Skip to main content
Log in

Plasma synthesis of titanium nitride, carbide and carbonitride nanoparticles by means of reactive anodic arc evaporation from solid titanium

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Plasma methods using the direct evaporation of a transition metal are well suited for the cost-efficient production of ceramic nanoparticles. In this paper, we report on the development of a simple setup for the production of titanium-ceramics by reactive anodic arc evaporation and the characterization of the aerosol as well as the nanopowder. It is the first report on TiC X N1 − X synthesis in a simple anodic arc plasma. By means of extensive variations of the gas composition, it is shown that the composition of the particles can be tuned from titanium nitride over a titanium carbonitride phase (TiC X N1 − X ) to titanium carbide as proven by XRD data. The composition of the plasma gas especially a very low concentration of hydrocarbons around 0.2 % of the total plasma gas is crucial to tune the composition and to avoid the formation of free carbon. Examination of the particles by HR-TEM shows that the material consists mostly of cubic single crystalline particles with mean sizes between 8 and 27 nm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Aigner K, Lengauer W, Rafaja D, Ettmayer P (1994) Lattice parameters and thermal expansion of Ti(CxN1-x), Zr(CxN1-x), Hf(CxN1-x) and TiN1-x from 298 to 1473 K as investigated by high-temperature X-ray diffraction. J Alloy Compd 215(1–2):121–126. doi:10.1016/0925-8388(94)90828-1

    Article  Google Scholar 

  • Alekseev NV, Samokhin AV, Tsvetkov YV (1999) Synthesis of titanium carbonitride nanopowder by titanium tetrachloride treatment in hydrocarbon-air plasma. High Energy Chem 33(3):194–197

    Google Scholar 

  • Alexandrescu R, Borsella E, Botti S, Cesile MC, Martelli S, Giorgi R, Turtù S, Zappa G (1997) Synthesis of TiC and SiC/TiC nanocrystalline powders by gas-phase laser-induced reaction. J Mater Sci 32(21):5629–5635. doi:10.1023/A:1018640911556

    Article  Google Scholar 

  • EFSA Panel on food contact materials enzymes (CEF) (2012) Scientific opinion on the safety evaluation of the substance, titanium nitride, nanoparticles, for use in food contact materials. EFSA J 10(3):2641–2649. doi:10.2903/j.efsa.2012.2641

    Google Scholar 

  • Feng X, Shi L (2005) Facile synthesis of nanocrystalline titanium carbonitride via a chemical metathesis route. Chem Lett 34(7):1002–1003. doi:10.1246/cl.2005.1002

    Article  Google Scholar 

  • Grabis J, Zalite I (2005) Preparation of Ti (N, C) based nanosized powders and their densification. Mater Sci 11(4):372–375

    Google Scholar 

  • Guu YY, Lin JF, Ai C (1997) The tribological characteristics of titanium nitride, titanium carbonitride and titanium carbide coatings. Thin Solid Films 302(1–2):193–200. doi:10.1016/S0040-6090(96)09546-6

    Article  Google Scholar 

  • Ikegami A, Kimura Y, Suzuki H, Sato T, Tanigaki T, Kido O, Kurumada M, Saito Y, Kaito C (2003) Growth process of TiC clusters from Ti nanoparticles with evaporated carbon layer. Surf Sci 540(2–3):395–400. doi:10.1016/S0039-6028(03)00875-6

    Article  Google Scholar 

  • Inoue A, Kim BG, Nosaki K, Yamaguchi T, Masumoto T (1992) Production of a TiN film with nanoscale particle size by a combined method of plasma-alloy reaction and spray deposition. J Mater Sci Lett 11(12):865–867. doi:10.1007/BF00730489

    Article  Google Scholar 

  • Ishigaki T, Sato T, Moriyoshi Y, Boulos MI (1995) Influence of plasma modification of titanium carbide powder on its sintering properties. J Mater Sci Lett 14(23):1694–1697. doi:10.1007/BF00422678

    Article  Google Scholar 

  • Ishigaki T, Moriyoshi Y, Watanabe T, Kanzawa A (1996) Thermal plasma treatment of titanium carbide powders: part II. In-flight formation of carbon-site vacancies and subsequent nitridation in titanium carbide powders during induction plasma treatment. J Mater Res 11(11):2811–2824. doi:10.1557/JMR.1996.0356

    Article  Google Scholar 

  • Ishizaki K, Egashira T, Tanaka K, Celis PB (1989) Direct production of ultra-fine nitrides (Si3N4 and AIN) and carbides (SiC, WC and TiC) powders by the arc plasma method. J Mater Sci 24(10):3553–3559. doi:10.1007/BF02385739

    Article  Google Scholar 

  • Iwama S, Hayakawa K, Arizumi T (1982) Ultrafine powders of TiN and AlN produced by a reactive gas evaporation technique with electron beam heating. J Cryst Growth 56(2):265–269. doi:10.1016/0022-0248(82)90443-2

    Article  Google Scholar 

  • Jhi S, Ihm J, Loule SG, Cohen ML (1999) Electronic mechanism of hardness enhancement in transition-metal carbonitrides. Nature 399(6732):132–134. doi:10.1038/20148

    Article  Google Scholar 

  • Jiao J, Seraphin S (1998) Carbon encapsulated nanoparticles of Ni Co, Cu, and Ti. J Appl Phys 83(5):2442–2448. doi:10.1063/1.367004

    Article  Google Scholar 

  • Leciejewicz J (1961) A note on the structure of tungsten carbide. Acta Cryst 14(2):200. doi:10.1107/S0365110X6100067X

    Article  Google Scholar 

  • Leconte Y, Maskrot H, Herlin-Boime N, Porterat D, Reynaud C, Gierlotka S, Swiderska-Sroda A, Vicens J (2006) TiC nanocrystal formation from carburization of laser-grown Ti/O/C nanopowders for nanostructured ceramics. J Phys Chem B 110(1):158–163. doi:10.1021/jp054471p

    Article  Google Scholar 

  • Lee D, Ahn J, Chung H (2007) Synthesis and nitrogen stability of ultrafine titanium carbonitride particles. J Mater Res 22(01):233–237. doi:10.1557/jmr.2007.0024

    Article  Google Scholar 

  • Leparoux M, Kihn Y, Paris S, Schreuders C (2008) Microstructure analysis of RF plasma synthesized TiCN nanopowders. Int J Refract Met H 26(4):277–285. doi:10.1016/j.ijrmhm.2007.06.003

    Article  Google Scholar 

  • Levi G, Kaplan WD, Bamberger M (1998) Structure refinement of titanium carbonitride (TiCN). Mater Lett 35(5–6):344–350. doi:10.1016/S0167-577X(97)00276-0

    Article  Google Scholar 

  • Li Y, Yao Y, Shao W, Liu F, Kang Y, Yin G, Huang Z, Liao X (2009) Preparation of titanium carbonitride nanoparticles from a novel refluxing-derived precursor. Mater Lett 63(22):1904–1906. doi:10.1016/j.matlet.2009.05.031

    Article  Google Scholar 

  • Lutterotti L (2010) Total pattern fitting for the combined size–strain–stress–texture determination in thin film diffraction. X-ray techniques for advanced materials, nanostructures and thin films: from laboratory sources to synchrotron radiation. In: Proceedings of the EMRS 2009 Spring Meeting—Symposium R 268(3–4):334–340. doi: 10.1016/j.nimb.2009.09.053

  • Lutterotti L, Chateigner D, Ferrari S, Ricote J (2004) Texture, residual stress and structural analysis of thin films using a combined X-ray analysis. In: Proceedings of symposium m on optical and x-ray metrology for advanced device materials characterization, of the E-MRS 2003 Spring Conference 450(1):34–41. doi: 10.1016/j.tsf.2003.10.150

  • Mahoney W, Andres RP (1995) Aerosol synthesis of nanoscale clusters using atmospheric arc evaporation. Mater Sci Eng A 204(1–2):160–164. doi:10.1016/0921-5093(95)09953-0

    Article  Google Scholar 

  • Manoj Kumar BV, Basu B, Vizintin J, Kalin M (2008) Tribochemistry in sliding wear of TiCN-Ni-based cermets. J Mater Res 23(5):1214–1227. doi:10.1557/jmr.2008.0165

    Article  Google Scholar 

  • Mehta P, Singh AK, Kingon AI (1991) Nonthermal microwave plasma synthesis of crystalline titanium oxide and titanium nitride nanoparticles. MRS Proc 249:153–158. doi:10.1557/PROC-249-153

    Article  Google Scholar 

  • Mitrofanov B, Mazza A, Pfender E, Ronsheim P, Toth LE (1981) D.C. arc plasma titanium and vanadium compound synthesis from metal powders and gas phase non-metals. Mater Sci Eng 48(1):21–26. doi:10.1016/0025-5416(81)90062-8

    Article  Google Scholar 

  • Mondal B, Das P, Singh S (2008) Advanced WC–Co cermet composites with reinforcement of TiCN prepared by extended thermal plasma route. Mater Sci Eng A 498(1–2):59–64. doi:10.1016/j.msea.2007.10.127

    Article  Google Scholar 

  • Monteverde F, Medri V, Bellosi A (2001) Synthesis of ultrafine titanium carbonitride powders. Appl Organomet Chem 15(5):421–429. doi:10.1002/aoc.164

    Article  Google Scholar 

  • Mu Y, Wang M, Yu D (2011) Synthesis of Ti(CN) powders by combustion reaction from Ti powder and a novel carbon–nitrogen precursor. Int J Refract Met H 29(2):326–328. doi:10.1016/j.ijrmhm.2010.10.001

    Article  Google Scholar 

  • Pfender E (1999) Thermal plasma technology: where do we stand and where are we going? Plasma Chem Plasma Proc 19(1):1–31. doi:10.1023/A:1021899731587

    Article  Google Scholar 

  • Rietveld H (1967) Line profiles of neutron powder-diffraction peaks for structure refinement. Acta Crystallogr 22(1):151–152. doi:10.1107/S0365110X67000234

    Article  Google Scholar 

  • Rietveld H (1969) A profile refinement method for nuclear and magnetic structures. J Appl Crystallogr 2(2):65–71. doi:10.1107/S0021889869006558

    Article  Google Scholar 

  • Seplyarskii BS, Brauer GB, Tarasov AG (2011) Combustion of the gasless system Ti + 0.5C in a nitrogen coflow. Combust Explos Shock 47(3):294–301. doi:10.1134/S0010508211030063

    Article  Google Scholar 

  • Shen G, Tang K, An C, Yang Q, Wang C, Qian Y (2002) A simple route to prepare nanocrystalline titanium carbonitride. Mater Res Bull 37(6):1207–1211. doi:10.1016/S0025-5408(02)00736-5

    Article  Google Scholar 

  • Stein M, Kiesler D, Kruis FE (2013) Effect of carrier gas composition on transferred arc metal nanoparticle synthesis. J Nanopart Res 15(1):1–14. doi:10.1007/s11051-012-1400-9

    Article  Google Scholar 

  • Tanaka K, Ishizaki K, Yumoto S, Egashira T, Uda M (1987) Production of ultra-fine silicon powder by the arc plasma method. J Mater Sci 22(6):2192–2198. doi:10.1007/s11051-012-1400-9

    Article  Google Scholar 

  • Thompson GS, Harmer MP (2011) Nanoscale ceramic composites. In: Buschow KHJ, Cahn RW, Flemings MC, Ilschner B, Kramer EJ, Mahajan S, Veyssière P (eds) Encyclopedia of materials: science and technology, 2nd edn. Elsevier, Oxford, pp 5927–5930

    Google Scholar 

  • Wang Y, Chen K, Zhou H (2005) Combustion synthesis of Ti(C,N) powder. Key Eng Mat 280–283:1421–1424. doi:10.4028/www.scientific.net/KEM.280-283.1421

    Article  Google Scholar 

  • Yang Q, Lengauer W, Koch T, Scheerer M, Smid I (2000) Hardness and elastic properties of Ti(CxN1-x), Zr(CxN1-x) and Hf(CxN1-x). J Alloy Compd 309(1–2):L5. doi:10.1016/S0925-8388(00)01057-4

    Article  Google Scholar 

  • Yatsui K, Grigoriu C, Masugata K, Jiang W, Sonegawa T (1997) Preparation of thin films and nanosize powders by intense, pulsed ion beam evaporation. Jpn J Appl Phys 1 36(7 SUPPL. B):4928–4934. doi:10.1143/JJAP.36.4928

    Article  Google Scholar 

  • Yeh C, Chen Y (2005) Direct formation of titanium carbonitrides by SHS in nitrogen. Ceram Int 31(5):719–729. doi:10.1016/j.ceramint.2004.07.013

    Article  Google Scholar 

  • Yin F, Zhou L, Xu Z, Xue B, Jiang X (2009) Synthesis of nanocrystalline titanium carbonitride during milling of titanium and carbon in nitrogen atmosphere. J Alloy Compd 470(1–2):369–374. doi:10.1016/j.jallcom.2008.02.073

    Article  Google Scholar 

  • Young RM, Pfender E (1985) Generation and behavior of fine particles in thermal plasmas-A review. Plasma Chem Plasma Process 5(1):1–37. doi:10.1007/BF00567907

    Article  Google Scholar 

  • Zhang JP, Shi LY, Feng X (2008) Low pressure pyrolysis of melamine: novel route to preparing titanium carbonitride nanocrystals. Mater Technol 23(3):158–160. doi:10.1179/175355508X310197

    Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the Deutsche Forschungsgemeinschaft (DFG) in the framework of the Collaborative Research Centre on “Nanoparticles from the gas phase: formation, structure and properties” (SFB 445).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Kiesler.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kiesler, D., Bastuck, T., Theissmann, R. et al. Plasma synthesis of titanium nitride, carbide and carbonitride nanoparticles by means of reactive anodic arc evaporation from solid titanium. J Nanopart Res 17, 152 (2015). https://doi.org/10.1007/s11051-015-2967-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-015-2967-8

Keywords

Navigation