Skip to main content
Log in

Endocytosis and Interaction of Poly (Amidoamine) Dendrimers with Caco-2 Cells

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

To investigate the internalization and subcellular trafficking of fluorescently labeled poly (amidoamine) (PAMAM) dendrimers in intestinal cell monolayers.

Materials and methods

PAMAM dendrimers with positive or negative surface charge were conjugated to fluorescein isothiocyanate (FITC) and visualized for colocalization with endocytosis markers using confocal microscopy. Effect of concentration, generation and charge on the morphology of microvilli was observed using transmission electron microscopy.

Results

Both cationic and anionic PAMAM dendrimers internalized within 20 min, and differentially colocalized with endocytosis markers clathrin, EEA-1, and LAMP-1. Transmission electron microscopy analysis showed a concentration-, generation- and surface charge-dependent effect on microvilli morphology.

Conclusion

These studies provide visual evidence that endocytic mechanism(s) contribute to the internalization and subcellular trafficking of PAMAM dendrimers across the intestinal cells, and that appropriate selection of PAMAM dendrimers based on surface charge, concentration and generation number allows the application of these polymers for oral drug delivery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

FITC:

fluorescein isothiocyanate

G:

generation

HBSS:

hank’s balanced salt solution

PAMAM:

poly (amidoamine)

References

  1. R. Wiwattanapatapee, B. Carreno-Gomez, N. Malik, and R. Duncan. Anionic PAMAM dendrimers rapidly cross adult rat intestine in vitro: a potential oral delivery system? Pharm. Res. 17(8):991–998 (2000).

    Article  PubMed  CAS  Google Scholar 

  2. K. M. Kitchens, M. E. El-Sayed, and H. Ghandehari. Transepithelial and endothelial transport of poly (amidoamine) dendrimers. Adv. Drug Deliv. Rev. 57(15):2163–2176 (2005).

    Article  PubMed  CAS  Google Scholar 

  3. A. D’Emanuele and D. Attwood. Dendrimer-drug interactions. Adv. Drug Deliv. Rev. 57(15):2147–2162 (2005).

    Article  PubMed  CAS  Google Scholar 

  4. D. A. Tomalia. Birth of a new macromolecular architechture: dendrimers as quantized building blocks for nanoscale synthetic organic chemistry. Aldrichimica Acta 2(2):39–57 (2004).

    Google Scholar 

  5. M. El-Sayed, M. Ginski, C. Rhodes, and H. Ghandehari. Transepithelial transport of poly(amidoamine) dendrimers across Caco-2 cell monolayers. J. Control. Release 81(3):355–365 (2002).

    Article  PubMed  CAS  Google Scholar 

  6. M. El-Sayed, M. Ginski, C. A. Rhodes, and H. Ghandehari. Influence of surface chemistry of poly (amidoamine) dendrimers on Caco-2 cell monolayers. J. Bioact. Compat. Polym. 18(1):7–22 (2003).

    Article  CAS  Google Scholar 

  7. R. Jevprasesphant, J. Penny, D. Attwood, N. B. McKeown, and A. D’Emanuele. Engineering of dendrimer surfaces to enhance transepithelial transport and reduce cytotoxicity. Pharm. Res. 20(10):1543–1550 (2003).

    Article  PubMed  CAS  Google Scholar 

  8. K. M. Kitchens, R. B. Kolhatkar, P. W. Swaan, N. D. Eddington, and H. Ghandehari. Transport of poly(amidoamine) dendrimers across Caco-2 cell monolayers: influence of size, charge and fluorescent labeling. Pharm. Res. 23(12):2818–2826 (2006).

    Article  PubMed  CAS  Google Scholar 

  9. A. D’Emanuele, R. Jevprasesphant, J. Penny, and D. Attwood. The use of a dendrimer-propranolol prodrug to bypass efflux transporters and enhance oral bioavailability. J. Control. Release 95(3):447–453 (2004).

    Article  PubMed  CAS  Google Scholar 

  10. F. Tajarobi, M. El-Sayed, B. D. Rege, J. E. Polli, and H. Ghandehari. Transport of poly amidoamine dendrimers across Madin-Darby Canine Kidney cells. Int. J. Pharm. 215(1–2):263–267 (2001).

    Article  PubMed  CAS  Google Scholar 

  11. M. El-Sayed, C. A. Rhodes, M. Ginski, and H. Ghandehari. Transport mechanism(s) of poly (amidoamine) dendrimers across Caco-2 cell monolayers. Int. J. Pharm. 265(1–2):151–157 (2003).

    Article  PubMed  CAS  Google Scholar 

  12. J. W. Chen, T. L. Murphy, M. C. Willingham, I. Pastan, and J. T. August. Identification of two lysosomal membrane glycoproteins. J. Cell Biol. 101(1):85–95 (1985).

    Article  PubMed  CAS  Google Scholar 

  13. M. M. Manders, F. J. Verbeek, and J. A. Aten. Measurement of co-localization of objects in dual-color confocal images. J. Microsc. 169(3):375–382 (1983).

    Google Scholar 

  14. A. R. Hilgers, R. A. Conradi, and P. S. Burton. Caco-2 cell monolayers as a model for drug transport across the intestinal mucosa. Pharm. Res. 7(9):902–910 (1990).

    Article  PubMed  CAS  Google Scholar 

  15. R. J. Mrsny. Site-specific drug delivery in the gastrointestinal tract. In K. Park. (Ed.), Controlled Drug Delivery: Challenges and Strategies, American Chemical Society, Washington, 1997, pp. 107–123.

    Google Scholar 

  16. P. Artursson. Epithelial transport of drugs in cell culture. I: A model for studying the passive diffusion of drugs over intestinal absorptive (Caco-2) cells. J. Pharm. Sci. 79(6):476–482 (1990).

    Article  PubMed  CAS  Google Scholar 

  17. S. Yee. In vitro permeability across Caco-2 cells (colonic) can predict in vivo (small intestinal) absorption in man-fact or myth. Pharm. Res. 14(6):763–766 (1997).

    Article  PubMed  CAS  Google Scholar 

  18. C. N. Lok and T. T. Loh. Regulation of transferrin function and expression: review and update. Biol. Signals Recept. 7(3):157–178 (1998).

    Article  PubMed  CAS  Google Scholar 

  19. Y. Omidi and M. Gumbleton. Biological membranes and barriers. In R. I. Mahato (Ed.), Biomaterials for delivery and targeting of proteins and nucleic acids, CRC Press, Boca Raton, FL, 2005, pp. 231–274.

    Google Scholar 

  20. N. R. Gough and D. M. Fambrough. Different steady state subcellular distributions of the three splice variants of lysosome-associated membrane protein LAMP-2 are determined largely by the COOH-terminal amino acid residue. J. Cell Biol. 137(5):1161–1169 (1997).

    Article  PubMed  CAS  Google Scholar 

  21. S. L. Schmid, R. Fuchs, P. Male, and I. Mellman. Two distinct subpopulations of endosomes involved in membrane recycling and transport to lysosomes. Cell 52(1):73–83 (1988).

    Article  PubMed  CAS  Google Scholar 

  22. D. Langui, N. Girardot, K. H. El Hachimi, B. Allinquant, V. Blanchard, L. Pradier, and C. Duyckaerts. Subcellular topography of neuronal Abeta peptide in APPxPS1 transgenic mice. Am. J. Pathol. 165(5):1465–1477 (2004).

    PubMed  CAS  Google Scholar 

  23. I. G. Mills, A. T. Jones, and M. J. Clague. Involvement of the endosomal autoantigen EEA1 in homotypic fusion of early endosomes. Curr. Biol. 8(15):881–884 (1998).

    Article  PubMed  CAS  Google Scholar 

  24. A. K. Larsen, A. E. Escargueil, and A. Skladanowski. Resistance mechanisms associated with altered intracellular distribution of anticancer agents. Pharmacol. Ther. 85(3):217–229 (2000).

    Article  PubMed  CAS  Google Scholar 

  25. S. Hong, P. R. Leroueil, E. K. Janus, J. L. Peters, M. M. Kober, M. T. Islam, B. G. Orr, J. R. Baker, Jr., and M. M. Banaszak Holl. Interaction of polycationic polymers with supported lipid bilayers and cells: nanoscale hole formation and enhanced membrane permeability. Bioconjug. Chem. 17(3):728–734 (2006).

    Article  PubMed  CAS  Google Scholar 

  26. S. Hong, A. U. Bielinska, A. Mecke, B. Keszler, J. L. Beals, X. Shi, L. Balogh, B. G. Orr, J. R. Baker, Jr., and M. M. Banaszak Holl. Interaction of poly(amidoamine) dendrimers with supported lipid bilayers and cells: hole formation and the relation to transport. Bioconjug. Chem. 15(4):774–782 (2004).

    Article  PubMed  CAS  Google Scholar 

  27. A. Mecke, I. J. Majoros, A. K. Patri, J. R. Baker, Jr., M. M. Holl, and B. G. Orr. Lipid bilayer disruption by polycationic polymers: the roles of size and chemical functional group. Langmuir 21(23):10348–10354 (2005).

    Article  PubMed  CAS  Google Scholar 

  28. A. Mecke, S. Uppuluri, T. M. Sassanella, D. K. Lee, A. Ramamoorthy, J. R. Baker, Jr., B. G. Orr, and M. M. Banaszak Holl. Direct observation of lipid bilayer disruption by poly(amidoamine) dendrimers. Chem. Phys. Lipids 132(1):3–14 (2004).

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Dr. Richard Coleman and Maritza Patton for their assistance with the TEM studies. Financial support was provided by a pre-doctoral National Research Service Award from the National Institute of General Medical Sciences (F31-GM67278).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamidreza Ghandehari.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kitchens, K.M., Foraker, A.B., Kolhatkar, R.B. et al. Endocytosis and Interaction of Poly (Amidoamine) Dendrimers with Caco-2 Cells. Pharm Res 24, 2138–2145 (2007). https://doi.org/10.1007/s11095-007-9415-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-007-9415-0

Key words

Navigation