Skip to main content
Log in

Pt–Pd bimetallic nanoparticles on MWCNTs: catalyst for hydrogen peroxide electrosynthesis

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Bimetallic nanoparticles of Pt–Pd were deposited by the microemulsion method on a multiwall carbon nanotube (MWCNTs) to obtain a Pt–Pd/MWCNTs for electrocatalytic reduction of O2 to H2O2. The activity and selectivity of the catalyst was determined qualitatively by the rotating disk electrode method in acidic medium. The catalyst was spray-coated onto a reticulated vitreous carbon substrate and quantitatively was tested in bulk electrolysis for 20 min under potentiostatic conditions (0.5 V vs Ag/AgCl) in a 0.5 M H2SO4 electrolyte using dissolved O2. The bulk electrolysis experiments show that the Pt–Pd/MWCNTs catalyst is more efficient for H2O2 electrogeneration than a MWCNTs catalyst. Nitrobenzene degradation by electrogenerated H2O2 alone and Electro-Fenton process were also tested. Our results show that both processes decompose nitrobenzene, but the Electro-Fenton process does it more efficiently. The prepared nanoparticulated catalyst shows a great potential in environmental applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Alexeyeva N, Kozlova J, Sammelselg V, Ritslaid P, Mändar H, Tammeveski K (2010) Electrochemical and surface characterization of gold nanoparticle decorated multi-walled carbon nanotubes. Appl Surf Sci 256:3040–3046

    Article  CAS  Google Scholar 

  • Alonso-Nuñez G, Lara-Romero J, Paraguay-Delgado F, Sánchez-Castañeda FM, Jiménez-Sandoval S (2010) Temperature optimization of CNT synthesis by spray pyrolysis of alpha-pinene as the carbon source. J Exp Nanosci 5:52–60

    Article  Google Scholar 

  • Assumpçao MHMT, Moraes A, De Souza RFB, Gaubeur I, Oliveira RTS, Antonin VS, Malpass GRP, Rocha RS, Calegaro ML, Lanza MRV, Santos MC (2012) Low content cerium oxide nanoparticles on carbon for hydrogen peroxide electrosynthesis. Appl Catal A 411–412:1–6

    Google Scholar 

  • Badelino C, Rodriguez CA, Bertazzoli R (2007) Oxidation of herbicides by in situ synthesized hydrogen peroxide and Fenton’s reagent in an electrochemical flow reactor: study of the degradation of 2,4-dichlorophenoxyacetic acid. J Appl Electrochem 37:451–459

    Article  Google Scholar 

  • Bard AJ, Faulkner LR (2000) Electrochemical methods-fundamentals and applications. Wiley, New York

    Google Scholar 

  • Bonakdarpour A, Esau D, Cheng H, Wang A, Gyenge E, Wilkinson DP (2011) Preparation and electrochemical studies of metal–carbon composite catalysts for small-scale electrosynthesis of H2O2. Electrochim Acta 56:9074–9081

    Article  CAS  Google Scholar 

  • Brillas E, Casado J (2002) Aniline degradation by Electro-Fenton® and peroxi-coagulation processes using a flow reactor for wastewater treatment. Chemosphere 47:241–248

    Article  CAS  Google Scholar 

  • Brillas E, Sirés I, Oturan MA (2009) Electro-Fenton process and related electrochemical technologies based on Fenton’s reaction chemistry. Chem Rev 109:6570–6631

    Article  CAS  Google Scholar 

  • Chu YY, Qian Y, Wang WJ, Deng XL (2012) A dual-cathode Electro-Fenton oxidation coupled with anodic oxidation system used for 4-nitrophenol degradation. J Hazard Mater 199–200:179–185

    Article  Google Scholar 

  • Frew JE, Jones P, Scholes G (1983) Spectrophotometric determination of hydrogen peroxide and organic hydroperoxides at low concentrations in aqueous solution. Anal Chim Acta 155:139–150

    Article  CAS  Google Scholar 

  • Gyenge EL, Oloman CW (2001) Influence of surfactants on the electroreduction of oxygen to hydrogen peroxide in acid and alkaline electrolytes. J Appl Electrochem 31:233–243

    Article  CAS  Google Scholar 

  • Gyenge EL, Oloman CW (2005) The surfactant-promoted electroreduction of oxygen to hydrogen peroxide: reactor engineering aspects. J Electrochem Soc 152:D42–D53

    Article  CAS  Google Scholar 

  • Harrington T, Pletcher D (1999) The removal of low levels of organics from aqueous solutions using Fe(II) and hydrogen peroxide formed in situ at gas diffusion electrodes. J Electrochem Soc 146:2983–2989

    Article  CAS  Google Scholar 

  • Jaouen F, Dodelet JP (2007) Average turn-over frequency of O2 electro-reduction for Fe/N/C and Co/N/C catalysts in PEFCs. Electrochim Acta 52:5975–5984

    Article  CAS  Google Scholar 

  • Kinoshita K (1992) Oxygen electrochemical technology. Wiley, New York

    Google Scholar 

  • Marcotte S, Villers D, Guillet N, Roue L, Dodelet JP (2004) Electroreduction of oxygen on Co-based catalysts: determination of the parameters affecting the two-electron transfer reaction in an acid medium. Electrochim Acta 50:179–188

    Article  CAS  Google Scholar 

  • Matilainen A, Sillanpää M (2010) Removal of natural organic matter from drinking water by advanced oxidation processes. Chemosphere 80:351–365

    Article  CAS  Google Scholar 

  • Morales-Acosta D, Arriaga LG, Alvarez-Contreras L, Fraire-Luna S, Rodriguez-Varela FJ (2009) Evaluation of Pt40Pd60/MWCNT electrocatalyst as ethylene glycol-tolerant oxygen reduction cathodes. Electrochem Commun 11:1414–1417

    Article  CAS  Google Scholar 

  • Özcan A, Oturan MA, Oturan N, Sahin Y (2009) Removal of acid orange 7 from water by electrochemically generated Fenton’s reagent. J Hazard Mater 163:1213–1220

    Article  Google Scholar 

  • Panizza M, Cerisola G (2009) Direct and mediated anodic oxidation of organic pollutants. Chem Rev 109:6541–6569

    Article  CAS  Google Scholar 

  • Pignatello J, Oliveros E, MacKay A (2006) Advanced oxidation processes for organic contaminant destruction based on the Fenton reaction and related chemistry. Crit Rev Environ Sci Technol 36:1–84

    Article  CAS  Google Scholar 

  • Pimentel M, Oturan N, Dezotti M, Oturan MA (2008) Phenol degradation by advanced electrochemical oxidation process Electro-Fenton using a carbon felt cathode. Appl Catal B 83:140–149

    Article  CAS  Google Scholar 

  • Riedl HJ, Pfleiderer G (1939). US Patent 2,158,525

  • Sarapuu A, Vaik K, Schiffrin DJ, Tammevesky K (2003) Electrochemical reduction of oxygen on anthraquinone-modified glassy carbon electrodes in alkaline solution. J Electroanal Chem 541:23–29

    Article  CAS  Google Scholar 

  • Savage N, Diallo MS (2005) Nanomaterials and water purification: opportunities and challenges. J Nanopart Res 7:331–342

    Article  CAS  Google Scholar 

  • Wang Q, Lemley AT (2001) Kinetic model and optimization of 2,4-D degradation by anodic Fenton treatment. Environ Sci Technol 35:4509–4514

    Article  CAS  Google Scholar 

  • Wang CT, Hu JL, Chou WL, Kuo YM (2008) Removal of color from real dyeing wastewater by Electro-Fenton technology using a three-dimensional graphite cathode. J Hazard Mater 152:601–606

    Article  CAS  Google Scholar 

  • Xu H, Zeng L, Xing S, Xian Y, Jin L (2008) Microwave-irradiated synthesized platinum nanoparticles/carbon nanotubes for oxidative determination of trace arsenic(III). Electrochem Commun 10:551–554

    Article  CAS  Google Scholar 

  • Xu FY, Song TS, Xu Y, Chen YW, Zhu SM, Shen SB (2009) A new cathode using CeO2/MWNT for hydrogen peroxide synthesis through a fuel cell. J Rare Earths 27:128–133

    Article  Google Scholar 

  • Ye W, Kou H, Liu Q, Yan J, Zhou F, Wang Ch (2012) Electrochemical deposition of Au–Pt alloy particles with cauliflower-like microstructures for electrocatalytic methanol oxidation. Int J Hydrogen Energy 37:4088–4097

    Article  CAS  Google Scholar 

  • Zhao C, Ji L, Liu H, Hu G, Zhang S, Yang M, Yang Z (2004) Functionalized carbon nanotubes containing isocyanate groups. J Solid State Chem 177:4394–4398

    Article  CAS  Google Scholar 

  • Zhao GH, Pang YN, Liu L, Gao JX, Lv BY (2010) Highly efficient and energy-saving sectional treatment of landfill leachate with a synergistic system of biochemical treatment and electrochemical oxidation on a boron-doped diamond electrode. J Hazard Mater 179:1078–1083

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial support of the Mexican Council of Science and Technology (CONACyT) under Grants RED-2012-194153 and 155388, The National Laboratory for Nanotech at CIMAV Chihuahua, Mexico, is also acknowledged for use of its electron microscopy facilities. We thank Angel Licea-Claverie for comments and review of the manuscript. We also thank Carlos Ornelas for his technical help in electron microscopy and Eloisa Aparicio for performing the X-ray diffraction analysis. M. Beltrán-Gastélum, C. Silva-Carrillo, and M. I. Salazar-Gastélum are grateful to CONACyT for providing the scholarship for their doctoral thesis research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. M. Félix-Navarro.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Félix-Navarro, R.M., Beltrán-Gastélum, M., Salazar-Gastélum, M.I. et al. Pt–Pd bimetallic nanoparticles on MWCNTs: catalyst for hydrogen peroxide electrosynthesis. J Nanopart Res 15, 1802 (2013). https://doi.org/10.1007/s11051-013-1802-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-013-1802-3

Keywords

Navigation