Skip to main content

Advertisement

Log in

Oleyl-hyaluronan micelles loaded with upconverting nanoparticles for bio-imaging

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Hyaluronan (HA) represents an interesting polymer for nanoparticle coating due to its biocompatibility and enhanced cell interaction via CD44 receptor. Here, we describe incorporation of oleate-capped β–NaYF4:Yb3+, Er3+ nanoparticles (UCNP-OA) into amphiphilic HA by microemulsion method. Resulting structures have a spherical, micelle-like appearance with a hydrodynamic diameter of 180 nm. UCNP-OA-loaded HA micelles show a good stability in PBS buffer and cell culture media. The intensity of green emission of UCNP-OA-loaded HA micelles in water is about five times higher than that of ligand-free UCNP, indicating that amphiphilic HA effectively protects UCNP luminescence from quenching by water molecules. We found that UCNP-OA-loaded HA micelles in concentrations up to 50 μg mL−1 increase cell viability of normal human dermal fibroblasts (NHDF), while viability of human breast adenocarcinoma cells MDA–MB–231 is reduced at these concentrations. The utility of UCNP-OA-loaded HA micelles as a bio-imaging probe was demonstrated in vitro by successful labelling of NHDF and MDA–MB–231 cells overexpressing the CD44 receptor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Auzel F (2003) Upconversion and anti-stokes processes with f and d ions in solids. Chem Rev 104:139–174. doi:10.1021/cr020357g

    Article  Google Scholar 

  • Bae YM, Park YI, Nam SH et al (2012) Endocytosis, intracellular transport, and exocytosis of lanthanide-doped upconverting nanoparticles in single living cells. Biomaterials 33:9080–9086. doi:10.1016/j.biomaterials.2012.08.039

    Article  Google Scholar 

  • Bogdan N, Vetrone F, Roy R, Capobianco JA (2010) Carbohydrate-coated lanthanide-doped upconverting nanoparticles for lectin recognition. J Mater Chem 20:7543–7550. doi:10.1039/C0JM01617A

    Article  Google Scholar 

  • Bogdan N, Vetrone F, Ozin GA, Capobianco JA (2011) synthesis of ligand-free colloidally stable water dispersible brightly luminescent lanthanide-doped upconverting nanoparticles. Nano Lett 11:835–840. doi:10.1021/nl1041929

    Article  Google Scholar 

  • Boyer J-C, Manseau M-P, Murray JI, van Veggel FCJM (2010) Surface modification of upconverting NaYF4 nanoparticles with PEG−Phosphate Ligands for NIR (800 nm) biolabeling within the biological window. Langmuir 26:1157–1164. doi:10.1021/la902260j

    Article  Google Scholar 

  • Budijono SJ, Shan J, Yao N et al (2010) Synthesis of stable block-copolymer-protected NaYF4:Yb3+, Er3+ up-converting phosphor nanoparticles. Chem Mater 22:311–318. doi:10.1021/cm902478a

    Article  Google Scholar 

  • Cao P, Tong L, Hou Y et al (2012) Improving lanthanide nanocrystal colloidal stability in competitive aqueous buffer solutions using multivalent PEG-phosphonate ligands. Langmuir 28:12861–12870. doi:10.1021/la302690h

    Article  Google Scholar 

  • Cen Y, Wu Y-M, Kong X-J et al (2014) phospholipid-modified upconversion nanoprobe for ratiometric fluorescence detection and imaging of phospholipase D in cell lysate and in living cells. Anal Chem 86:7119–7127. doi:10.1021/ac5016694

    Article  Google Scholar 

  • Chatterjee DK, Rufaihah AJ, Zhang Y (2008) Upconversion fluorescence imaging of cells and small animals using lanthanide doped nanocrystals. Biomaterials 29:937–943. doi:10.1016/j.biomaterials.2007.10.051

    Article  Google Scholar 

  • Cheng L, Yang K, Zhang S et al (2010) Highly-sensitive multiplexed in vivo imaging using pegylated upconversion nanoparticles. Nano Res 3:722–732. doi:10.1007/s12274-010-0036-2

    Article  Google Scholar 

  • Chen B, Dong B, Wang J et al (2013) Amphiphilic silane modified NaYF4:Yb, Er loaded with Eu(TTA)3(TPPO)2 nanoparticles and their multi-functions: dual mode temperature sensing and cell imaging. Nanoscale 5:8541–8549. doi:10.1039/C3NR02670A

    Article  Google Scholar 

  • Chen H, Qi B, Moore T et al (2014) Multifunctional yolk-in-shell nanoparticles for pH-triggered drug release and imaging. Small 10:3364–3370. doi:10.1002/smll.201303769

    Article  Google Scholar 

  • Chen Z, Chen H, Hu H et al (2008) Versatile synthesis strategy for carboxylic acid−functionalized upconverting nanophosphors as biological labels. J Am Chem Soc 130:3023–3029. doi:10.1021/ja076151k

    Article  Google Scholar 

  • Cui S, Chen H, Zhu H et al (2012) Amphiphilic chitosan modified upconversion nanoparticles for in vivo photodynamic therapy induced by near-infrared light. J Mater Chem 22:4861–4873. doi:10.1039/C2JM16112E

    Article  Google Scholar 

  • Cui S, Yin D, Chen Y et al (2013) In vivo targeted deep-tissue photodynamic therapy based on near-infrared light triggered upconversion nanoconstruct. ACS Nano 7:676–688. doi:10.1021/nn304872n

    Article  Google Scholar 

  • Gu Z, Yan L, Tian G et al (2013) Recent advances in design and fabrication of upconversion nanoparticles and their safe theranostic applications. Adv Mater 25:3758–3779. doi:10.1002/adma.201301197

    Article  Google Scholar 

  • Huerta-Angeles G, Bobek M, Příkopová E et al (2014) Novel synthetic method for the preparation of amphiphilic hyaluronan by means of aliphatic aromatic anhydrides. Carbohydr Polym 111:883–891. doi:10.1016/j.carbpol.2014.05.035

    Article  Google Scholar 

  • Hu H, Yu M, Li F et al (2008) Facile epoxidation strategy for producing amphiphilic up-converting rare-earth nanophosphors as biological labels. Chem Mater 20:7003–7009. doi:10.1021/cm801215t

    Article  Google Scholar 

  • Jiang G, Pichaandi J, Johnson NJJ et al (2012) An effective polymer cross-linking strategy to obtain stable dispersions of Upconverting NaYF4 nanoparticles in buffers and biological growth media for biolabeling applications. Langmuir 28:3239–3247. doi:10.1021/la204020m

    Article  Google Scholar 

  • Johnson NJJ, Sangeetha NM, Boyer J-C, van Veggel FCJM (2010) Facile ligand-exchange with polyvinylpyrrolidone and subsequent silica coating of hydrophobic upconverting beta-NaYF(4):Yb(3+)/Er(3+) nanoparticles. Nanoscale 2:771–777. doi:10.1039/b9nr00379g

    Article  Google Scholar 

  • Kim H, Choi J-S, Kim KS et al (2012) Flt1 peptide-hyaluronate conjugate micelle-like nanoparticles encapsulating genistein for the treatment of ocular neovascularization. Acta Biomater 8:3932–3940. doi:10.1016/j.actbio.2012.07.016

    Article  Google Scholar 

  • Kim B, Yang J, Lim E-K et al (2013) Double-ligand modulation for engineering magnetic nanoclusters. Nanoscale Res Lett 8:104. doi:10.1186/1556-276X-8-104

    Article  Google Scholar 

  • Li L-L, Zhang R, Yin L et al (2012) Biomimetic surface engineering of lanthanide-doped upconversion nanoparticles as versatile bioprobes. Angew Chem Int Ed 51:6121–6125. doi:10.1002/anie.201109156

    Article  Google Scholar 

  • Lim E-K, Kim H-O, Jang E et al (2011) Hyaluronan-modified magnetic nanoclusters for detection of CD44-overexpressing breast cancer by MR imaging. Biomaterials 32:7941–7950. doi:10.1016/j.biomaterials.2011.06.077

    Article  Google Scholar 

  • Liu Y, Sun J, Cao W et al (2011) Dual targeting folate-conjugated hyaluronic acid polymeric micelles for paclitaxel delivery. Int J Pharm. doi:10.1016/j.ijpharm.2011.09.006

    Google Scholar 

  • Liu Q, Feng W, Yang T et al (2013) Upconversion luminescence imaging of cells and small animals. Nat Protoc 8:2033–2044. doi:10.1038/nprot.2013.114

    Article  Google Scholar 

  • Liu Y, Sun J, Lian H et al (2014) Folate and CD44 receptors dual-targeting hydrophobized hyaluronic acid paclitaxel-loaded polymeric micelles for overcoming multidrug resistance and improving tumor distribution. J Pharm Sci 103:1538–1547. doi:10.1002/jps.23934

    Article  Google Scholar 

  • Muhr V, Wilhelm S, Hirsch T, Wolfbeis OS (2014) Upconversion nanoparticles: from hydrophobic to hydrophilic surfaces. Acc Chem Res 47:3481–3493. doi:10.1021/ar500253g

    Article  Google Scholar 

  • Nam SH, Bae YM, Park YI et al (2011) Long-term real-time tracking of lanthanide ion doped upconverting nanoparticles in living cells. Angew Chem Int Ed 50:6093–6097. doi:10.1002/anie.201007979

    Article  Google Scholar 

  • Park YI, Kim JH, Lee KT et al (2009) Nonblinking and nonbleaching upconverting nanoparticles as an optical imaging nanoprobe and T1 magnetic resonance imaging contrast agent. Adv Mater 21:4467–4471. doi:10.1002/adma.200901356

    Article  Google Scholar 

  • Pichaandi J, Boyer J-C, Delaney KR, van Veggel FCJM (2011) Two-photon upconversion laser (Scanning and wide-field) microscopy Using Ln3+-Doped NaYF4 upconverting nanocrystals: a critical evaluation of their performance and potential in bioimaging. J Phys Chem C 115:19054–19064. doi:10.1021/jp206345j

    Article  Google Scholar 

  • Renero-Lecuna C, Martín-Rodríguez R, Valiente R et al (2011) Origin of the high upconversion green luminescence efficiency in β-NaYF4:2%Er3+,20%Yb3+. Chem Mater 23:3442–3448. doi:10.1021/cm2004227

    Article  Google Scholar 

  • Ren W, Tian G, Jian S et al (2012) TWEEN coated NaYF4:Yb, Er/NaYF4 core/shell upconversion nanoparticles for bioimaging and drug delivery. RSC Adv 2:7037–7041. doi:10.1039/C2RA20855E

    Article  Google Scholar 

  • Sheridan C, Kishimoto H, Fuchs RK et al (2006) CD44+/CD24- breast cancer cells exhibit enhanced invasive properties: an early step necessary for metastasis. Breast Cancer Res 8:R59. doi:10.1186/bcr1610

    Article  Google Scholar 

  • Šmejkalová D, Nešporová K, Hermannová M et al (2014a) Paclitaxel isomerisation in polymeric micelles based on hydrophobized hyaluronic acid. Int J Pharm 466:147–155. doi:10.1016/j.ijpharm.2014.03.024

    Article  Google Scholar 

  • Šmejkalová D, Nešporová K, Huerta-Angeles G et al (2014b) Selective in vitro anticancer effect of superparamagnetic iron oxide nanoparticles loaded in hyaluronan polymeric micelles. Biomacromolecules 15:4012–4020. doi:10.1021/bm501065q

    Article  Google Scholar 

  • Tian G, Zheng X, Zhang X et al (2015) TPGS-stabilized NaYbF4: Er upconversion nanoparticles for dual-modal fluorescent/CT imaging and anticancer drug delivery to overcome multi-drug resistance. Biomaterials 40:107–116. doi:10.1016/j.biomaterials.2014.11.022

    Article  Google Scholar 

  • Wang L, Draz MS, Wang W et al (2015) The quality of in vivo upconversion fluorescence signals inside different anatomic structures. J Biomed Nanotechnol 11:325–333. doi:10.1166/jbn.2015.1947

    Article  Google Scholar 

  • Wang F, Liu X (2009) Recent advances in the chemistry of lanthanide-doped upconversion nanocrystals. Chem Soc Rev 38:976–989. doi:10.1039/B809132N

    Article  Google Scholar 

  • Wang H, Dong C, Zhao P et al (2014a) Lipid coated upconverting nanoparticles as NIR remote controlled transducer for simultaneous photodynamic therapy and cell imaging. Int J Pharm 466:307–313. doi:10.1016/j.ijpharm.2014.03.029

    Article  Google Scholar 

  • Wang H, Wang S, Liu Z et al (2014b) Upconverting crystal/dextran-g-DOPE with high fluorescence stability for simultaneous photodynamic therapy and cell imaging. Nanotechnology 25:155103. doi:10.1088/0957-4484/25/15/155103

    Article  Google Scholar 

  • Welsher K, McManus SA, Hsia C-H et al (2015) Discovery of protein- and DNA-imperceptible nanoparticle hard coating using gel-based reaction tuning. J Am Chem Soc 137:580–583. doi:10.1021/ja511297d

    Article  Google Scholar 

  • Wen Y, Oh JK (2014) Recent strategies to develop polysaccharide-based nanomaterials for biomedical applications. Macromol Rapid Commun 35:1819–1832. doi:10.1002/marc.201400406

    Google Scholar 

  • Wolfbeis OS (2015) An overview of nanoparticles commonly used in fluorescent bioimaging. Chem Soc Rev. doi:10.1039/C4CS00392F

    Google Scholar 

  • Yan B, Boyer J-C, Branda NR, Zhao Y (2011) Near-infrared light-triggered dissociation of block copolymer micelles using upconverting nanoparticles. J Am Chem Soc 133:19714–19717. doi:10.1021/ja209793b

    Article  Google Scholar 

  • Yi G-S, Chow G-M (2007) Water-soluble NaYF4:Yb, Er(Tm)/NaYF4/Polymer Core/Shell/Shell nanoparticles with significant enhancement of upconversion fluorescence. Chem Mater 19:341–343. doi:10.1021/cm062447y

    Article  Google Scholar 

  • Yu M, Li F, Chen Z et al (2009) Laser scanning up-conversion luminescence microscopy for imaging cells labeled with rare-earth nanophosphors. Anal Chem 81:930–935. doi:10.1021/ac802072d

    Article  Google Scholar 

  • Zhang L, Gao S, Zhang F et al (2014) Activatable hyaluronic acid nanoparticle as a theranostic agent for optical/photoacoustic image-guided photothermal therapy. ACS Nano 8:12250–12258. doi:10.1021/nn506130t

    Article  Google Scholar 

  • Zhou J, Haggerty JG, Milstone LM (1999) Growth and differentiation regulate CD44 expression on human keratinocytes. In Vitro Cell Dev Biol-Animal 35:228–235. doi:10.1007/s11626-999-0031-7

    Article  Google Scholar 

  • Zhou J, Liu Q, Feng W et al (2014) Upconversion luminescent materials: advances and applications. Chem Rev 115:395–465. doi:10.1021/cr400478f

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Klara Slezingrova and Martin Bobek for synthesizing amphiphilic hyaluronan derivatives, Ondrej Zidek for performing STEM analysis, Pavel Odraska for ICP–OES measurements and Martin Cepa for help with luminescence imaging.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martina Pospisilova.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (docx 6,991 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pospisilova, M., Mrazek, J., Matuska, V. et al. Oleyl-hyaluronan micelles loaded with upconverting nanoparticles for bio-imaging. J Nanopart Res 17, 383 (2015). https://doi.org/10.1007/s11051-015-3186-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-015-3186-z

Keywords

Navigation