of six manufactured nanomaterial suspensions to Daphnia magna. J Nanopart Res 11:67–75

    Article  CAS  Google Scholar 

Download references

Funding

This research was supported by the National Research Council of Science & Technology (NST) grant by the South Korean government (MSIP) (No. CAP-17-01-KIST Europe) and Project 11911.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to this study. The final version of the manuscript has been approved by all authors.

Corresponding author

Correspondence to Young Jun Kim.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 879 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, CB., Jung, JW., Baek, M. et al. Mixture toxicity of metal oxide nanoparticles and silver ions on Daphnia magna. J Nanopart Res 21, 166 (2019). https://doi.org/10.1007/s11051-019-4606-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-019-4606-2

Keywords

Navigation