Skip to main content
Log in

Haemocompatibility of iron oxide nanoparticles synthesized for theranostic applications: a high-sensitivity microfluidic tool

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

The poor heating efficiency of the most reported magnetic nanoparticles (MNPs), allied to the lack of comprehensive biocompatibility and haemodynamic studies, hampers the spread of multifunctional nanoparticles as the next generation of therapeutic bio-agents in medicine. The present work reports the synthesis and characterization, with special focus on biological/toxicological compatibility, of superparamagnetic nanoparticles with diameter around 18 nm, suitable for theranostic applications (i.e. simultaneous diagnosis and therapy of cancer). Envisioning more insights into the complex nanoparticle-red blood cells (RBCs) membrane interaction, the deformability of the human RBCs in contact with magnetic nanoparticles (MNPs) was assessed for the first time with a microfluidic extensional approach, and used as an indicator of haematological disorders in comparison with a conventional haematological test, i.e. the haemolysis analysis. Microfluidic results highlight the potential of this microfluidic tool over traditional haemolysis analysis, by detecting small increments in the rigidity of the blood cells, when traditional haemotoxicology analysis showed no significant alteration (haemolysis rates lower than 2 %). The detected rigidity has been predicted to be due to the wrapping of small MNPs by the bilayer membrane of the RBCs, which is directly related to MNPs size, shape and composition. The proposed microfluidic tool adds a new dimension into the field of nanomedicine, allowing to be applied as a high-sensitivity technique capable of bringing a better understanding of the biological impact of nanoparticles developed for clinical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abkarian M, Faivre M, Horton R, Smistrup K, Best-Popescu CA, Stone HA (2008) Cellular-scale hydrodynamics. Biomed Mater 3:034011

    Article  Google Scholar 

  • Aphesteguy JC, Kurlyandskaya GV, de Celis JP, Safronov AP, Schegoleva NN (2015) Magnetite nanoparticles prepared by co-precipitation method in different conditions. Mater Chem Phys 161:243–249

    Article  Google Scholar 

  • Bañobre-López M, Teijeiro A, Rivas J (2013) Magnetic nanoparticle-based hyperthermia for cancer treatment. Rep Prac Oncol Radiother 18:397–400

    Article  Google Scholar 

  • Barick KC, Singh S, Bahadur D, Lawande MA, Patkar DP, Hassan PA (2014) Carboxyl decorated Fe3O4 nanoparticles for MRI diagnosis and localized hyperthermia. J Colloid Interface Sci 418:120–125

    Article  Google Scholar 

  • Baumgartner J, Bertinetti L, Widdrat M, Hirt AM, Faivre D (2013) Formation of magnetite nanoparticles at low temperature: from superparamagnetic to stable single domain particles. PLoS One 8:e57070

    Article  Google Scholar 

  • Curtis EM, Bahrami AH, Weikl TR, Hall CK (2015) Modeling nanoparticle wrapping or translocation in bilayer membranes. Nanoscale 7:14505–14514

    Article  Google Scholar 

  • De Haas-Kock DF, Buijen J, Pijls-Johannesma M, Lutgers L, Lammering G, van Mastrigt GA, De Ruysscher DK, Lambin P, van der Zee J (2009) Concomitant hyperthermia and radiation therapy for treating locally advanced rectal cancer. Cochrane Database Syst Rev 3:CD006269

    Google Scholar 

  • Deatsch AE, Evans BA (2014) Heating efficiency in magnetic nanoparticle hyperthermia. J Magn Magn Mater 354:163–172

    Article  Google Scholar 

  • Faustino V, Pinho D, Yaginuma T, Calhelha R, Ferreira IFR, Lima R (2014) Extensional flow-based microfluidic device: deformability assessment of red blood cells in contact with tumor cells. BioChip J 8:42–47

    Article  Google Scholar 

  • Gallo J, Long NJ, Aboagye EO (2013) Magnetic nanoparticles as contrast agents in the diagnosis and treatment of cancer. Chem Soc Rev 42:7816–7833

    Article  Google Scholar 

  • Gallo J, Alam IS, Lavdas I, Wylezinska-Arridge M, Aboagye EO, Long NJ (2014) RGD-targeted MnO nanoparticles as T1 contrast agents for cancer imaging—the effect of PEG length in vivo. J Mater Chem B 2:868–876

    Article  Google Scholar 

  • Gossett DR et al (2012) Hydrodynamic stretching of single cells for large population mechanical phenotyping. PNAS 109:7630–7635

    Article  Google Scholar 

  • Grudzinski IP, Bystrzejewski M, Cywinska MA, Kosmider A, Poplawska M, Cieszanowski A, Ostrowska A (2013) Cytotoxicity evaluation of carbon-encapsulated iron nanoparticles in melanoma cells and dermal fibroblasts. J Nanopart Res 15:1835

    Article  Google Scholar 

  • Hao R, Xing R, Xu Z, Hou Y, Gao S, Sun S (2010) Synthesis, functionalization, and biomedical applications of multifunctional magnetic nanoparticles. Adv Mater 22:2729–2742

    Article  Google Scholar 

  • Hayashi K et al (2013) Superparamagnetic nanoparticle clusters for cancer theranostics combining magnetic resonance imaging and hyperthermia treatment. Theranostics 3:366–376

    Article  Google Scholar 

  • Hervault A, Thanh NTK (2014) Magnetic nanoparticle-based therapeutic agents for thermo-chemotherapy treatment of cancer. Nanoscale 6:11553–11573

    Article  Google Scholar 

  • Hocaoglu I et al (2015) Cyto/hemocompatible magnetic hybrid nanoparticles (Ag2S–Fe3O4) with luminescence in the near-infrared region as promising theranostic materials. Colloids Surf B 133:198–207

    Article  Google Scholar 

  • Jordan A, Scholz R, Wust P, Fähling H, Roland F (1999) Magnetic fluid hyperthermia (MFH): cancer treatment with AC magnetic field induced excitation of biocompatible superparamagnetic nanoparticles. J Magn Magn Mater 201:413–419

    Article  Google Scholar 

  • Kang YJ, Ha Y-R, Lee S-J (2016) Deformability measurement of red blood cells using a microfluidic channel array and an air cavity in a driving syringe with high throughput and precise detection of subpopulations. Analyst. doi:10.1039/C5AN01988E

    Google Scholar 

  • Khorsand ZA, Majid WH, Abrishami ME, Yousefi R (2011) X-ray analysis of ZnO nanoparticles by Williamson-Hall and size–strain plot methods. Solid State Sci 13:251–256

    Article  Google Scholar 

  • Kolen’ko YV et al (2014) Large-scale synthesis of colloidal Fe3O4 nanoparticles exhibiting high heating efficiency in magnetic hyperthermia. J Phys Chem C 118:8691–8701

    Article  Google Scholar 

  • Lee SS, Yim Y, Ahn KH, Lee SJ (2009) Extensional flow-based assessment of red blood cell deformability using hyperbolic converging microchannel. Biomed Microdevices 11:1021–1027

    Article  Google Scholar 

  • Lima R et al (2008) In vitro blood flow in a rectangular PDMS microchannel: experimental observations using a confocal micro-PIV system. Biomed Microdevices 10:153–167

    Article  Google Scholar 

  • Lin YC et al (2012) The influence of nanodiamond on the oxygenation states and micro rheological properties of human red blood cells in vitro. J Biomed Opt 17:101512

    Article  Google Scholar 

  • Lu A-H, Salabas EL, Schüth F (2007) Magnetic nanoparticles: synthesis, protection, functionalization, and application. Angew Chem Int Ed 46:1222–1244

    Article  Google Scholar 

  • Mahmoudi M, Sant S, Wang B, Laurent S, Sen T (2011) Superparamagnetic iron oxide nanoparticles (SPIONs): development, surface modification and applications in chemotherapy. Adv Drug Deliv Rev 63:24–46

    Article  Google Scholar 

  • Mayer A, Vadon M, Rinner B, Novak A, Wintersteiger R, Frohlich E (2009) The role of nanoparticle size in hemocompatibility. Toxicology 258:139–147

    Article  Google Scholar 

  • Müller K, Fedosov DA, Gompper G (2014) Margination of micro- and nano-particles in blood flow and its effect on drug delivery. Scientific Reports 4:4871

  • Obaidat I, Issa B, Haik Y (2015) Magnetic properties of magnetic nanoparticles for efficient hyperthermia. Nanomaterials 5:63

    Article  Google Scholar 

  • Oliveira MSN, Alves MA, Pinho FT, McKinley GH (2007) Viscous flow through microfabricated hyperbolic contractions. Exp Fluids 43:437–451

    Article  Google Scholar 

  • Pinho D, Yaginuma T, Lima R (2013) A microfluidic device for partial cell separation and deformability assessment. BioChip J 7:367–374

    Article  Google Scholar 

  • Presa P, Luengo Y, Multigner M, Costo R, Morales MP, Rivero G, Hernando A (2012) Study of heating efficiency as a function of concentration, size, and applied field in γ-Fe2O3 nanoparticles. J Phys Chem C 116:25602–25610

    Article  Google Scholar 

  • Rivas J, Bañobre-López M, Piñeiro-Redondo Y, Rivas B, López-Quintela MA (2012) Magnetic nanoparticles for application in cancer therapy. J Magn Magn Mater 324:3499–3502

    Article  Google Scholar 

  • Rodrigues RO, Costa H, Lima R, Amaral JS (2015) Simple methodology for the quantitative analysis of fatty acids in human red blood cells. Chromatographia 78:1271–1281

    Article  Google Scholar 

  • Ruiz A, Morais PC, Azevedo RB, Lacava ZGM, Villanueva A, Morales MP (2014) Magnetic nanoparticles coated with dimercaptosuccinic acid: development, characterization, and application in biomedicine. J Nanopart Res 16:2589

    Article  Google Scholar 

  • Sabo A, Jakovljevic V, Stanulovic M, Lepsanovic L, Pejin D (1993) Red blood cell deformability in diabetes mellitus: effect of phytomenadione. Int J Clin Pharmacol Ther Toxicol 31:1–5

    Google Scholar 

  • Sadler JE (1998) Biochemistry and genetics of von Willebrand factor. Annu Rev Biochem 67:395–424

    Article  Google Scholar 

  • Saraswathy A et al (2014) Citrate coated iron oxide nanoparticles with enhanced relaxivity for in vivo magnetic resonance imaging of liver fibrosis. Colloids Surf B 117:216–224

    Article  Google Scholar 

  • Sharifi I, Shokrollahi H, Amiri S (2012) Ferrite-based magnetic nanofluids used in hyperthermia applications. J Magn Magn Mater 324:903–915

    Article  Google Scholar 

  • Suwanarusk R, Cooke BM, Dondorp AM, Silamut K, Sattabongkot J, White NJ, Udomsangpetch R (2004) The deformability of red blood cells parasitized by Plasmodium falciparum and P. vivax. J Infect Dis 189:190–194

    Article  Google Scholar 

  • Szekeres M et al (2015) Hemocompatibility and biomedical potential of Poly (Gallic Acid) coated iron oxide nanoparticles for theranostic use. J Nanomed Nanotechnol 6:1000252

    Google Scholar 

  • Tan J, Thomas A, Liu Y (2012) Influence of red blood cells on nanoparticle targeted delivery in microcirculation. Soft Matter 8:1934–1946

    Article  Google Scholar 

  • Thomas A, Tan J, Liu Y (2014) Characterization of nanoparticle delivery in microcirculation using a microfluidic device. Microvasc Res 94:17–27

    Article  Google Scholar 

  • Vennemann P, Lindken R, Westerweel J (2007) In vivo whole-field blood velocity measurement techniques. Exp Fluids 42:495–511

    Article  Google Scholar 

  • Villa CH, Anselmo AC, Mitragotri S, Muzykantov V (2016) Red blood cells: supercarriers for drugs, biologicals, and nanoparticles and inspiration for advanced delivery systems. Adv Drug Deliv Rev. doi:10.1016/j.addr.2016.02.007

    Google Scholar 

  • Wang Q, Shen M, Zhao T, Xu Y, Lin J, Duan Y, Gu H (2015) Low toxicity and long circulation time of polyampholyte-coated magnetic nanoparticles for blood pool contrast agents. Scientific Reports 5:7774

  • Weinstein JS et al (2010) Superparamagnetic iron oxide nanoparticles: diagnostic magnetic resonance imaging and potential therapeutic applications in neurooncology and central nervous system inflammatory pathologies, a review. J Cereb Blood Flow Metab 30:15–35

    Article  Google Scholar 

  • Yaginuma T, Oliveira MSN, Lima R, Ishikawa T, Yamaguchi T (2013) Human red blood cell behavior under homogeneous extensional flow in a hyperbolic-shaped microchannel. Biomicrofluidics 7:054110

    Article  Google Scholar 

  • Yaylali YT et al (2013) Increased red blood cell deformability and decreased aggregation as potential adaptive mechanisms in the slow coronary flow phenomenon. Coron Artery Dis 24:11–15

    Article  Google Scholar 

  • Zavisova V et al (2015) The cytotoxicity of iron oxide nanoparticles with different modifications evaluated in vitro. J Magn Magn Mater 380:85–89

    Article  Google Scholar 

  • Zheng Y, Shojaei-Baghini E, Azad A, Wang C, Sun Y (2012) High-throughput biophysical measurement of human red blood cells. Lab Chip 12:2560–2567

    Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by: Project POCI-01-0145-FEDER-006984 – Associate Laboratory LSRE-LCM funded by FEDER funds through COMPETE2020 - Programa Operacional Competitividade e Internacionalização (POCI)  – and by national funds through FCT - Fundação para a Ciência e a Tecnologia. R.O.R. acknowledges the Ph.D. scholarship SFRH/BD/97658/2013 Granted by FCT. A.M.T.S acknowledges the FCT Investigator 2013 Programme (IF/01501/2013), with financing from the European Social Fund and the Human Potential Operational Programme. M.B. would like to thank ERDF (European Regional Development Fund) under grant PO Norte CCDR-N/ON.2 Programme. J.G. also thanks the European Union’s Seventh Framework Programme for research, technological development and demonstration under grant agreement no. 600375.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rui Lima.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rodrigues, R.O., Bañobre-López, M., Gallo, J. et al. Haemocompatibility of iron oxide nanoparticles synthesized for theranostic applications: a high-sensitivity microfluidic tool. J Nanopart Res 18, 194 (2016). https://doi.org/10.1007/s11051-016-3498-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-016-3498-7

Keywords

Navigation