Skip to main content

Advertisement

Log in

Cell uptake mechanisms of PAMAM G4-FITC dendrimer in human myometrial cells

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

The high incidence and severity of diseases which involve smooth muscle dysfunction dictates the need of continued search for novel therapeutic strategies to treat these conditions. Dendrimers are branched macromolecules with multiple end-groups that can be functionalized for applications which include drug delivery. There is no data regarding the cellular uptake mechanisms used by dendrimers in smooth muscle human myometrial cells (HMC). Polyamidoamine G4 dendrimers were conjugated with fluorescein isothiocyanate (FITC) and the resulting conjugate (G4-FITC) was characterized using high-performance liquid chromatography, nuclear magnetic resonance, and atomic force microscopy. G4-FITC showed to have no significant effect on the primary culture HMC viability up to 48 h. HMC incubated with G4-FITC were analyzed by laser confocal microscopy. Peri-nuclear fluorescence distribution was observed at 5 h of incubation or more (24, 36, and 48 h). At 24 h, G4-FITC partially co-localized with lysotracker. Uptake of G4-FITC by HMC was slightly inhibited by filipin (8.0 ± 3.9 %) and significantly inhibited by chlorpromazine (63.5 ± 3.7 %). In non-electroporated HMC, G4-FITC was never observed inside the cell nucleus. Interestingly, we detected G4-FITC inside the nuclear domain of some electroporated cells. Thus, electroporation changed intracellular G4-FITC localization. Isolated nuclei of HMC incubated with G4-FITC showed fluorescence signal inside the nuclear domain. The results suggest that in HMC, G4-FITC is taken up by clathrin-mediated endocytosis with endosomal and lysosomal localization at 24 h. The combination of electroporation and dendrimers could be an interesting technology to electrotransfer drugs into smooth muscle cells cytosol and nuclei.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Aksoy P, Escande C, White TA, Thompson M, Soares S, Benech JC, Chini EN (2006) Regulation of SIRT 1 mediated NAD dependent deacetylation: a novel role for the multifunctional enzyme CD38. Biochem Biophys Res Commun 349(1):353–359. doi:10.1016/j.bbrc.2006.08.066 S0006-291X(06)01852-3 [pii]

    Article  CAS  Google Scholar 

  • Barata H, Thompson M, Zielinska W, Han YS, Mantilla CB, Prakash YS, Feitoza S, Sieck G, Chini EN (2004) The role of cyclic-ADP-ribose-signaling pathway in oxytocin-induced Ca2+ transients in human myometrium cells. Endocrinology 145(2):881–889

    Article  CAS  Google Scholar 

  • Benech JC, Escande C, Sotelo JR (2005) Relationship between RNA synthesis and the Ca2+-filled state of the nuclear envelope store. Cell Calcium 38(2):101–109

    Article  CAS  Google Scholar 

  • Botasini S, Dalchiele A, Benech JC, Méndez E (2011) Stabilization of triangular and heart-shaped plane silver nanoparticles using 2-thiobarbituric acid. J Nanopart Res 137:2819–2828

    Article  Google Scholar 

  • Cardenas C, Liberona JL, Molgo J, Colasante C, Mignery GA, Jaimovich E (2005) Nuclear inositol 1,4,5-trisphosphate receptors regulate local Ca2+ transients and modulate cAMP response element binding protein phosphorylation. J Cell Sci 118(Pt 14):3131–3140

    Article  CAS  Google Scholar 

  • Cho K, Wang X, Nie S, Chen ZG, Shin DM (2008) Therapeutic nanoparticles for drug delivery in cancer. Clin Cancer Res 14(5):1310–1316

    Article  CAS  Google Scholar 

  • Escande C, Arbildi P, Chini E, Benech JC (2007) Nuclear calcium signalling: the nuclear envelope store and the regulation of transcription. In: Demasi AR (ed) Cellular signaling and apoptosis research. Nova Science Publisher, Inc., New York, pp 201–219

    Google Scholar 

  • Foster H, Reynolds A, Stenbeck G, Dong J, Thomas P, Karteris E (2010) Internalisation of membrane progesterone receptor-alpha after treatment with progesterone: potential involvement of a clathrin-dependent pathway. Mol Med Rep 3(1):27–35. doi:10.3892/mmr_00000214

    CAS  Google Scholar 

  • Gerace L (1992) Molecular trafficking across the nuclear pore complex. Curr Opin Cell Biol 4(4):637–645

    Article  CAS  Google Scholar 

  • Goldenberg RL (2002) The management of preterm labor. Obstet Gynecol 100(5 Pt 1):1020–1037

    Article  Google Scholar 

  • Hamoudeh M, Kamleh MA, Diab R, Fessi H (2008) Radionuclides delivery systems for nuclear imaging and radiotherapy of cancer. Adv Drug Deliv Rev 60(12):1329–1346

    Article  CAS  Google Scholar 

  • He H, Li Y, Jia XR, Du J, Ying X, Lu WL, Lou JN, Wei Y (2011) PEGylated poly(amidoamine) dendrimer-based dual-targeting carrier for treating brain tumors. Biomaterials 32(2):478–487

    Article  CAS  Google Scholar 

  • Heller R, Jaroszeski M, Atkin A, Moradpour D, Gilbert R, Wands J, Nicolau C (1996) In vivo gene electroinjection and expression in rat liver. FEBS Lett 389(3):225–228

    Article  CAS  Google Scholar 

  • Huang M, Ma Z, Khor E, Lim LY (2002) Uptake of FITC-chitosan nanoparticles by A549 cells. Pharm Res 19(10):1488–1494

    Article  CAS  Google Scholar 

  • Kitchens KM, Foraker AB, Kolhatkar RB, Swaan PW, Ghandehari H (2007) Endocytosis and interaction of poly (amidoamine) dendrimers with Caco-2 cells. Pharm Res 24(11):2138–2145

    Article  CAS  Google Scholar 

  • Kolhe P, Misra E, Kannan RM, Kannan S, Lieh-Lai M (2003) Drug complexation, in vitro release and cellular entry of dendrimers and hyperbranched polymers. Int J Pharm 259(1–2):143–160 S0378517303002254 [pii]

    Article  CAS  Google Scholar 

  • Kukowska-Latallo JF, Bielinska AU, Johnson J, Spindler R, Tomalia DA, Baker JR Jr (1996) Efficient transfer of genetic material into mammalian cells using starburst polyamidoamine dendrimers. Proc Natl Acad Sci U S A 93(10):4897–4902

    Article  CAS  Google Scholar 

  • Kukowska-Latallo JF, Chen C, Eichman J, Bielinska AU, Baker JR Jr (1999) Enhancement of dendrimer-mediated transfection using synthetic lung surfactant exosurf neonatal in vitro. Biochem Biophys Res Commun 264(1):253–261

    Article  CAS  Google Scholar 

  • Li J, Piehler LT, Qin D, Baker JJ, Tomalia DA (2000) Visualization and characterization of poly(amidoamine) dendrimers by Atomic Force Microscopy. Langmuir 16:5613–5616

    Article  CAS  Google Scholar 

  • Mukherjee S, Ghosh RN, Maxfield FR (1997) Endocytosis. Physiol Rev 77(3):759–803

    CAS  Google Scholar 

  • Neumann E, Schaefer-Ridder M, Wang Y, Hofschneider PH (1982) Gene transfer into mouse lyoma cells by electroporation in high electric fields. EMBO J 1(7):841–845

    CAS  Google Scholar 

  • Pante N, Aebi U (1993) The nuclear pore complex. J cell biol 122(5):977–984

    Article  CAS  Google Scholar 

  • Perumal OP, Inapagolla R, Kannan S, Kannan RM (2008) The effect of surface functionality on cellular trafficking of dendrimers. Biomaterials 29(24–25):3469–3476

    Article  CAS  Google Scholar 

  • Qin L, Pahud DR, Ding Y, Bielinska AU, Kukowska-Latallo JF, Baker JR Jr, Bromberg JS (1998) Efficient transfer of genes into murine cardiac grafts by starburst polyamidoamine dendrimers. Hum Gene Ther 9(4):553–560

    Article  CAS  Google Scholar 

  • Radoslav S, Laibin L, Eisenberg A, Maysinger D (2003) Micellar nanocontainers distribute to defined cytoplasmic organelles. Science 300(5619):615–618

    Article  Google Scholar 

  • Sahay G, Alakhova DY, Kabanov AV (2010) Endocytosis of nanomedicines. J Control Release 145(3):182–195

    Article  CAS  Google Scholar 

  • Schnitzer JE, Oh P, Pinney E, Allard J (1994) Filipin-sensitive caveolae-mediated transport in endothelium: reduced transcytosis, scavenger endocytosis, and capillary permeability of select macromolecules. J Cell Biol 127(5):1217–1232

    Article  CAS  Google Scholar 

  • Soares S, Thompson M, White T, Isbell A, Yamasaki M, Prakash Y, Lund FE, Galione A, Chini EN (2007) NAADP as a second messenger: neither CD38 nor base-exchange reaction are necessary for in vivo generation of NAADP in myometrial cells. Am J Physiol Cell Physiol 292(1):C227–C239

    Article  CAS  Google Scholar 

  • Tan TC, Devendra K, Tan LK, Tan HK (2006) Tocolytic treatment for the management of preterm labour: a systematic review. Singap Med J 47(5):361–366

    CAS  Google Scholar 

  • Tassano MR, Audicio PF, Gambini JP, Fernandez M, Damian JP, Moreno M, Chabalgoity JA, Alonso O, Benech JC, Cabral P (2011) Development of 99mTc(CO)(3)-dendrimer-FITC for cancer imaging. Bioorg Med Chem Lett 21(18):5598–5601

    Article  CAS  Google Scholar 

  • Tsong TY (1991) Electroporation of cell membranes. Biophys J 60(2):297–306. doi:10.1016/S0006-3495(91)82054-9 S0006-3495(91)82054-9 [pii]

    Article  CAS  Google Scholar 

  • Wang LH, Rothberg KG, Anderson RG (1993) Mis-assembly of clathrin lattices on endosomes reveals a regulatory switch for coated pit formation. J Cell Biol 123(5):1107–1117

    Article  CAS  Google Scholar 

  • Wang Y, Bai Y, Price C, Boros P, Qin L, Bielinska AU, Kukowska-Latallo JF, Baker JR Jr, Bromberg JS (2001) Combination of electroporation and DNA/dendrimer complexes enhances gene transfer into murine cardiac transplants. Am J Transplant 1(4):334–338

    Article  CAS  Google Scholar 

  • Weaver J, Chizmadzhev Y (1996) Theory of electroporation: a review. Bioelectrochem Bioenerg 41(2):135–160

    Article  CAS  Google Scholar 

  • Wells JM, Li LH, Sen A, Jahreis GP, Hui SW (2000) Electroporation-enhanced gene delivery in mammary tumors. Gene Ther 7(7):541–547

    Article  CAS  Google Scholar 

  • Wolinsky JB, Grinstaff MW (2008) Therapeutic and diagnostic applications of dendrimers for cancer treatment. Adv Drug Deliv Rev 60(9):1037–1055. doi:10.1016/j.addr.2008.02.012 S0169-409X(08)00060-4 [pii]

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The research described in this article was supported by the Scientific Research in Cancer Support Program of “Comisión Honoraria de Lucha contra el Cáncer,” by the “Agencia Nacional de Investigación e Innovación” from Uruguay (ANII, FCE_2009_1_2887) and by PEDECIBA. We would like to thank Pereira Rossell Hospital, Montevideo, Uruguay, for providing myometrial tissue samples. We deeply appreciate the collaboration of: Andrés Alberro, from our laboratory, in preparing the figures and Jelver Sierra, from “Grupo de estudo de Interações entre Macro e Micromoléculas”—Universidade Federal de Santa Catarina—in making zetasizer measurements. English linguistic precision was revised by Ms. Rita Pessano.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan C. Benech.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oddone, N., Zambrana, A.I., Tassano, M. et al. Cell uptake mechanisms of PAMAM G4-FITC dendrimer in human myometrial cells. J Nanopart Res 15, 1776 (2013). https://doi.org/10.1007/s11051-013-1776-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-013-1776-1

Keywords

Navigation