Skip to main content
Log in

One-step synthesis, toxicity assessment and degradation in tumoral pH environment of SiO2@Ag core/shell nanoparticles

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

The unique physicochemical properties of SiO2@Ag core/shell nanoparticles make them a promising tool in nanomedicine, where they are used as nanocarriers for several biomedical applications, including (but not restricted to) cancer treatment. However, a comprehensive estimation of their potential toxicity, as well as their degradation in the tumor microenvironment, has not been extensively addressed yet. We investigated in vitro the viability, the reactive oxygen species (ROS) production, the DNA damage level, and the nanoparticle uptake on HeLa cells, used as model cancer cells. In addition, we studied the NPs degradation profile at pH 6.5, to mimic the tumor microenvironment, and at the neutral and physiological (pH 7–7.4). Our experiments demonstrate that the silver shell dissolution is promoted under acidic conditions, which could be related to cell death induction. Our evidences demonstrate that SiO2@Ag nanoparticles possess the ability of combining an effective cancer cell treatment (through local silver ions release) together with a possible controlled release of bioactive compounds encapsulated in the silica as future application.

Action mechanism of SiO2@Ag core/shell nanoparticles in tumor environment pH

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Amendola V, Bakr OM, Stellacci F (2010) A study of the surface plasmon resonance of silver nanoparticles by the discrete dipole approximation method: effect of shape. Size, Structure, and Assembly, Plasmonics 2010(5):85–97

    Article  Google Scholar 

  • Banerjeea A, Qia J, Gogoic R, Wonga J, Mitragotri S (2016) Role of nanoparticle size, shape and surface chemistry in oral drug delivery. J of Controlled Rel 238(28):176–185

    Article  Google Scholar 

  • Cassagneau T, Caruso F (2002) Contiguous silver nanoparticle coatings on dielectric spheres. Adv Mater 14:732

    Article  Google Scholar 

  • Chang TH, Chang YC, Ko FH, Liu FK (2013) Electroless plating growth au-ag Core-Shell nanoparticles for surface enhanced Raman scattering. Int J Electrochem Sci 8:6889–6899

    Google Scholar 

  • Chen G, Roy I, Yang C, Prasad PN (2016) Nanochemistry and nanomedicine for nanoparticle-based diagnostics and therapy. Chem Rev 116(5):2826–2885

    Article  Google Scholar 

  • Choma J, Dziuran A, Jamioła D, Nyga P, Jaroniec M (2011) Preparation and properties of silica–gold core–shell particles. Colloids Surf A Physicochem Eng Asp 373:167–171

    Article  Google Scholar 

  • De Matteis V, Cascione MF, Brunetti V, Toma CC, Rinaldi R (2016) Toxicity assessment of anatase and rutile titanium dioxide nanoparticles: the role of degradation in different pH conditions and light exposure. Toxicol in Vitro 37:201–210. doi:10.1016/j.tiv.2016.09.010

    Article  Google Scholar 

  • Dokoutchaev A, James JT, Koene SC, Pathak S, Prakash GKS, Thompson ME (1999) Colloidal metal deposition onto functionalized polystyrene microspheres. Chem Mater 11(9):2389–2399

    Article  Google Scholar 

  • Dong A, Wang Y, Tang Y, Ren N, Yang W, Gao Z (2002) Fabrication of compact silver nanoshells on polystyrene spheres through electrostatic attraction. Chem Commun 4:350–351

  • Elbaz NM, Ziko L, Siam R, Mamdouh W (2016) Core-Shell silver/polymeric nanoparticles-based combinatorial therapy against breast cancer In-vitro. Scientific Reports 6:30729. doi:10.1038/srep30729

    Article  Google Scholar 

  • Fen LB, Chen S, Kyo Y, Herpoldt KL, Terrill NJ, Dunlop IE, McPhail DS, Shaffer MS, Schwander S, Gow A, Zhang JJ, Chung KF, Tetley TD, Porter AE, Ryan MP (2013) The stability of silver nanoparticles in a model of pulmonary surfactant. Environ Sci Technol 47(19):11232–11240

    Article  Google Scholar 

  • Fenwick O, Coutiño-Gonzalez E, Grandjean D, Baekelant W, Richard F, Bonacchi S, De Vos D, Lievens P, Roeffaers M, Hofkens J, Samorì P (2016) Nat Mater 15:1017–1022

    Article  Google Scholar 

  • Ganta S, Devalapally H, Shahiwala A, Amiji M (2008) A review of stimuli-responsive nanocarriers for drug and gene delivery. J Control Release 126:187–204

    Article  Google Scholar 

  • Gerweck LE, Seetharaman K (1996) Cellular pH gradient in tumor versus normal tissue: potential exploitation for the treatment of cancer. Cancer Res 56(1194–1):198

    Google Scholar 

  • Guo D, Zhu L, Huang Z, Zhou H, Ge Y, Ma W, Wu J, Zhang X, Zhou X, Zhang Y, Zhao Y, Gu N (2013) Anti-leukemia activity of PVP-coated silver nanoparticles via generation of reactive oxygen species and release of silver ions. Biomaterials 34:7884–7894

    Article  Google Scholar 

  • Gurunathan S, Lee KJ, Kalishwaralal K, Sheikpranbabu S, Vaidyanathan R, Eom SH (2009) Antiangiogenic properties of silver nanoparticles. Biomaterials 30:6341–6350

    Article  Google Scholar 

  • Huang H, Lai W, Cui M, Liang L, Lin Y, Fang Q, Liu Y, Xie L (2016) An evaluation of blood compatibility of silver nanoparticles. Scientific Reports 6:25518. doi:10.1038/srep25518

    Article  Google Scholar 

  • Jackson J, Halas N (2001) Silver Nanoshells: variations in morphologies and optical properties, J. Phys Chem B 105:2743–2746

    Article  Google Scholar 

  • Jiang ZJ, Liu CY (2003) Seed-mediated growth technique for the Preparation of a silver Nanoshell on a silica sphere. J Phys Chem B 107:12411–12415

    Article  Google Scholar 

  • Kanchana S, Santhanalakshm J (2017) Evaluation of in vitro anticancer potentials of pvp stabilized silver, copper and nickel nanoparticles, international journal of chemical and pharmaceutical analysis, 4, No 1

  • Kneipp K, Dasari RR, Wang Y (1994) Near-infrared surface-enhanced Raman scattering (NIR SERS) on colloidal silver and gold, Appl. Spectroscopy 48:951–955

    Article  Google Scholar 

  • Koo OM, Rubinstein I, Onyuksel H (2005) Role of nanotechnology in targeted drug delivery and imaging: a concise review. Nanomedicine: Nanotechnology, Biology and Medicine 1(3):193–212

  • Liu T, Li D, Yang D, Jiang M (2011) An improved seed-mediated growth method to coat complete silver shells onto silica spheres for surface-enhanced Raman scattering. Colloids and Surfaces A 387(1–3):17–22

    Google Scholar 

  • Malvindi MA, Brunetti V, Vecchio G, Galeone A, Cingolani R, Pompa PP (2012) Nano 4:486–495

    Google Scholar 

  • Nel AE, Mädler L, Velegol D, Xia T, Hoek EMV, Somasundaran P, Klaessig F, Castranova V, Thompson M (2009) Understanding biophysicochemical interactions at the nano-bio interface. Nat Mat 8:543–557

    Article  Google Scholar 

  • Nguyena KC, Richardsa L, Massarsky A, Moonb TW, Tayabalia AF (2016) Toxicological evaluation of representative silver nanoparticles in macrophages and epithelial cells. Tox in vitro 33:163–173

    Article  Google Scholar 

  • Oldenburg S, Averitt R, Westcott S, Halas N (1998) Nanoengineering of optical resonances. Chem Phys Lett 288:243–247

    Article  Google Scholar 

  • Pol VG, Srivastava D, Palchik O, Palchik V, Slifkin M, Weiss A, Gedanken A (2002) A Sonochemical deposition of silver nanoparticles on silica spheres. Langmuir 18:3352–3357

    Article  Google Scholar 

  • Reidy B, Haase A, Luch A, Dawson KA, Lynch I (2013) Mechanisms of silver nanoparticle release, transformation and toxicity: a critical review of current knowledge and recommendations for future studies and applications. Materials 6:2295–2350

    Article  Google Scholar 

  • Rieffel J, Chitgupi U, Lovell JF (2015) Recent advances in higher-order, multimodal, biomedical imaging agents. Small 11(35):4445–4461

    Article  Google Scholar 

  • Rodrigues RO, Bañobre-López M, Gallo J et al (2016) Haemocompatibility of iron oxide nanoparticles synthesized for theranostic applications: a high-sensitivity microfluidic tool. J Nanopart Res 18:194. doi:10.1007/s11051-016-3498-7

    Article  Google Scholar 

  • Schueler PA, Ives JT, DeLaCroix F, Lacy WB, Becker PA, Li J, Caldwell KD, Drake B, Harris JM (1993) Physical structure, optical resonance, and surface-enhanced Raman scattering of Silver-Island films on suspended polymer latex particles. Anal Chem 65:3177–3186

    Article  Google Scholar 

  • Sharma VK, Siskova KM, Zboril R, Gardea-Torresdey JL (2014) Organic-coated silver nanoparticles in biological and environmental conditions: fate, stability and toxicity. Adv in Colloid and Interface Sci 204:15–34

    Article  Google Scholar 

  • Stöber W, Fink A, Bohn E (1968) Controlled growth of monodisperse silica spheres in the micron size range. J Colloid Interface Sci 26:62

    Article  Google Scholar 

  • Tejamaya M, Romer I, Merrifield RC, Lead JR (2012) Stability of citrate PVP, PVP, and PEG coated silver nanoparticles in ecotoxicology media. Environ Sci Technol 46:7011–7017

    Article  Google Scholar 

  • Tibbitta MW, Rodell CB, Burdickb JA, Anseth KS (2015) Progress in material design for biomedical applications. PNAS 112(47):14444–14451

    Article  Google Scholar 

  • Van der Zande M, Undas AK, Kramer E, Monopoli MP, Peters RJ, Garry D, Antunes Fernandes EC, Hendriksen PJ, Marvin HJP, Peijnenburg AA, Bouwmeester H (2016) Different responses of Caco-2 and MCF-7 cells to silver nanoparticles are based on highly similar mechanisms of action. Nanotoxicology 10:1431–1441

    Article  Google Scholar 

  • Wei S, Wang Q, Zhu J, Sun L, Line H, Guo Z (2011) Multifunctional composite core–shell nanoparticles. Nano 3:4474–4502. doi:10.1039/C1NR11000D

    Google Scholar 

  • Westcott SL, Oldenburg SJ, Lee TR, Halas NJ (1999) Construction of simple gold nanoparticle aggregates with controlled Plasmon-Plasmon interactions. Langmuir 16:6921

  • Wildt BE, Celedon A, Maurer EI, Casey BJ, Nagy AM, Hussain SM, Goering PL (2015) Intracellular accumulation and dissolution of silver nanoparticles in L-929 fibroblast cells using live cell time-lapse microscopy. Nanotoxicology. doi:10.3109/17435390.2015.1113321

    Google Scholar 

  • Yang JK, Kang H, Lee H, Jo A, Jeong S, Jeon SJ, Kim HI, Lee HY, Jeong DH, Kim JH, Lee YS (2014) Single-step and rapid growth of silver Nanoshells as SERS-active nanostructures for label-free detection of pesticides. ACS Appl Mater Interf 6:12541–12549

    Article  Google Scholar 

  • Zhan H, Zhou X, Cao Y, Jagtiani T, Chang TL, Liang JF (2017) Anti-cancer activity of camptothecin nanocrystals decorated by silver nanoparticles. J Mater Chem B. doi:10.1039/c7tb00134g

    Google Scholar 

  • Zhou N, Yuan M, Gao Y, Li D, Yang D (2016) Silver Nanoshell Plasmonically controlled emission of semiconductor quantum dots in the strong coupling regime. ACS Nano 10(4):4154–4163

    Article  Google Scholar 

  • Zolghadri S, Saboury AA, Golestani A, Divsalar A, Rezaei-Zarchi S, Moosavi-Movahedi AA (2009) Interaction between silver nanoparticle and bovine hemoglobin at different temperatures. J Nanopart Res 11:1751–1758

    Article  Google Scholar 

  • Zsigmondy R (1927) Kolloidchemie I and II. Spamer, Leipzig

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valeria De Matteis.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

ESM 1

(DOCX 1334 kb).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

De Matteis, V., Rizzello, L., Di Bello, M.P. et al. One-step synthesis, toxicity assessment and degradation in tumoral pH environment of SiO2@Ag core/shell nanoparticles. J Nanopart Res 19, 196 (2017). https://doi.org/10.1007/s11051-017-3870-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-017-3870-2

Keywords

Navigation