Skip to main content

Advertisement

Log in

Mesoporous silica and chitosan based pH-sensitive smart nanoparticles for tumor targeted drug delivery

  • Review Article
  • Published:
Journal of Inclusion Phenomena and Macrocyclic Chemistry Aims and scope Submit manuscript

Abstract

Although various therapies have been developed for cancer treatment, chemotherapy plays a vital role, but still faces many challenges, such as severe cytotoxicity, side effects, multidrug resistance, and poor tumor selectivity. The development of targeted drug delivery has provided new strategies for addressing the limitations of the conventional chemotherapy, and has become more significant in clinical research in recent times. Among the various stimuli, pH triggered delivery is regarded as the most general strategy, targeting the acidic extracellular microenvironment and intracellular organelles of solid tumors. It is well-known that the extracellular pH of most tumor tissues is more acidic (pH 6.5–6.8) than that of normal tissues (pH 7.4). In our present review, we focus on some of the recent literature reports on the fabrication and application of pH-sensitive smart nanoparticles for tumor targeted drug delivery system. The strategies to the chemical design of these nanocarriers and their clinical findings are discussed. Particular focus is given to silica, chitosan, and silica–chitosan based nanocarriers. These smart nanoparticles will have a promising platform in improving human health and quality of life.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Shpaisman, N., Sheihet, L., Bushman, J., Winters, J., Kohn, J.: One-step synthesis of biodegradable curcumin-derived hydrogels as potential soft tissue fillers after breast cancer surgery. Biomacromolecules 13(8), 2279–2286 (2012). doi:10.1021/bm300518e

    Article  CAS  Google Scholar 

  2. Guan, T., Shang, W., Li, H., Yang, X., Fang, C., Tian, J., Wang, K.: From detection to resection: photoacoustic tomography and surgery guidance with indocyanine green loaded gold Nanorod@liposome core-shell nanoparticles in liver cancer. Bioconjug Chem. 28(4), 1221–1228 (2017). doi:10.1021/acs.bioconjchem.7b00065

    Article  CAS  Google Scholar 

  3. Ma, N., Jiang, Y.W., Zhang, X., Wu, H., Myers, J.N., Liu, P., Jin, H., Gu, N., He, N., Wu, F.G., Chen, Z.: Enhanced radiosensitization of gold nanospikes via hyperthermia in combined cancer radiation and photothermal therapy. ACS Appl. Mater. Interfaces (2016). doi:10.1021/acsami.6b10132

    Google Scholar 

  4. Detappe, A., Thomas, E., Tibbitt, M.W., Kunjachan, S., Zavidij, O., Parnandi, N., Reznichenko, E., Lux, F., Tillement, O., Berbeco, R.: Ultrasmall silica-based bismuth gadolinium nanoparticles for dual magnetic resonance-computed tomography image guided radiation therapy. Nano Lett. 17(3), 1733–1740 (2017). doi:10.1021/acs.nanolett.6b05055

    Article  CAS  Google Scholar 

  5. Cai, X., Luo, Y., Yan, H., Du, D., Lin, Y.: pH-responsive ZnO nanocluster for lung cancer chemotherapy. ACS Appl. Mater. Interfaces 9(7), 5739–5747 (2017). doi:10.1021/acsami.6b13776

    Article  CAS  Google Scholar 

  6. Seib, F.P., Tsurkan, M., Freudenberg, U., Kaplan, D.L., Werner, C.: Heparin-modified polyethylene glycol microparticle aggregates for focal cancer chemotherapy. ACS Biomater. Sci. Eng. 2(12), 2287–2293 (2016). doi:10.1021/acsbiomaterials.6b00495

    Article  CAS  Google Scholar 

  7. Giroux Leprieur, E., Dumenil, C., Julie, C., Giraud, V., Dumoulin, J., Labrune, S., Chinet, T.: Immunotherapy revolutionises non-small-cell lung cancer therapy: results, perspectives and new challenges. Eur. J. Cancer 78, 16–23 (2017). doi:10.1016/j.ejca.2016.12.041

    Article  CAS  Google Scholar 

  8. Tsai, H.F., Hsu, P.N.: Cancer immunotherapy by targeting immune checkpoints: mechanism of T cell dysfunction in cancer immunity and new therapeutic targets. J. Biomed. Sci. 24(1), 35 (2017). doi:10.1186/s12929-017-0341-0

    Article  Google Scholar 

  9. Cheng, J., Tan, G., Li, W., Zhang, H., Wu, X., Wang, Z., Jin, Y.: Facile synthesis of chitosan assisted multifunctional magnetic Fe3O4@SiO2@CS@pyropheophorbide-a fluorescent nanoparticles for photodynamic therapy. New J. Chem. 40(10), 8522–8534 (2016). doi:10.1039/c6nj01765g

    Article  CAS  Google Scholar 

  10. Choi, S.Y., Baek, S.H., Chang, S.J., Song, Y., Rafique, R., Lee, K.T., Park, T.J.: Synthesis of upconversion nanoparticles conjugated with graphene oxide quantum dots and their use against cancer cell imaging and photodynamic therapy. Biosens. Bioelectron. 93, 267–273 (2017). doi:10.1016/j.bios.2016.08.094

    Article  CAS  Google Scholar 

  11. Zheng, M., Li, Y., Liu, S., Wang, W., Xie, Z., Jing, X.: One-pot to synthesize multifunctional carbon dots for near infrared fluorescence imaging and photothermal cancer therapy. ACS Appl. Mater. Interfaces 8(36), 23533–23541 (2016). doi:10.1021/acsami.6b07453

    Article  CAS  Google Scholar 

  12. Zhou, B., Li, Y., Niu, G., Lan, M., Jia, Q., Liang, Q.: Near-infrared organic dye-based nanoagent for the photothermal therapy of cancer. ACS Appl. Mater. Interfaces 8(44), 29899–29905 (2016). doi:10.1021/acsami.6b07838

    Article  CAS  Google Scholar 

  13. Shi, P., Qu, K., Wang, J., Li, M., Ren, J., Qu, X.: pH-responsive NIR enhanced drug release from gold nanocages possesses high potency against cancer cells. Chem. Commun. 48(61), 7640–7642 (2012). doi:10.1039/c2cc33543c

    Article  CAS  Google Scholar 

  14. Meng, Z., Chen, X., Liu, Z., Chen, S., Yu, N., Wei, P., Chen, Z., Zhu, M.: NIR-laser-triggered smart full-polymer nanogels for synergic photothermal-/chemo-therapy of tumors. RSC Adv. 6(93), 90111–90119 (2016). doi:10.1039/c6ra20432e

    Article  CAS  Google Scholar 

  15. Yang, H., Xu, M., Li, S., Shen, X., Li, T., Yan, J., Zhang, C., Wu, C., Zeng, H., Liu, Y.: Chitosan hybrid nanoparticles as a theranostic platform for targeted doxorubicin/VEGF shRNA co-delivery and dual-modality fluorescence imaging. RSC Adv. 6(35), 29685–29696 (2016). doi:10.1039/c6ra03843c

    Article  CAS  Google Scholar 

  16. Cui, N., Zhu, S.-H.: Monoclonal antibody-tagged polyethylenimine (PEI)/poly(lactide) (PLA) nanoparticles for the enhanced delivery of doxorubicin in HER-positive breast cancers. RSC Adv. 6(83), 79822–79829 (2016). doi:10.1039/c6ra12616b

    Article  CAS  Google Scholar 

  17. Zhao, W., Wei, J.S., Zhang, P., Chen, J., Kong, J.L., Sun, L.H., Xiong, H.M., Mohwald, H.: Self-assembled ZnO nanoparticle capsules for carrying and delivering isotretinoin to cancer cells. ACS Appl. Mater. Interfaces 9(22), 18474–18481 (2017). doi:10.1021/acsami.7b02542

    Article  CAS  Google Scholar 

  18. Li, D., Ma, Y., Du, J., Tao, W., Du, X., Yang, X., Wang, J.: Tumor acidity/NIR controlled interaction of transformable nanoparticle with biological systems for cancer therapy. Nano Lett. 17(5), 2871–2878 (2017). doi:10.1021/acs.nanolett.6b05396

    Article  CAS  Google Scholar 

  19. Yang, Z., Tian, R., Wu, J., Fan, Q., Yung, B.C., Niu, G., Jacobson, O., Wang, Z., Liu, G., Yu, G., Huang, W., Song, J., Chen, X.: Impact of semiconducting perylene diimide nanoparticle size on lymph node mapping and cancer imaging. ACS Nano 11(4), 4247–4255 (2017). doi:10.1021/acsnano.7b01261

    Article  CAS  Google Scholar 

  20. Li, Y., Hu, H., Zhou, Q., Ao, Y., Xiao, C., Wan, J., Wan, Y., Xu, H., Li, Z., Yang, X.: Alpha-amylase- and redox-responsive nanoparticles for tumor-targeted drug delivery. ACS Appl. Mater. Interfaces 9(22), 19215–19230 (2017). doi:10.1021/acsami.7b04066

    Article  CAS  Google Scholar 

  21. Makwana, H., Mastrotto, F., Magnusson, J.P., Sleep, D., Hay, J., Nicholls, K.J., Allen, S., Alexander, C.: Engineered polymer-transferrin conjugates as self-assembling targeted drug delivery systems. Biomacromolecules. 18(5), 1532–1543 (2017). doi:10.1021/acs.biomac.7b00101

    Article  CAS  Google Scholar 

  22. Ge, J., Zhang, Y., Dong, Z., Jia, J., Zhu, J., Miao, X., Yan, B.: Initiation of targeted nanodrug delivery in vivo by a multifunctional magnetic implant. ACS Appl. Mater. Interfaces (2017). doi:10.1021/acsami.7b05009

    Google Scholar 

  23. Yap, T.A., Carden, C.P., Kaye, S.B.: Beyond chemotherapy: targeted therapies in ovarian cancer. Nat. Rev. Cancer 9(3), 167–181 (2009). doi:10.1038/nrc2583

    Article  CAS  Google Scholar 

  24. Kim, D.K., Dobson, J.: Nanomedicine for targeted drug delivery. Yearb. Pediatr. 19, 6294–6307 (2009)

    CAS  Google Scholar 

  25. Jeon, S.J., Hauser, A.W., Hayward, R.C.: Shape-morphing materials from stimuli-responsive hydrogel hybrids. Acc. Chem. Res. 50(2), 161–169 (2017). doi:10.1021/acs.accounts.6b00570

    Article  CAS  Google Scholar 

  26. Abbaszad Rafi, A., Mahkam, M., Davaran, S., Hamishehkar, H.: A smart pH-responsive nano-carrier as a drug delivery system: a hybrid system comprised of mesoporous nanosilica MCM-41 (as a nano-container) & a pH-sensitive polymer (as smart reversible gatekeepers): preparation, characterization and in vitro release studies of an anti-cancer drug. Eur. J. Pharm. Sci. 93, 64–73 (2016). doi:10.1016/j.ejps.2016.08.005

    Article  CAS  Google Scholar 

  27. Kim, H., Kang, Y.J., Jeong, E.S., Kang, S., Kim, K.T.: Glucose-responsive disassembly of polymersomes of sequence-specific boroxole-containing block copolymers under physiologically relevant conditions. ACS Macro Lett. 1(10), 1194–1198 (2012). doi:10.1021/mz3004192

    Article  CAS  Google Scholar 

  28. Amstad, E., Kim, S.H., Weitz, D.A.: Photo- and thermoresponsive polymersomes for triggered release. Angew. Chem. 51(50), 12499–12503 (2012). doi:10.1002/anie.201206531

    Article  CAS  Google Scholar 

  29. Zhang, C.Y., Yang, Y.Q., Huang, T.X., Zhao, B., Guo, X.D., Wang, J.F., Zhang, L.J.: Self-assembled pH-responsive MPEG-b-(PLA-co-PAE) block copolymer micelles for anticancer drug delivery. Biomaterials 33(26), 6273–6283 (2012). doi:10.1016/j.biomaterials.2012.05.025

    Article  CAS  Google Scholar 

  30. Feng, F., Li, R., Zhang, Q., Wang, Y., Yang, X., Duan, H., Yang, X.: Preparation of reduction-triggered degradable microcapsules for intracellular delivery of anti-cancer drug and gene. Polymer. 55(1), 110–118 (2014). doi:10.1016/j.polymer.2013.11.035

    Article  CAS  Google Scholar 

  31. Lee, J.-E., Ahn, E., Bak, J.M., Jung, S.-H., Park, J.M., Kim, B.-S., Lee, H.-i.: Polymeric micelles based on photocleavable linkers tethered with a model drug. Polymer 55(6), 1436–1442 (2014). doi:10.1016/j.polymer.2014.01.026

    Article  CAS  Google Scholar 

  32. Klinger, D., Landfester, K.: Stimuli-responsive microgels for the loading and release of functional compounds: fundamental concepts and applications. Polymer 53(23), 5209–5231 (2012). doi:10.1016/j.polymer.2012.08.053

    Article  CAS  Google Scholar 

  33. Zheng, Q., Hao, Y., Ye, P., Guo, L., Wu, H., Guo, Q., Jiang, J., Fu, F., Chen, G.: A pH-responsive controlled release system using layered double hydroxide (LDH)-capped mesoporous silica nanoparticles. J. Mater. Chem. B 1(11), 1644 (2013). doi:10.1039/c3tb00518f

    Article  CAS  Google Scholar 

  34. Schmaljohann, D.: Thermo- and pH-responsive polymers in drug delivery. Adv. Drug Deliv. Rev. 58(15), 1655–1670 (2006). doi:10.1016/j.addr.2006.09.020

    Article  CAS  Google Scholar 

  35. Levine, D.J., Runcevski, T., Kapelewski, M.T., Keitz, B.K., Oktawiec, J., Reed, D.A., Mason, J.A., Jiang, H.Z., Colwell, K.A., Legendre, C.M., FitzGerald, S.A., Long, J.R.: Olsalazine-based metal-organic frameworks as biocompatible platforms for H2 adsorption and drug delivery. J. Am. Chem. Soc. 138(32), 10143–10150 (2016). doi:10.1021/jacs.6b03523

    Article  CAS  Google Scholar 

  36. Li, Y., Li, N., Pan, W., Yu, Z., Yang, L., Tang, B.: Hollow mesoporous silica nanoparticles with tunable structures for controlled drug delivery. ACS Appl. Mater. Interfaces 9(3), 2123–2129 (2017). doi:10.1021/acsami.6b13876

    Article  CAS  Google Scholar 

  37. Zeng, J., Du, P., Liu, L., Li, J., Tian, K., Jia, X., Zhao, X., Liu, P.: Superparamagnetic reduction/pH/temperature multistimuli-responsive nanoparticles for targeted and controlled antitumor drug delivery. Mol. Pharm. 12(12), 4188–4199 (2015). doi:10.1021/acs.molpharmaceut.5b00342

    Article  CAS  Google Scholar 

  38. Liu, M., Gan, L., Chen, L., Xu, Z., Zhu, D., Hao, Z., Chen, L.: Supramolecular core-shell nanosilica@liposome nanocapsules for drug delivery. Langmuir 28(29), 10725–10732 (2012). doi:10.1021/la3021645

    Article  CAS  Google Scholar 

  39. Yao, Y.Y., Gedda, G., Girma, W.M., Yen, C.L., Ling, Y.C., Chang, J.Y.: Magnetofluorescent carbon dots derived from crab shell for targeted dual-modality bioimaging and drug delivery. ACS Appl. Mater. Interfaces 9(16), 13887–13899 (2017). doi:10.1021/acsami.7b01599

    Article  CAS  Google Scholar 

  40. Yanagisawa, T.S.T., Kuroda, K., Kato, C.: Trimethylsilyl derivatives of alkyltrimethylammonium-kanemite complexes and their conversion to microporous silica materials. Bull. Chem. Soc. Jpn. 63(5), 1535–1537 (1990)

    Article  CAS  Google Scholar 

  41. Tang, F., Li, L., Chen, D.: Mesoporous silica nanoparticles: synthesis, biocompatibility and drug delivery. Adv. Mater. 24(12), 1504–1534 (2012). doi:10.1002/adma.201104763

    Article  CAS  Google Scholar 

  42. Ying, W.D.Z.: On the controllable soft-templating approach to mesoporous silicates. Chem. Rev. 107(7), 2821–2860 (2007)

    Article  Google Scholar 

  43. Alfredsson, V., Anderson, M.W.: Structure of MCM-48 revealed by transmission electron microscopy. Chem. Mater. 8(5), 1141–1146 (1996). doi:10.1021/cm950568k

    Article  CAS  Google Scholar 

  44. Dongyuan, Z.J.F., Qisheng, H., Nicholas, M.G.H.F., Bradley, F.C., Galen, D.S.: Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 Angstrom pores. Science 279, 548–552 (1998)

    Article  Google Scholar 

  45. Xu, X., Lü, S., Gao, C., Feng, C., Wu, C., Bai, X., Gao, N., Wang, Z., Liu, M.: Self-fluorescent and stimuli-responsive mesoporous silica nanoparticles using a double-role curcumin gatekeeper for drug delivery. Chem. Eng. J. 300, 185–192 (2016). doi:10.1016/j.cej.2016.04.087

    Article  CAS  Google Scholar 

  46. Chen, Y., Zhang, H., Cai, X., Ji, J., He, S., Zhai, G.: Multifunctional mesoporous silica nanocarriers for stimuli-responsive target delivery of anticancer drugs. RSC Adv. 6(94), 92073–92091 (2016). doi:10.1039/c6ra18062k

    Article  CAS  Google Scholar 

  47. Slowing, I.I., Vivero-Escoto, J.L., Trewyn, B.G., Lin, V.S.Y.: Mesoporous silica nanoparticles: structural design and applications. J. Mater. Chem. 20(37), 7924 (2010). doi:10.1039/c0jm00554a

    Article  CAS  Google Scholar 

  48. Chen, T., Wu, W., Xiao, H., Chen, Y., Chen, M., Li, J.: Intelligent drug delivery system based on mesoporous silica nanoparticles coated with an ultra-pH-sensitive gatekeeper and poly(ethylene glycol). ACS Macro Lett. 5(1), 55–58 (2016). doi:10.1021/acsmacrolett.5b00765

    Article  CAS  Google Scholar 

  49. Yang, D., Yang, G., Gai, S., He, F., Lv, R., Dai, Y., Yang, P.: Imaging-guided and light-triggered chemo-/photodynamic/photothermal therapy based on Gd(III) chelated mesoporous silica hybrid spheres. ACS Biomater. Sci. Eng. 2(11), 2058–2071 (2016). doi:10.1021/acsbiomaterials.6b00462

    Article  CAS  Google Scholar 

  50. Yi, Z., Hussain, H.I., Feng, C., Sun, D., She, F., Rookes, J.E., Cahill, D.M., Kong, L.: Functionalized mesoporous silica nanoparticles with redox-responsive short-chain gatekeepers for agrochemical delivery. ACS Appl. Mater. Interfaces 7(18), 9937–9946 (2015). doi:10.1021/acsami.5b02131

    Article  CAS  Google Scholar 

  51. Baeza, A., Guisasola, E., Ruiz-Hernández, E., Vallet-Regí, M.: Magnetically triggered multidrug release by hybrid mesoporous silica nanoparticles. Chem. Mater. 24(3), 517–524 (2012). doi:10.1021/cm203000u

    Article  CAS  Google Scholar 

  52. Cheng, Y.J., Luo, G.F., Zhu, J.Y., Xu, X.D., Zeng, X., Cheng, D.B., Li, Y.M., Wu, Y., Zhang, X.Z., Zhuo, R.X., He, F.: Enzyme-induced and tumor-targeted drug delivery system based on multifunctional mesoporous silica nanoparticles. ACS Appl. Mater. Interfaces 7(17), 9078–9087 (2015). doi:10.1021/acsami.5b00752

    Article  CAS  Google Scholar 

  53. Muhammad, F., Guo, M., Qi, W., Sun, F., Wang, A., Guo, Y., Zhu, G.: pH-triggered controlled drug release from mesoporous silica nanoparticles via intracelluar dissolution of ZnO nanolids. J. Am. Chem. Soc. 133(23), 8778–8781 (2011). doi:10.1021/ja200328s

    Article  CAS  Google Scholar 

  54. Zhang, J., Wu, D., Li, M.F., Feng, J.: Multifunctional mesoporous silica nanoparticles based on charge-reversal plug-gate nanovalves and acid-decomposable zno quantum dots for intracellular drug delivery. ACS Appl. Mater. Interfaces 7(48), 26666–26673 (2015). doi:10.1021/acsami.5b08460

    Article  CAS  Google Scholar 

  55. Xue, M., Zhong, X., Shaposhnik, Z., Qu, Y., Tamanoi, F., Duan, X., Zink, J.I.: pH-operated mechanized porous silicon nanoparticles. J. Am. Chem. Soc. 133(23), 8798–8801 (2011). doi:10.1021/ja201252e

    Article  CAS  Google Scholar 

  56. He, Y., Su, Z., Xue, L., Xu, H., Zhang, C.: Co-delivery of erlotinib and doxorubicin by pH-sensitive charge conversion nanocarrier for synergistic therapy. J. Control. Release 229, 80–92 (2016). doi:10.1016/j.jconrel.2016.03.001

    Article  CAS  Google Scholar 

  57. Roszak, A.W., McKendrick, K., Gardiner, A.T., Mitchell, I.A., Isaacs, N.W., Cogdell, R.J., Hashimoto, H., Frank, H.A.: Protein regulation of carotenoid binding; gatekeeper and locking amino acid residues in reaction centers of Rhodobacter sphaeroides. Structure. 12(5), 765–773 (2004). doi:10.1016/j.str.2004.02.037

    Article  CAS  Google Scholar 

  58. Palanikumar, L., Choi, E.S., Cheon, J.Y., Joo, S.H., Ryu, J.-H.: Noncovalent polymer-gatekeeper in mesoporous silica nanoparticles as a targeted drug delivery platform. Adv. Funct. Mater. 25(6), 957–965 (2015). doi:10.1002/adfm.201402755

    Article  CAS  Google Scholar 

  59. Han, U., Seo, Y., Hong, J.: Effect of pH on the structure and drug release profiles of layer-by-layer assembled films containing polyelectrolyte, micelles, and graphene oxide. Sci. Rep. 6, 24158 (2016). doi:10.1038/srep24158

    Article  CAS  Google Scholar 

  60. Zhang, M., Liu, J., Kuang, Y., Li, Q., Zheng, D.W., Song, Q., Chen, H., Chen, X., Xu, Y., Li, C., Jiang, B.: Ingenious pH-sensitive dextran/mesoporous silica nanoparticles based drug delivery systems for controlled intracellular drug release. Int. J. Biol. Macromol. 98, 691–700 (2017). doi:10.1016/j.ijbiomac.2017.01.136

    Article  CAS  Google Scholar 

  61. Qiu, L., Zhao, Y., Li, B., Wang, Z., Cao, L., Sun, L.: Triple-stimuli (protease/redox/pH) sensitive porous silica nanocarriers for drug delivery. Sens. Actuators B 240, 1066–1074 (2017). doi:10.1016/j.snb.2016.09.083

    Article  CAS  Google Scholar 

  62. Huang, X., Hauptmann, N., Appelhans, D., Formanek, P., Frank, S., Kaskel, S., Temme, A., Voit, B.: Synthesis of hetero-polymer functionalized nanocarriers by combining surface-initiated ATRP and RAFT polymerization. Small. 8(23), 3579–3583 (2012). doi:10.1002/smll.201201397

    Article  CAS  Google Scholar 

  63. Mei, X., Chen, D., Li, N., Xu, Q., Ge, J., Li, H., Lu, J.: Hollow mesoporous silica nanoparticles conjugated with pH-sensitive amphiphilic diblock polymer for controlled drug release. Microporous Mesoporous Mater. 152, 16–24 (2012). doi:10.1016/j.micromeso.2011.12.015

    Article  CAS  Google Scholar 

  64. Yuan, L., Tang, Q., Yang, D., Zhang, J.Z., Zhang, F., Hu, J.: Preparation of pH-responsive mesoporous silica nanoparticles and their application in controlled drug delivery. J. Phys. Chem. C. 115(20), 9926–9932 (2011). doi:10.1021/jp201053d

    Article  CAS  Google Scholar 

  65. Zhang, Y., Ang, C.Y., Li, M., Tan, S.Y., Qu, Q., Luo, Z., Zhao, Y.: Polymer-coated hollow mesoporous silica nanoparticles for triple-responsive drug delivery. ACS Appl. Mater. Interfaces 7(32), 18179–18187 (2015). doi:10.1021/acsami.5b05893

    Article  CAS  Google Scholar 

  66. Chen, F., Zhu, Y.: Chitosan enclosed mesoporous silica nanoparticles as drug nano-carriers: sensitive response to the narrow pH range. Mesoporous Mesoporous Mater. 150, 83–89 (2012). doi:10.1016/j.micromeso.2011.07.023

    Article  CAS  Google Scholar 

  67. Chen, X., Liu, Z.: Dual responsive mesoporous silica nanoparticles for targeted co-delivery of hydrophobic and hydrophilic anticancer drugs to tumor cells. J. Mater. Chem. B. 4(25), 4382–4388 (2016). doi:10.1039/c6tb00694a

    Article  CAS  Google Scholar 

  68. Li, G., Song, S., Guo, L., Ma, S.: Self-assembly of thermo- and pH-responsive poly(acrylic acid)-b-poly(N-isopropylacrylamide) micelles for drug delivery. J. Polym. Sci. A 46(15), 5028–5035 (2008). doi:10.1002/pola.22831

    Article  CAS  Google Scholar 

  69. Xue, Y.-N., Huang, Z.-Z., Zhang, J.-T., Liu, M., Zhang, M., Huang, S.-W., Zhuo, R.-X.: Synthesis and self-assembly of amphiphilic poly(acrylic acid-b-dl-lactide) to form micelles for pH-responsive drug delivery. Polymer. 50(15), 3706–3713 (2009). doi:10.1016/j.polymer.2009.05.033

    Article  CAS  Google Scholar 

  70. Pourjavadi, A., Tehrani, Z.M.: Mesoporous silica nanoparticles with bilayer coating of poly(acrylic acid-co-itaconic acid) and human serum albumin (HSA): a pH-sensitive carrier for gemcitabine delivery. Mater. Sci. Eng. C 61, 782–790 (2016). doi:10.1016/j.msec.2015.12.096

    Article  CAS  Google Scholar 

  71. Chertok, B., Moffat, B.A., David, A.E., Yu, F., Bergemann, C., Ross, B.D., Yang, V.C.: Iron oxide nanoparticles as a drug delivery vehicle for MRI monitored magnetic targeting of brain tumors. Biomaterials 29(4), 487–496 (2008). doi:10.1016/j.biomaterials.2007.08.050

    Article  CAS  Google Scholar 

  72. Rahimi, M., Safa, K.D., Alizadeh, E., Salehi, R.: Dendritic chitosan as a magnetic and biocompatible nanocarrier for the simultaneous delivery of doxorubicin and methotrexate to MCF-7 cell line. New J. Chem. 41(8), 3177–3189 (2017). doi:10.1039/c6nj04107h

    Article  CAS  Google Scholar 

  73. Pourjavadi, A., Tehrani, Z.M., Shakerpoor, A.: Dendrimer-like supramolecular nanovalves based on polypseudorotaxane and mesoporous silica-coated magnetic graphene oxide: a potential pH-sensitive anticancer drug carrier. Supramol. Chem. 28(7–8), 624–633 (2016). doi:10.1080/10610278.2015.1089357

    Article  CAS  Google Scholar 

  74. He, D., He, X., Wang, K., Zou, Z., Yang, X., Li, X.: Remote-controlled drug release from graphene oxide-capped mesoporous silica to cancer cells by photoinduced pH-jump activation. Langmuir 30(24), 7182–7189 (2014). doi:10.1021/la501075c

    Article  CAS  Google Scholar 

  75. Wang, Y., Wang, K., Zhao, J., Liu, X., Bu, J., Yan, X., Huang, R.: Multifunctional mesoporous silica-coated graphene nanosheet used for chemo-photothermal synergistic targeted therapy of glioma. J. Am. Chem. Soc. 135(12), 4799–4804 (2013). doi:10.1021/ja312221g

    Article  CAS  Google Scholar 

  76. Wang, T.T., Lan, J., Zhang, Y., Wu, Z.L., Li, C.M., Wang, J., Huang, C.Z.: Reduced graphene oxide gated mesoporous silica nanoparticles as a versatile chemo-photothermal therapy system through pH controllable release. J. Mater. Chem. B 3(30), 6377–6384 (2015). doi:10.1039/c5tb00824g

    Article  CAS  Google Scholar 

  77. Kumar, M.N.V.R.: A review of chitin and chitosan applications. React. Funct. Polym. 46, 1–27 (2000)

    Article  CAS  Google Scholar 

  78. Dash, M., Chiellini, F., Ottenbrite, R.M., Chiellini, E.: Chitosan: a versatile semi-synthetic polymer in biomedical applications. Prog. Polym. Sci. 36(8), 981–1014 (2011). doi:10.1016/j.progpolymsci.2011.02.001

    Article  CAS  Google Scholar 

  79. Guibal, E.: Heterogeneous catalysis on chitosan-based materials: a review. Prog. Polym. Sci. 30(1), 71–109 (2005). doi:10.1016/j.progpolymsci.2004.12.001

    Article  CAS  Google Scholar 

  80. Ye, Y.Q., Yang, F.L., Hu, F.Q., Du, Y.Z., Yuan, H., Yu, H.Y.: Core-modified chitosan-based polymeric micelles for controlled release of doxorubicin. Int. J. Pharm. 352(1–2), 294–301 (2008). doi:10.1016/j.ijpharm.2007.10.035

    Article  CAS  Google Scholar 

  81. Peng, S.F., Yang, M.J., Su, C.J., Chen, H.L., Lee, P.W., Wei, M.C., Sung, H.W.: Effects of incorporation of poly(gamma-glutamic acid) in chitosan/DNA complex nanoparticles on cellular uptake and transfection efficiency. Biomaterials 30(9), 1797–1808 (2009). doi:10.1016/j.biomaterials.2008.12.019

    Article  CAS  Google Scholar 

  82. Guo, Y., Chu, M., Tan, S., Zhao, S., Liu, H., Otieno, B.O., Yang, X., Xu, C., Zhang, Z.: Chitosan-g-TPGS nanoparticles for anticancer drug delivery and overcoming multidrug resistance. Mol. Pharm. 11(1), 59–70 (2014). doi:10.1021/mp400514t

    Article  CAS  Google Scholar 

  83. Nogueira-Librelotto, D.R., Scheeren, L.E., Vinardell, M.P., Mitjans, M., Rolim, C.M.: Chitosan-tripolyphosphate nanoparticles functionalized with a pH-responsive amphiphile improved the in vitro antineoplastic effects of doxorubicin. Colloids Surf. B 147, 326–335 (2016). doi:10.1016/j.colsurfb.2016.08.014

    Article  CAS  Google Scholar 

  84. Prabha, G., Raj, V.: Preparation and characterization of polymer nanocomposites coated magnetic nanoparticles for drug delivery applications. J. Magnet. Magnet. Mater. 408, 26–34 (2016). doi:10.1016/j.jmmm.2016.01.070

    Article  CAS  Google Scholar 

  85. Wu, W., Wu, Z., Yu, T., Jiang, C., Kim, W.S.: Recent progress on magnetic iron oxide nanoparticles: synthesis, surface functional strategies and biomedical applications. Sci. Technol. Adv. Mater. 16(2), 023501 (2015). doi:10.1088/1468-6996/16/2/023501

    Article  Google Scholar 

  86. Ramezani, S., Ghazitabar, A., Sadrnezhaad, S.K.: Synthesis and characterization of chitosan coating of NiFe2O4 nanoparticles for biomedical applications. J. Iran. Chem. Soc. 13(11), 2069–2076 (2016). doi:10.1007/s13738-016-0924-9

    Article  CAS  Google Scholar 

  87. Lu, A.H., Salabas, E.L., Schuth, F.: Magnetic nanoparticles: synthesis, protection, functionalization, and application. Angew. Chem. 46(8), 1222–1244 (2007). doi:10.1002/anie.200602866

    Article  CAS  Google Scholar 

  88. Scheeren, L.E., Nogueira, D.R., Macedo, L.B., Vinardell, M.P., Mitjans, M., Infante, M.R., Rolim, C.M.: PEGylated and poloxamer-modified chitosan nanoparticles incorporating a lysine-based surfactant for pH-triggered doxorubicin release. Colloids Surf. B 138, 117–127 (2016). doi:10.1016/j.colsurfb.2015.11.049

    Article  CAS  Google Scholar 

  89. Parveen, S., Sahoo, S.K.: Long circulating chitosan/PEG blended PLGA nanoparticle for tumor drug delivery. Eur. J. Pharmacol. 670(2–3), 372–383 (2011). doi:10.1016/j.ejphar.2011.09.023

    Article  CAS  Google Scholar 

  90. Wang, J.J., Zeng, Z.W., Xiao, R.Z., Xie, T., Zhou, G.L., Zhan, X.R., Wang, S.L.: Recent advances of chitosan nanoparticles as drug carriers. Int. J. Nanomed. 6, 765–774 (2011). doi:10.2147/IJN.S17296

    CAS  Google Scholar 

  91. Kariminia, S., Shamsipur, A., Shamsipur, M.: Analytical characteristics and application of novel chitosan coated magnetic nanoparticles as an efficient drug delivery system for ciprofloxacin. Enhanced drug release kinetics by low-frequency ultrasounds. J. Pharm. Biomed. Anal. 129, 450–457 (2016). doi:10.1016/j.jpba.2016.07.016

    Article  CAS  Google Scholar 

  92. Ding, Y., Yin, H., Shen, S., Sun, K., Liu, F.: Chitosan-based magnetic/fluorescent nanocomposites for cell labelling and controlled drug release. New J. Chem. 41(4), 1736–1743 (2017). doi:10.1039/c6nj02897g

    Article  CAS  Google Scholar 

  93. Wang, F.Q., Li, P., Zhang, J.P., Wang, A.Q., Wei, Q.: A novel pH-sensitive magnetic alginate-chitosan beads for albendazole delivery. Drug Dev. Ind. Pharm. 36(7), 867–877 (2010). doi:10.3109/03639040903567117

    Article  CAS  Google Scholar 

  94. Pourjavadi, A., Mazaheri Tehrani, Z., Jokar, S.: Chitosan based supramolecular polypseudorotaxane as a pH-responsive polymer and their hybridization with mesoporous silica-coated magnetic graphene oxide for triggered anticancer drug delivery. Polymer 76, 52–61 (2015). doi:10.1016/j.polymer.2015.08.050

    Article  CAS  Google Scholar 

  95. Nogueira, D.R., Scheeren, L.E., Pilar Vinardell, M., Mitjans, M., Rosa Infante, M., Rolim, C.M.: Nanoparticles incorporating pH-responsive surfactants as a viable approach to improve the intracellular drug delivery. Mater. Sci. Eng. C 57, 100–106 (2015). doi:10.1016/j.msec.2015.07.036

    Article  CAS  Google Scholar 

  96. Jin, Y.H., Hu, H.Y., Qiao, M.X., Zhu, J., Qi, J.W., Hu, C.J., Zhang, Q., Chen, D.W.: pH-sensitive chitosan-derived nanoparticles as doxorubicin carriers for effective anti-tumor activity: preparation and in vitro evaluation. Colloids Surf. B 94, 184–191 (2012). doi:10.1016/j.colsurfb.2012.01.032

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pervin Deveci.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deveci, P., Taner, B. & Albayatı, S.H.M. Mesoporous silica and chitosan based pH-sensitive smart nanoparticles for tumor targeted drug delivery. J Incl Phenom Macrocycl Chem 89, 15–27 (2017). https://doi.org/10.1007/s10847-017-0741-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10847-017-0741-5

Keywords

Navigation