Skip to main content
Log in

Electrokinetic transport of nanoparticles to opening of nanopores on cell membrane during electroporation

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Nanoparticle transport to the opening of the single nanopore created on the cell membrane during the electroporation is studied. First, the permeabilization of a single cell located in a microchannel is investigated. When the nanopores are created, the transport of the nanoparticles from the surrounding liquid to the opening of one of the created nanopores is examined. It was found that the negatively charged nanoparticles preferably move into the nanopores from the side of the cell membrane that faces the negative electrode. Opposite to the electro-osmotic flow effect, the electrophoretic force tends to draw the negatively charged nanoparticles into the opening of the nanopores. The effect of the Brownian force is negligible in comparison with the electro-osmosis and the electrophoresis. Smaller nanoparticles with stronger surface charge transport more easily to the opening of the nanopores. Positively charged nanoparticles preferably enter the nanopores from the side of the cell membrane that faces the positive electrode. On this side, both the electrophoretic and the electro-osmotic forces are in the same directions and contribute to bring the positively charged particles into the nanopores.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Algar WR, Krull UJ (2009a) Multiplexed interfacial transduction of nucleic acid hybridization using a single color of immobilized quantum dot donor and two acceptors in fluorescence resonance energy transfer. Anal Chem 82(1):400–405

    Article  Google Scholar 

  • Algar WR, Krull UJ (2009b) Toward a multiplexed solid-phase nucleic acid hybridization assay using quantum dots as donors in fluorescence resonance energy transfer. Anal Chem 81(10):4113–4120

    Article  CAS  Google Scholar 

  • Bilska AO, DeBruin KA, Krassowska W (2000) Theoretical modeling of the effects of shock duration, frequency, and strength on the degree of electroporation. Bioelectrochemistry 51(2):133–143

    Article  CAS  Google Scholar 

  • Cao Y, Yang J, Yin ZQ, Luo HY, Yang M, Hu N, Zheng XL (2008) Study of high-throughput cell electrofusion in a microelectrode-array chip. Microfluid Nanofluid 5(5):669–675

    Article  CAS  Google Scholar 

  • Chambers EL, De Armendi J (1979) Membrane potential, action potential and activation potential of eggs of the sea urchin Lytechinus variegates. Exp Cell Res 122(1):203–218

    Article  CAS  Google Scholar 

  • DeBruin KA, Krassowska W (1999a) Modeling electroporation in a single cell. I. Effects of field strength and rest potential. Biophys J 77(3):1213–1224

    Article  CAS  Google Scholar 

  • DeBruin KA, Krassowska W (1999b) Modeling electroporation in a single cell. II. Effects of ionic concentrations. Biophys J 77(3):1225–1233

    Article  CAS  Google Scholar 

  • Fei Z, Wang S, Xie Y, Henslee BE, Koh CG, Lee LJ (2007) Gene transfection of mammalian cells using membrane sandwich electroporation. Anal Chem 79(15):5719–5722

    Article  CAS  Google Scholar 

  • Fox MB, Esveld DC, Valero A, Luttge R, Mastwijk HC, Bartels PV, Van den Berg A, Boom RM (2006) Electroporation of cells in microfluidic devices: a review. Anal Bioanal Chem 385(3):474–485

    Article  CAS  Google Scholar 

  • Freeman SA, Wang MA, Weaver JC (1994) Theory of electroporation of planar bilayer membranes: predictions of the aqueous area, change in capacitance, and pore–pore separation. Biophys J 67(1):42

    Article  CAS  Google Scholar 

  • Glaser RW, Leikin SL, Chernomordik LV, Pastushenko VF, Sokirko AI (1988) Reversible electrical breakdown of lipid bilayers: formation and evolution of pores. Biochimica et Biophysica Acta (BBA)-Biomembranes 940(2):275–287

    Article  CAS  Google Scholar 

  • Gothelf A, Mir LM, Gehl J (2003) Electrochemotherapy: results of cancer treatment using enhanced delivery of bleomycin by electroporation. Cancer Treat Rev 29(5):371

    Article  CAS  Google Scholar 

  • Granot Y, Rubinsky B (2008) Mass transfer model for drug delivery in tissue cells with reversible electroporation. Int J Heat Mass Transf 51(23):5610–5616

    Article  CAS  Google Scholar 

  • Henon S, Lenormand G, Richert A, Gallet F (1999) A new determination of the shear modulus of the human erythrocyte membrane using optical tweezers. Biophys J 76(2):1145–1151

    Article  CAS  Google Scholar 

  • Herwadkar A, Banga AK (2012) Peptide and protein transdermal drug delivery. Drug Discov Today: Technol 9(2):e147–e154

    Article  CAS  Google Scholar 

  • Hibino M, Itoh H, Kinosita JK (1993) Time courses of cell electroporation as revealed by submicrosecond imaging of transmembrane potential. Biophys J 64(6):1789–1800

    Article  CAS  Google Scholar 

  • Hsu JP, Yeh LH, Ku MH (2007) Evaluation of the electric force in electrophoresis. J Colloid Interface Sci 305(2):324–329

    Article  CAS  Google Scholar 

  • Huang Y, Rubinsky B (2003) Flow-through micro-electroporation chip for high efficiency single-cell genetic manipulation. Sens Actuat A 104(3):205–212

    Article  Google Scholar 

  • Israelachvili JN (2011) Intermolecular and surface forces. Rev. 3 edn. Academic press, San Diego

  • Kadaksham AT, Singh P, Aubry N (2004) Dielectrophoresis of nanoparticles. Electrophoresis 25(21–22):3625–3632

    Article  CAS  Google Scholar 

  • Kim SK (2007) Continuous low-voltage dc electroporation on a microfluidic chip with polyelectrolytic salt bridges. Anal Chem 79(20):7761–7766

    Article  CAS  Google Scholar 

  • Koneshan S, Rasaiah JC, Lynden-Bell RM, Lee SH (1998) Solvent structure, dynamics, and ion mobility in aqueous solutions at 25 C. J Phys Chem B 102(21):4193–4204

    Article  CAS  Google Scholar 

  • Krassowska W, Filev PD (2007) Modeling electroporation in a single cell. Biophys J 92(2):404–417

    Article  CAS  Google Scholar 

  • Lee ES, Robinson D, Rognlien JL, Harnett CK, Simmons BA, Ellis CRB, Rafael V, Davalos RV (2006) Microfluidic electroporation of robust 10-μm vesicles for manipulation of picoliter volumes. Bioelectrochemistry 69(1):117–125

    Article  CAS  Google Scholar 

  • Lee WG, Demirci U, Khademhosseini A (2009) Microscale electroporation: challenges and perspectives for clinical applications. Integr Biol 1(3):242–251

    Article  CAS  Google Scholar 

  • Li D (2004) Electrokinetics in microfluidics (Vol. 2). Academic Press, Toronto

  • Li S (2008) Electroporation protocols: preclinical and clinical gene medicine. Humana Press, Totowa

  • Li J, Lin H (2011) Numerical simulation of molecular uptake via electroporation. Bioelectrochemistry 82(1):10–21

    Article  CAS  Google Scholar 

  • Lin YH, Lee GB (2009) An optically induced cell lysis device using dielectrophoresis. Appl Phys Lett 94(3):033901–033901

    Article  Google Scholar 

  • Liu D, Maxey MR, Karniadakis GE (2005) Simulations of dynamic self-assembly of paramagnetic microspheres in confined microgeometries. J Micromech Microeng 15(12):2298

    Article  Google Scholar 

  • Lodish HF, Baltimore D, Berk A, Darnell JE (1995) Molecular cell biology. WH Freeman, New York, pp 453–456

  • Miklavcic D, Towhidi L (2010) Numerical study of the electroporation pulse shape effect on molecular uptake of biological cells. Radiol Oncol 44(1):34–41

    Article  Google Scholar 

  • Movahed S, Li D (2011a) Electrokinetic transports through nanochannels. Electrophoresis J 32:1259–1267

    Article  CAS  Google Scholar 

  • Movahed S, Li D (2011b) Microfluidics cell electroporation. Microfluid Nanofluid 10(4):703–734

    Article  CAS  Google Scholar 

  • Movahed S, Li D (2012a) Electrokinetic motion of a rectangular nanoparticle in a nanochannel. J Nanopart Res 14(8):1–15

    Article  Google Scholar 

  • Movahed S, Li D (2012b) Electrokinetic transport through the nanopores in cell membrane during electroporation. J Colloid Interface Sci 369(1):442–452

    Article  CAS  Google Scholar 

  • Movahed S, Li D (2013) A theoretical study of single-cell electroporation in a microchannel. J Membr Biol 246(2):151–160

    Article  CAS  Google Scholar 

  • Neu JC, Krassowska W (1999) Asymptotic model of electroporation. Phys Rev E 59(3):3471

    Article  CAS  Google Scholar 

  • Neu JC, Smith KC, Krassowska W (2003) Electrical energy required to form large conducting pores. Bioelectrochemistry 60(1):107–114

    Article  CAS  Google Scholar 

  • Schaper J, Bohnenkamp H, Noll T (2007) New electrofusion devices for the improved generation of dendritic cell-tumour cell hybrids. In: Cell technology for cell products, Springer, Dordrecht, pp 207–216

  • Smith KC, Neu JC, Krassowska W (2004) Model of creation and evolution of stable electropores for DNA delivery. Biophys J 86(5):2813–2826

    Article  CAS  Google Scholar 

  • Talele S, Gaynor P, Cree MJ, Van Ekeran J (2010) Modelling single cell electroporation with bipolar pulse parameters and dynamic pore radii. J Electrostat 68(3):261–274

    Article  Google Scholar 

  • Valero A, Post JN, Van Nieuwkasteele JW, Ter Braak PM, Kruijer W, Van den Berg A (2007) Gene transfer and protein dynamics in stem cells using single cell electroporation in a microfluidic device. Lab Chip 8(1):62–67

    Article  Google Scholar 

  • Vassanelli S, Bandiera L, Borgo K, Cellere G, Santoni L, Bersani C, Salamon M, Zaccolo M, Lorenzelli L, Girardi S, Maschietto M, Maschio MD, Paccagnella A (2008) Space and time-resolved gene expression experiments on cultured mammalian cells by a single-cell electroporation microarray. New Biotechnol 25(1):55–67

    Article  CAS  Google Scholar 

  • Wang S, Zhang X, Wang W, Lee LJ (2009) Semicontinuous flow electroporation chip for high-throughput transfection on mammalian cells. Anal Chem 81(11):4414–4421

    Article  CAS  Google Scholar 

  • Wang M, Orwar O, Olofsson J, Weber SG (2010) Single-cell electroporation. Anal Bioanal Chem 397(8):3235–3248

    Article  CAS  Google Scholar 

  • Zaharoff DA, Henshaw JW, Mossop B, Yuan F (2008) Mechanistic analysis of electroporation-induced cellular uptake of macromolecules. Exp Biol Med 233(1):94–105

    Article  CAS  Google Scholar 

  • Zangle TA, Mani A, Santiago JG (2010) Theory and experiments of concentration polarization and ion focusing at microchannel and nanochannel interfaces. Chem Soc Rev 39(3):1014–1035

    Article  CAS  Google Scholar 

  • Zhao X, Zhang M, Yang R (2010) Control of pore radius regulation for electroporation-based drug delivery. Commun Nonlinear Sci Numer Simul 15(5):1400–1407

    Article  Google Scholar 

  • Zheng Z, Hansford DJ, Conlisk AT (2003) Effect of multivalent ions on electroosmotic flow in micro-and nanochannels. Electrophoresis 24(17):3006–3017

    Article  CAS  Google Scholar 

  • Zhu T, Luo C, Huang J, Xiong C, Ouyang Q, Fang J (2010) Electroporation based on hydrodynamic focusing of microfluidics with low dc voltage. Biomed Microdevices 12(1):35–40

    Article  Google Scholar 

Download references

Acknowledgments

The authors wish to thank the financial support of the Canada Research Chair program and the Natural Sciences and Engineering Research Council (NSERC) of Canada through a research grant to D. Li.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dongqing Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Movahed, S., Li, D. Electrokinetic transport of nanoparticles to opening of nanopores on cell membrane during electroporation. J Nanopart Res 15, 1511 (2013). https://doi.org/10.1007/s11051-013-1511-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-013-1511-y

Keywords

Navigation