Skip to main content
Log in

Microfluidics cell electroporation

  • Review
  • Published:
Microfluidics and Nanofluidics Aims and scope Submit manuscript

Abstract

Electroporation or electropermeabilization is one of the most powerful biological techniques in cell studies. Applying the high voltage electric field in vicinity of the cells can generate nanopores in cell membrane. Varying with the intensity and the duration of these applied electric field, the created nanopores can be temporary (reversible electroporation) or permanent (irreversible electroporation). Reversible electroporation is usually conducted to insert biological samples into the cells. Cells are also electroporated irreversibly to release their intercellular contents for further biological investigations. In comparison with the conventional electroporation devices, microfluidic (microscale) electroporation devices have some advantages such as higher cell viability rate, high transfection efficiency, lower sample contamination, and smaller Joule heating effect. In this article, the latest advancement in microfluidic cell electroporation is reviewed. First, the underlying theory of membrane permeabilization is reviewed and the leading analytical studies on the cell electroporation are presented. Following that, different experimental methods are compared. Finally, some suggestions are proposed for the future studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27

Similar content being viewed by others

References

  • Bao N, Wang J, Lu C (2008) Microfluidic electroporation for selective release of intracellular molecules at the single-cell level. Electrophoresis 29:2939–2944

    Google Scholar 

  • Bao N, Le TT, Cheng J-X, Lu C (2010) Microfluidic electroporation of tumor and blood cells: observation of nucleus expansion and implications on selective analysis and purging of circulating tumor cells. Integr. Biol. 2:113–120. doi:10.1039/b919820b

    Article  Google Scholar 

  • Bilska AO, DeBruin KA, Krassowska W (2000) Theoretical modeling of the effects of shock duration, frequency, and strength on the degree of electroporation. Bioelectrochemistry 51:133–143

    Article  Google Scholar 

  • Brennan D et al (2009) Emerging optofluidic technologies for point-of-care genetic analysis systems: a review. Anal Bioanal Chem 395:621–636. doi:10.1007/s00216-009-2826-5

    Article  Google Scholar 

  • Brouzes E, Medkova M, Savenelli N, Marran D, Twardowski M, Hutchison JB, Rothberga JM, Linka DR, Perrimon N, Samuels ML (2009) Droplet microfluidic technology for single-cell high-throughput screening. PNAS 106(34):14195–14200

    Article  Google Scholar 

  • Cao Y, Yang J, Yin ZQ, Luo HY, Yang Mo, Hu N, Yang J, Huo DQ, Hou CJ, Jiang ZZ, Zhang RQ, Rong Xu, Zheng XL (2008) Study of high-throughput cell electrofusion in a microelectrode-array chip. Microfluid Nanofluid 5:669–675. doi:10.1007/s10404-008-0289-1

    Article  Google Scholar 

  • Cheng Wei et al (2010) Microfluidic cell arrays for metabolic monitoring of stimulated cardiomyocytes. Electrophoresis 31:1405–1413

    Article  Google Scholar 

  • Cukjati D, Batiuskaite D, André F, Miklavčič D, Mir LM (2007) Mir real time electroporation control for accurate and safe in vivo non-viral gene therapy. Bioelectrochemistry 70:501–507

    Article  Google Scholar 

  • DeBruin KA, Krassowska W (1999a) Modeling electroporation in a single cell. I. Effects of field strength and rest potential. Biophys J 77:1213–1224

    Article  Google Scholar 

  • DeBruin KA, Krassowska W (1999b) Modeling electroporation in a single cell. ii. Effects of ionic concentrations. Biophys J 77:1225–1233

    Article  Google Scholar 

  • El-Ali J, Sorger PK, Jensen KF (2006) Cells on chips. Nature. 442:403–411. doi:10.1038/nature05063

    Article  Google Scholar 

  • Escoffre JM, Portet T, Wasungu L, Teissié J, Dean D, Rols MP (2009) What is (Still not) known of the mechanism by which electroporation mediates gene transfer and expression in cells and tissues. Mol Biotechnol 41:286–295

    Article  Google Scholar 

  • Fei Z et al (2007) Gene transfection of mammalian cells using membrane sandwich electroporation. Anal. Chem. 79(15):5719–5722

    Article  Google Scholar 

  • Fei Z et al (2010) Micronozzle Array enhanced sandwich electroporation of embryonic stem cells. Anal Chem 82:353–358

    Article  Google Scholar 

  • Fox MB, Esveld DC, Valero A, Luttge R, Mastwijk HC, Bartels PV, van den Berg A, Boom RM (2006) Electroporation of cells in microfluidic devices: a review. Anal Bioanal Chem 385:474–485

    Article  Google Scholar 

  • Fox MB et al (2008) Inactivation of L. plantarum in a PEF microreactor the effect of pulse width and temperature on the inactivation. Innovative Food Science and Emerging Technologies. 9:101–108

    Article  Google Scholar 

  • Geng T et al (2010) Flow-through electroporation based on constant voltage for large-volume transfection of cells. J Controlled Release. doi:10.1016/j.jconrel.2010.01.030

  • Gimsa Jan (2001) A comprehensive approach to electro-orientation, electrodeformation, dielectrophoresis, and electrorotation of ellipsoidal particles and biological cells. Bioelectrochemistry 54:23–31

    Article  Google Scholar 

  • Granot Y, Rubinsky B (2008) Mass transfer model for drug delivery in tissue cells with reversible electroporation. Int J Heat Mass Transfr 51:5610–5616

    Article  MATH  Google Scholar 

  • Ho Yi-P, Leong KM (2010) Quantum dot-based theranostics. Nanoscale 2:60–68

    Article  Google Scholar 

  • Huang Y, Rubinsky B (2000) Micro-electroporation: improving the efficiency and understanding of electrical permeabilization of cells. Biomed Microdev 3:145–150

    Google Scholar 

  • Huang Y, Rubinsky B (2001) Microfabricated electroporation chip for single cell membrane permeabilization. Sens Actuators A 89:242–249

    Article  Google Scholar 

  • Huang Y, Rubinsky B (2003) Flow-through micro-electroporation chip for high efficiency single-cell genetic manipulation. Sens Actuators A 104:205–212

    Article  Google Scholar 

  • Ikeda N, Tanaka N, Yanagida Y, Hatsuzawa T (2007) On-chip single-cell lysis for extracting intracellular material. Jpn J Appl Phys 46(9B):6410–6414

    Article  Google Scholar 

  • Ionescu-Zanetti C, Blatz A, Khine M (2008) Electrophoresis-assisted single-cell electroporation for efficient intracellular delivery. Biomed Microdevices 10:113–116. doi:10.1007/s10544-007-9115-x

    Article  Google Scholar 

  • Kang Y, Li D, Kalams SA, Eid JE (2008) DC-dielectrophoretic separation of biological cells by size. Biomedical Microdevices 10(2):243–249

    Article  Google Scholar 

  • Khine M, Lau A, Ionescu-Zanetti C, Seo J, Lee LP (2005) A single cell electroporation chip. Lab Chip 5:38–43. doi:10.1039/b408352k

    Article  Google Scholar 

  • Khine M, Ionescu-Zanetti C, Blatz A, Wang L-P, Lee LP (2007) Single-cell electroporation arrays with real-time monitoring and feedback control. Lab Chip 7:457–462

    Article  Google Scholar 

  • Kim SK, Kim JH, Kim KP, Chung TK (2007) Continuous low-voltage dc electroporation on a microfluidic chip with polyelectrolytic salt bridges. Anal. Chem. 79:7761–7766

    Article  Google Scholar 

  • Krassowska W, Filev PD (2007) Modeling electroporation in a single cell. Biophys J 92:404–417

    Article  Google Scholar 

  • Le Gac S, van den Berg A (2009) Single cells as experimentation units in lab-on-a-chip devices. Trends Biotechnol 28(1). doi:10.1016/j.tibtech.2009.10.005

  • Lee S-W, Tai Y-C (1999) A micro cell lysis device. Sens Actuators A 73:74–79

    Article  Google Scholar 

  • Lee ES, Robinson D, Rognlien JL, Harnett CK, Simmons BA, Bowe Ellis CR, Davalos RV (2006) Microfluidic electroporation of robust 10-μm vesicles for manipulation of picoliter volumes. Bioelectrochemistry 69:117–125

    Article  Google Scholar 

  • Lee WG, Demirci U, Khademhosseini A (2009) Microscale electroporation: challenges and perspectives for clinical applications. Integrative Biology. 1:242–251

    Article  Google Scholar 

  • Li D (2004) Electrokinetics in microfluidics. Elsevier, Amsterdam

    Google Scholar 

  • Li D (2008a) Encyclopedia of microfluidics and nanofluidics. Springer, New York

    Book  Google Scholar 

  • Li S (2008b) Electroporation protocols: preclinical and clinical gene medicine. Springer, New York

    Google Scholar 

  • Lim JK, Zhou H, Tilton RD (2009) Liposome rupture and contents release over coplanar microelectrode arrays. J Colloid Interf Sci 332:113–121

    Article  Google Scholar 

  • Lin Y-H, Leea G-B (2009) An optically induced cell lysis device using dielectrophoresis. Appl Phys Lett 94:033901

    Google Scholar 

  • Lu H, Schmidt MA, Jensen KF (2005) A microfluidic electroporation device for cell lysis. Lab on a Chip 5:23–29

    Article  Google Scholar 

  • Luo C, Yang X, Fu Q, Sun M, Ouyang Q, Chen Y, Ji H (2006) Picoliter-volume aqueous droplets in oil: Electrochemical detection and yeast cell electroporation. Electrophoresis 27:1977–1983

    Article  Google Scholar 

  • Miklavcic D, Towhidi L (2010) Numerical study of the electroporation pulse shape effect on molecular uptake of biological cells. Radiol Oncol. 44(1):34–41

    Article  Google Scholar 

  • Mossop BJ, Barr RC, Henshaw JW, Yuan F (2007) Electric fields around and within single cells during electroporation—a model study. Ann Biomed Eng. 35(7):1264–1275

    Article  Google Scholar 

  • Neu JC, Krassowska W (1999) Asymptotic model of electroporation. Phys Rev E 59:3471–3482

    Article  Google Scholar 

  • Neu WK, Neu JC (2009) Theory of electroporation. In: Efimov IR, Kroll MW, Tchou PJ (eds) Cardiac bioelectric therapy. Springer, New York

    Google Scholar 

  • Neumann E, Schaefer-Ridder M, Wang Y, Hofschneider PH (1982) Gene transfer into mouse lyoma cells by electroporation in high electric fields. EMBO J 1:841–845

    Google Scholar 

  • Park S, Chung TK, Kim HC (2009) Ion bridges in microfluidic systems. Microfluid Nanofluid 6:315–331. doi:10.1007/s10404-008-0391-4

    Article  Google Scholar 

  • Schaper J, Bohnenkamp HR, Noll T (2007) New electrofusion devices for the improved generation of dendritic cell-tumour cell hybrids. In: Smith R (ed) Cell technology for cell products. Springer, New York

    Google Scholar 

  • Sedgwick H, Caron F, Monaghan PB, Kolch W, Cooper JM (2008) Lab-on-a-chip technologies for proteomic analysis from isolated cells. J. R. Soc Interface 5:S123–S130

    Article  Google Scholar 

  • Shil P, Bidaye S, Vidyasagar PB (2008) Analysing the effects of surface distribution of pores in cell electroporation for a cell membrane containing cholesterol. J Phys D 41:055502 (7 pp)

    Google Scholar 

  • Shin YS, Cho K, Kim JK, Lim SH, Park CH, Lee KB, Park Y, Chung C, Han D-C, Chang JK (2004) Electrotransfection of mammalian cells using microchannel-type electroporation chip. Anal Chem 76:7045–7052

    Article  Google Scholar 

  • Sott K et al (2008) Optical systems for single cell study. Expert Opin Drug Discov 3(11)

  • Suzuki T, Yamamoto H, Ohoka M, Okonogi A, Kabata H, Kanno I, Washizu M, Kotera H (2007) High throughput cell electroporation array fabricated by single-mask inclined uv lithography exposure and oxygen plasma etching. In: The 14th international conference on solid-state sensors, actuators and microsystems, June 10–14, 2007. IEEE, Lyon, pp 687–690

  • Talele S, Gaynor P, Cree MJ, van Ekeran J (2010) Modelling single cell electroporation with bipolar pulse parameters and dynamic pore radii. J Electrostat 1–14

  • Teissie J, Eynard N, Vernhes MC, Be′nichou A, Ganeva V, Galutzov B, Cabanes PA (2002) Recent biotechnological developments of electropulsation. A prospective review. Bioelectrochemistry 55:107–112

    Article  Google Scholar 

  • Teissie J, Golzio M, Rols MP (2005) Mechanisms of cell membrane electropermeabilization: A minireview of our present (lack of ?) knowledge. Biochim Biophys Acta 1724:270–280

    Google Scholar 

  • Valero A, Post JN, van Nieuwkasteele JW, ter Braak PM, Kruijer W, van den Berg A (2008) Gene transfer and protein dynamics in stem cells using single cell electroporation in a microfluidic device. Lab Chip 8:62–67. doi:10.1039/b713420g

    Article  Google Scholar 

  • Valley JK, Hsu H-Y, Neale S, Ohta AT, Jamshidi A, Wu MC (2009a) Assessment of single cell viability following light induced electroporation through use of on-chip microfluidics IEEE. 978-1-4244-2978-3

  • Valley JK, Neale S, Hsu H-Y, Ohta AT, Jamshidi A, Wu MC (2009b) Parallel single-cell light-induced electroporation and dielectrophoretic manipulation. Lab on a Chip 9:1714–1720. doi:10.1039/b821678a

    Article  Google Scholar 

  • Vassanelli S, Bandiera L, Borgo M, Cellere G, Santoni L, Bersani C, Salamon M, Zaccolo M, Lorenzelli L, Girardi S, Maschietto M, Dal Maschio M, Paccagnella A (2008) Space and time-resolved gene expression experiments on cultured mammalian cells by a single-cell electroporation microarray. New Biotechnol 25(1). doi:10.1016/j.nbt.2008.03.002

  • Wang H-Y, Lu C (2006a) Electroporation of mammalian cells in a microfluidic channel with geometric variation. Anal Chem. 78:5158–5164

    Article  Google Scholar 

  • Wang H-Y, Lu V (2006b) High-throughput and real-time study of single cell electroporation using microfluidics: effects of medium osmolarity. Biotechnology and Bioengineering 95(6):1116–1125. doi:10.1002/bit

    Article  Google Scholar 

  • Wang H-Y, Lu C (2008) Microfluidic electroporation for delivery of small molecules and genes into cells using a common dc power supply. Biotechnology and Bioengineering 100(3):579–586. doi:10.1002/bit.21784

    Article  Google Scholar 

  • Wang H-Y, Bhunia AK, Lu C (2006) A microfluidic flow-through device for high throughput electrical lysis of bacterial cells based on continuous dc voltage. Biosens Bioelectronics 22:582–588

    Article  Google Scholar 

  • Wang J, Stine MJ, Lu C (2007) Microfluidic cell electroporation using a mechanical valve. Anal Chem 79:9584–9587

    Article  Google Scholar 

  • Wang J, Bao N, Paris LL, Wang H-Y, Geahlen RL, Lu C (2008) Detection of kinase translocation using microfluidic electroporative flow cytometry. Anal Chem 80(4):1087–1093

    Article  Google Scholar 

  • Wang M et al (2010) Single-cell electroporation. Anal Bioanal Chem. 397:3235–3248

    Article  Google Scholar 

  • Weaver JC, Chizmadzhev YuA (1996) Theory of electroporation: a review. Bioelectrochem Bioenerg 41:135–160

    Article  Google Scholar 

  • Zaharoff DA, Henshaw JW, Mossop B, Yuan F (2008) Mechanistic analysis of electroporation-induced cellular uptake of macromolecules. 94–105. doi:10.3181/0704-RM-113

  • Zhan Y, Wang J, Bao N, Lu C (2009) Electroporation of cells in microfluidic droplets. Anal Chem 81:2027–2031. doi:10.1021/ac9001172

    Article  Google Scholar 

  • Zhao X, Zhang M, Yang R (2010) Control of pore radius regulation for electroporation-based drug delivery. Commun Nonlinear Sci Numer Simul 15:1400–1407

    Article  MathSciNet  Google Scholar 

  • Zhu T et al (2010) Electroporation based on hydrodynamic focusing of microfluidics with low dc voltage. Biomed Microdevices 12:35–40. doi:10.1007/s10544-009-9355-z

    Article  Google Scholar 

  • Ziaie B et al (2004) Hard and soft micromachining for BioMEMS: review of techniques and examples of applications in microfluidics and drug delivery. Advanced Drug Delivery Reviews. 56(3):145–172

    Article  Google Scholar 

Download references

Acknowledgments

The authors wish to thank the financial support of the Canada Research Chair program and the Natural Sciences and Engineering Research Council (NSERC) of Canada through a research grant to D. Li.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dongqing Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Movahed, S., Li, D. Microfluidics cell electroporation. Microfluid Nanofluid 10, 703–734 (2011). https://doi.org/10.1007/s10404-010-0716-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10404-010-0716-y

Keywords

Navigation