Skip to main content
Log in

Electrokinetic motion of a rectangular nanoparticle in a nanochannel

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

This article presents a theoretical study of electrokinetic motion of a negatively charged cubic nanoparticle in a three-dimensional nanochannel with a circular cross-section. Effects of the electrophoretic and the hydrodynamic forces on the nanoparticle motion are examined. Because of the large applied electric field over the nanochannel, the impact of the Brownian force is negligible in comparison with the electrophoretic and the hydrodynamic forces. The conventional theories of electrokinetics such as the Poisson–Boltzmann equation and the Helmholtz–Smoluchowski slip velocity approach are no longer applicable in the small nanochannels. In this study, and at each time step, first, a set of highly coupled partial differential equations including the Poisson–Nernst–Plank equation, the Navier–Stokes equations, and the continuity equation was solved to find the electric potential, ionic concentration field, and the flow field around the nanoparticle. Then, the electrophoretic and hydrodynamic forces acting on the negatively charged nanoparticle were determined. Following that, the Newton second law was utilized to find the velocity of the nanoparticle. Using this model, effects of surface electric charge of the nanochannel, bulk ionic concentration, the size of the nanoparticle, and the radius of the nanochannel on the nanoparticle motion were investigated. Increasing the bulk ionic concentration or the surface charge of the nanochannel will increase the electroosmotic flow, and hence affect the particle’s motion. It was also shown that, unlike microchannels with thin EDL, the change in nanochannel size will change the EDL field and the ionic concentration field in the nanochannel, affecting the particle’s motion. If the nanochannel size is fixed, a larger particle will move faster than a smaller particle under the same conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Ai Y, Qian S (2011) Electrokinetic particle translocation through a nanopore. Phys Chem Chem Phys 13:4060–4071. doi:10.1039/c0cp02267e

    Article  CAS  Google Scholar 

  • Bonthuis DJ, Meyer C, Stein D, Dekker C (2008) Conformation and dynamics of DNA confined in slitlike nanofluidic channels. Phys Rev Lett 101:108303

    Article  Google Scholar 

  • Chattopadhyay S, Kulkarni NV, Choudhury K, Prasad R, Shahee A, Raja Sekhar BN, Sen P (2011) Lattice expansion in ZnSe quantum dots. Mater Lett 65:1625–1627

    Article  CAS  Google Scholar 

  • Fine D, Grattoni A, Zabre E, Hussein F, Ferrari M, Liu X (2011) A low-voltage electrokinetic nanochannel drug delivery system. Lab Chip 11:2526–2534

    Article  CAS  Google Scholar 

  • Fox MB, Esveld DC, Valero A, Luttge R, Mastwijk HC, Bartels PV, van den Berg A, Boom RM (2006) Electroporation of cells in microfluidic devices: a review. Anal Bioanal Chem 385:474–485

    Article  CAS  Google Scholar 

  • Huh D, Mills KL, Burns MA, Thouless MD, Takayama S (2007) Tuneable elastomeric nanochannels for nanofluidicmanipulation. Nat Mater 6:424–428

    Article  CAS  Google Scholar 

  • Kadaksham ATJ, Singh P, Aubry N (2004) Dielectrophoresis of nanoparticles. Electrophoresis 25:3625–3632

    Article  CAS  Google Scholar 

  • Kang Y, Li D (2009) Electrokinetic motion of particles and cells in microchannels. Microfluid Nanofluid 6:431–460. doi:10.1007/s10404-009-0408-7

    Article  CAS  Google Scholar 

  • Keh HJ, Anderson JL (1985) Boundary effects on electrophoretic motion of colloidal spheres. J Fluid Mech 153:417–439

    Article  Google Scholar 

  • Kim M, Zydney AL (2004) Effect of electrostatic, hydrodynamic, and Brownian forces on particle trajectories and sieving in normal flow filtration. J Colloid Interface Sci 269:425–431. doi:10.1016/j.jcis.2003.08.004

    Article  CAS  Google Scholar 

  • Kim K, Kwang HS, Song TH (2011) A numerical model for simulating electroosmotic micro- and nanochannel flows under non-Boltzmann equilibrium. Fluid Dyn Res 43(4):041401

    Article  Google Scholar 

  • Lee WG, Demirci U, Khademhosseini A (2009) Microscale electroporation: challenges and perspectives for clinical applications. Integr Biol 1:242–251

    Article  CAS  Google Scholar 

  • Lee SY, Yalchin SE, Joo SW, Baysal O, Qian S (2010) Diffusiophoretic motion of a charged spherical particle in a nanopore. J Phys Chem B 114:6437–6446. doi:10.1021/jp9114207

    Article  CAS  Google Scholar 

  • Li D, Daghighi Y (2010) Eccentric electrophoretic motion of a rectangular particle in a rectangular microchannel. J Colloid Interface Sci 342:638–642

    Article  CAS  Google Scholar 

  • Li WL, Tegenfeldt JO, Chen L, Austin RH, Chou SY, Kohl PA, Krotine J, Sturm JC (2003) Sacrificial polymers for nanofluidic channels in biological applications. Nanotechnology 14:578–583

    Article  CAS  Google Scholar 

  • Liu D, Maxey MR, Karniadakis GE (2005) Simulations of dynamic self-assembly of paramagnetic microspheres in confined microgeometries. J Micromech Microeng 15:2298–2308

    Article  Google Scholar 

  • Liu J, Wang M, Chen S, Robbins MO (2010) Molecular simulations of electroosmotic flows in rough nanochannels. J Comput Phys 229(20):7834–7847

    Article  CAS  Google Scholar 

  • Mijatovic D, Eijkel JCT, van den Berg A (2005) Technologies for nanofluidic systems: top-down vs. bottom-up: a review. Lab Chip 5:492–500

    Article  CAS  Google Scholar 

  • Morgan H, Green NG (2002) AC electrokinetic: colloids and nanoparticles. Research Studies Press Ltd, Baldock

    Google Scholar 

  • Movahed S, Li D (2011a) Electrokinetic transport through nanochannels. Electrophoresis J 32:1259–1267

    Article  CAS  Google Scholar 

  • Movahed S, Li D (2011b) Microfluidics cell electroporation. Microfluid Nanofluid 10(4):703–734. doi:10.1007/s10404-010-0716-y

    Article  CAS  Google Scholar 

  • Movahed S, Li D (2012) Electrokinetic transport through the nanopores in cell membrane during electroporation. J Colloid Interface Sci 369(1):442–452

    Article  CAS  Google Scholar 

  • Oron D, Aharoni A, de Mello Donega C, van Rijssel J, Meijerink A, Banin U (2009) Universal role of discrete acoustic phonons in the low-temperature optical emission of colloidal quantum dots. Phys Rev Lett 102:177402

    Article  Google Scholar 

  • Pennathur S, Santiago JS (2005) Electrokinetic transport in nanochannels. 1. Theory. Anal Chem 77(21):6772–6781

    Article  CAS  Google Scholar 

  • Petsev DN, Lopez GP (2006) Electrostatic potential and electroosmotic flow in a cylindrical capillary filled with symmetric electrolyte: analytic solutions in thin double layer approximation. J Colloid Interface Sci 294(2):492–498

    Article  CAS  Google Scholar 

  • Qian S, Joo SW (2008) Analysis of self-electrophoretic motion of a spherical particle in a nanotube: effect of nonuniform surface charge density. Langmuir 24:4778–4784

    Article  CAS  Google Scholar 

  • Qian S, Joo SW, Hou WS, Zhao X (2008) Electrophoretic motion of a spherical particle with a symmetric nonuniform surface charge distribution in a nanotube. Langmuir 24:5332–5340

    Article  CAS  Google Scholar 

  • Rafieia M, Mohebpour SR, Daneshmand F (2012) Small-scale effect on the vibration of non-uniform carbon nanotubes conveying fluid and embedded in viscoelastic medium. Physica E 44(7–8):1372–1379

    Article  Google Scholar 

  • Reisner W, Larsen NB, Silahtaroglu A, Kristensen A, Tommerup N, Tegenfeldt JO, Flyvbjerg H (2010) Single-molecule denaturation mapping of DNA in nanofluidic channels. Proc Natl Acad Sci USA 107(30):13294–13299

    Article  CAS  Google Scholar 

  • Shugai AA, Carnie SL (1999) Carnie electrophoretic motion of a spherical particle with a thick double layer in bounded flows. J Colloid Interface Sci 213:298–315

    Article  CAS  Google Scholar 

  • Tegenfeldt JO, Prinz C, Cao H, Huang RL, Austin RH, Chou SY, Cox EC, Sturm JC (2004) Micro- and nanofluidics for DNA analysis. Anal Bioanal Chem 378:1678–1692

    Article  CAS  Google Scholar 

  • Wang M, Chen S (2008) On applicability of Poisson–Boltzmann equation for micro- and nanoscale electroosmotic flows. Commun Comput Phys 3(5):1087–1099

    Google Scholar 

  • Wu Z, Li D (2009) Induced-charge electrophoretic motion of ideally polarizable particles. Electrochim Acta 54:3960–3967

    Article  CAS  Google Scholar 

  • Wu Z, Gao Y, Li D (2009) Electrophoretic motion of ideally polarized particles in microchannels. Electrophoresis 30:773–781

    Article  CAS  Google Scholar 

  • Xuan X, Ye C, Li D (2005) Near-wall electrophoretic motion of spherical particles in cylindrical capillaries. J Colloid Interface Sci 289:286–290

    Article  CAS  Google Scholar 

  • Ye C, Li D (2002) Electrophoretic motion of spherical particle in a microchannel under gravitational field. J Colloid Interface Sci 251:331–338

    Article  CAS  Google Scholar 

  • Ye C, Li D (2004a) 3-D transient electrophoretic motion of a spherical particle in a T-shaped rectangular microchannel. J Colloid Interface Sci 272:480–488

    Article  CAS  Google Scholar 

  • Ye C, Li D (2004b) Electrophoretic motion of two particles in a rectangular microchannel. Microfluid Nanofluid 1:52–61

    Article  Google Scholar 

  • Ye C, Li D (2005) Eccentric electrophoretic motion of a spherical particle in a circular cylindrical microchannel. Microfluid Nanofluid 1:234–241

    Article  Google Scholar 

  • Yuan Z, Garcia A, Lopez GP, Petsev DN (2007) Electrokinetic transport and separations in fluidic nanochannels. Electrophoresis 28:595–610

    Article  CAS  Google Scholar 

  • Zangle TA, Mani A, Santiago JG (2010) Theory and experiments of concentration polarization and ion focusing at microchannel and nanochannel interfaces. Chem Soc Rev 39:1014–1035. doi:10.1039/B902074H

    Article  CAS  Google Scholar 

  • Zheng Z, Hansford DJ, Conlisk AT (2003) Effect of multivalent ions on electroosmotic flow in micro- and nanochannels. Electrophoresis 24:3006–3017. doi:10.1002/elps.200305561

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank the financial support of the Canada Research Chair program and the Natural Sciences and Engineering Research Council (NSERC) of Canada through a research grant to D. Li.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dongqing Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Movahed, S., Li, D. Electrokinetic motion of a rectangular nanoparticle in a nanochannel. J Nanopart Res 14, 1032 (2012). https://doi.org/10.1007/s11051-012-1032-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-012-1032-0

Keywords

Navigation