Skip to main content
Log in

Extensional flow-based assessment of red blood cell deformability using hyperbolic converging microchannel

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

The deformability of the red blood cell (RBC), is known to be closely related to microcirculation and diagnosis of specific diseases such as malaria, arterial sclerosis, sepsis, and so on. From the viewpoint of the flow type, conventional methods to measure the cell deformability have exploited simple shear or complex flow field with little focus on extensional flow field. In this paper, we present a new approach to assess cell deformability under the extensional flow field. For this purpose, a hyperbolic converging microchannel was designed, and the cell deformation in the extensional flow region was continuously monitored. It overcomes the limitation of conventional methods by reducing experiment time. As quantified by the degree of deformation, the extensional flow (Deformation Index = 0.51 at 3.0 Pa) was found to be more efficient in inducing cell deformation compared to the shear flow (Deformation Index = 0.29 at 3.0 Pa). This indicates the insufficiency of the existing models that predict the blood damage in artificial organs, which only consider shear flow. Also, this method could detect the heat-induced difference in deformability of RBCs. It provides a new platform to study the clinical effect of RBC deformability under extensional flow, and is expected to contribute the association of several diseases and deformability of RBCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • D. Arora, M. Behr, M. Pasquali, Artif. Organs 28, 1002 (2004)

    Article  Google Scholar 

  • H.A. Barnes, A handbook of elementary rheology (The University of Wales Institute of Non-Newtonian Fluid Mechanics, Wales, 2000), pp. 151–163

    Google Scholar 

  • P.L. Blackshear, G.L. Blackshear, Handbook of bioengineering (McGraw-Hill, New York, 1987), pp. 15.1–15.19

    Google Scholar 

  • M.C. Dao, T. Lim, S. Suresh, J. Mech. Phys. Solids 51, 2259 (2003)

    Article  Google Scholar 

  • J.M. Dealy, K.F. Wissbrun, Melt rheology and its role in plastics processing (Nostrand Reinhold, New York, 1990), pp. 231–268

    Google Scholar 

  • V. Delinder, A. Groisman, Anal. Chem. 78, 3765 (2006)

    Article  Google Scholar 

  • J.G. Dobbe, G.J. Streekstra, M.R. Hardeman, C. Ince, C. Grimbergen, Cytometry 50, 313 (2002)

    Article  Google Scholar 

  • E. Evans, Biophys. J. 43, 27 (1983)

    Article  Google Scholar 

  • F. Feigl, F.X. Tanner, B.J. Edwards, J.R. Collier, J. Non-Newtonian Fluid Mech. 115, 191 (2003)

    Article  MATH  Google Scholar 

  • M.T. Fisher, R.B. Wenby, H.J. Meiselman, Biorheology 29, 185 (1992)

    Google Scholar 

  • M. Gierspiepen, L.J. Wurzinger, R. Opitz, H. Reul, Int. J. Artif Organs 13, 300 (1990)

    Google Scholar 

  • M.S. Grant, J. Emerg. Nurs. 29, 116 (2003)

    Article  Google Scholar 

  • M. Grigioni, C. Daiele, U. Morbiducci, G. D’avenio, G. Benedetto, V. Barbaro, Artif. Organs 28, 467 (2004)

    Article  Google Scholar 

  • D.S. Kim, S.H. Lee, C.H. Ahn, J.Y. Lee, T.H. Kwon, Labchip 6, 794 (2006)

    Google Scholar 

  • C. Mobuchon, P.J. Carreau, M. Heuzey, M. Sepehr, Polym. Compos. 26, 247 (2005)

    Article  Google Scholar 

  • F.C. Mokken, M. Kedaria, C.P. Henny, M.R. Hardeman, A.A. Gelb, Ann. Hematol. 64, 113 (1992)

    Article  Google Scholar 

  • M. Paulitschke, G.B. Nash, Clin. Hemorheol. Microcirc. 13, 407 (1993)

    Google Scholar 

  • G.C. Randall, K.M. Schultz, P.S. Doyle, Labchip 6, 516 (2006)

    Google Scholar 

  • M.K. Sharp, S.F. Mohammad, Ann. Biomed. Eng. 26, 788 (1998)

    Article  Google Scholar 

  • S. Simchon, K.M. Jan, S. Chien, Am. J. Physiol. 253, 893 (1987)

    Google Scholar 

  • R. Suwanarusk, B.M. Cooke, A.M. Dondorp, K. Silamut, J. Sattabongkot, N.J. White, R. Udomsangpetch, J. Infect. Dis. 189, 190 (2004)

    Article  Google Scholar 

  • F.T. Trouton, Proc. Royal Soc. 77A, 426–440 (1906)

    Article  Google Scholar 

  • M. Umezu, Proceedings of the ASME International Mechanical Engineering Congress and Exposition (ASME advances in bioengineering). 28, 33 (1994)

  • Y.N. Xia, G.M. Whitesides, Angew. Chem. Int. Edit. 37, 551 (1998)

    Google Scholar 

  • S. Yang, A. Undar, J.D. Zahn, Labchip. 6, 871–880 (2006)

Download references

Acknowledgements

This work was supported by the National Research Laboratory Fund (M10300000159) of the Ministry of Science and Technology in Korea. We appreciate M. C. Kang and S. Oh for generous help with microfabrication process and for manufacturing microfluidic devices. We also appreciate J. H. Lee from Institute of Laboratory Animal Resources in Seoul National University for collecting rabbit blood.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyung H. Ahn.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, S.S., Yim, Y., Ahn, K.H. et al. Extensional flow-based assessment of red blood cell deformability using hyperbolic converging microchannel. Biomed Microdevices 11, 1021 (2009). https://doi.org/10.1007/s10544-009-9319-3

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s10544-009-9319-3

Keywords

Navigation