Skip to main content
Log in

Effects of solid–gas coupling and pore and particle microstructures on the effective gaseous thermal conductivity in aerogels

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

An analytical model was developed to predict the pressure-dependent gaseous thermal conductivity in aerogels based on the spherical porous secondary particle aggregate structure. The model includes the effects of particle size, pore and particle microstructures, and solid–gas coupling including the quasi lattice vibrations for solid-like vibrating gas molecules in the gaps between adjacent secondary particles that are not included in previous models. The results show that the pressure-dependent effective gaseous thermal conductivities of RF and silica aerogels predicted by the present model agree well with experimental results. The solid–gas coupling significantly increases the effective gaseous thermal conductivity in the aerogels as the quasi lattice vibrating gas molecules in the gaps more effectively bridge adjacent particles. The effects of solid–gas coupling and pore and particle microstructures are significant for particle aggregate structures with mean pore and particle diameters in the range of 100 nm–10 μm while the Knudsen formula and the Zeng’s model have limited applicability in this size range. Micron and millimeter-scale pores that can occur in nanoporous silica aerogel samples due to the mechanical fragility of these nanostructures can be well represented by the present three pore size model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

a :

Equivalent solid cubic element length (m)

a 1 :

Crystal lattice constant (m)

A :

Parameter in Eqs. 22 and 33

A i :

Ring area of the ith hollow cylinder (m2)

B :

Parameter in Eq. 37

C 1, C 2, C 3, C 4, C 5, C 6, C 7 :

Parameters

c v :

Specific heat at constant volume (J kg−1 K−1)

d :

Diameter (m)

D :

Pore diameter (m)

k :

Thermal conductivity (W m−1 K−1)

k B :

Boltzmann’s constant (1.38 × 10−23 J K−1)

l :

Mean free path (m)

l contact :

Contact length between adjacent particles (m)

M :

Gas molecular weight (kg mol−1)

N :

Number of partitions

p :

Pressure (Pa)

Pr :

Prandtl number

R m :

Universal gas constant (8.314 J mol−1 K−1)

S :

Specific surface area (m2 kg−1)

T :

Temperature (K)

T m :

Melting point (K)

v :

Group velocity (m s−1)

x, y, z :

Coordinates (m)

α:

Energy accommodation coefficient

μ:

Dynamic viscosity (N s m−2)

γ:

Adiabatic coefficient

γ1 :

Gruneisen constant

Π:

Aerogel porosity

ρ:

Density (kg m−3)

φ:

Porosity or volume fraction

ϕ:

Volume fraction

0:

Free space or ambient conditions

a:

Aerogel

Ar:

Argon

b:

Bulk

ce:

Coupling effect

CM:

Continuum regime

exp:

Experiment

FM:

Free molecular regime

g:

Gas

He:

Helium

p:

Pore

part:

Aerogel particle

r:

Radiation

s:

Solid

total:

Total or effective

TR:

Transition regime

References

  • Baetens R, Jelle BP, Thue JV, Tenpierik MJ, Grynning S, Uvslokk S, Gustavsen A (2010) Vacuum insulation panels for building applications: a review and beyond. Energy Build 42:147–172

    Article  Google Scholar 

  • Deng ZS, Wang J, Wu AM, Shen J, Zhou B (1998) High strength SiO2 aerogel insulation. J Non-Cryst Solids 225:101–104

    Article  CAS  Google Scholar 

  • Denpoh K (1998) Modeling of rarefied gas heat conduction between wafer and susceptor. IEEE Trans Semicond Manuf 11(1):25–29

    Article  Google Scholar 

  • Fricke J, Tillotson T (1997) Aerogel: production, characterization, and application. Thin Solid Films 297:212–223

    Article  CAS  Google Scholar 

  • Heinemann U (2008) Influence of water on the total heat transfer in ‘evacuated’ insulations. Int J Thermophys 29:735–749

    Article  CAS  Google Scholar 

  • Heinemann U, Caps R, Fricke J (1996) Radiation–conduction interaction: an investigation on silica aerogels. Int J Heat Mass Transf 39(10):2115–2130

    Article  CAS  Google Scholar 

  • Hemberger F, Weis S, Reichenauer G, Ebert HP (2009) Thermal transport properties of functionally graded carbon aerogels. Int J Thermophys 30:1357–1371

    Article  CAS  Google Scholar 

  • Kaganer MG (1969) Thermal insulation in cryogenic engineering. IPST Press, Jerusalem

    Google Scholar 

  • Kennard EH (1938) Kinetic theory of gases. McGraw-Hill, New York, pp 290–318

    Google Scholar 

  • Kistler SS (1935) The relation between heat conductivity and structure in silica aerogel. J Phys Chem 39:79–87

    Article  CAS  Google Scholar 

  • Lee SC, Cunnington GR (2000) Conduction and radiation heat transfer in high-porosity fiber thermal insulation. J Thermophys Heat Transf 14(2):121–136

    Article  Google Scholar 

  • Lee D, Stevens PC, Zeng SQ, Hunt AJ (1995) Thermal characterization of carbon-opacified silica aerogels. J Non-Cryst Solids 186:285–290

    Article  CAS  Google Scholar 

  • Lee OJ, Lee KH, Yim TJ, Kim SY, Yoo KP (2002) Determination of mesopore size of aerogels from thermal conductivity measurements. J Non-Cryst Solids 298:287–292

    Article  CAS  Google Scholar 

  • Lu X, Arduini-Schuster MC, Kuhn J, Nilsson O, Fricke J, Pekala RW (1992) Thermal conductivity of monolithic organic aerogels. Science 255:971–972

    Article  CAS  Google Scholar 

  • Lu X, Caps R, Fricke J, Alviso CT, Pekala RW (1995) Correlation between structure and thermal conductivity of organic aerogels. J Non-Cryst Solids 188:226–234

    Article  CAS  Google Scholar 

  • Lu G, Wang XD, Duan YY, Li XW (2011) Effects of non-ideal structures and high temperatures on the insulation properties of aerogel-based composite materials. J Non-Cryst Solids 357:3822–3829

    Article  CAS  Google Scholar 

  • Ozerinc S, Kakac S, Yazicioglu AG (2010) Enhanced thermal conductivity of nanofluids: a state-of-the-art review. Microfluid Nanofluid 8:145–170

    Article  Google Scholar 

  • Raed K, Gross U (2009) Modeling of influence of gas atmosphere and pore-size distribution on the effective thermal conductivity of Knudsen and non-Knudsen porous materials. Int J Thermophys 30:1343–1356

    Article  CAS  Google Scholar 

  • Reichenauer G, Heinemann U, Ebert HP (2007) Relationship between pore size and the gas pressure dependence of the gaseous thermal conductivity. Colloids Surf A 300:204–210

    Article  CAS  Google Scholar 

  • Spagnol S, Lartigue B, Trombe A, Despetis F (2009) Experimental investigations on the thermal conductivity of silica aerogels by a guarded thin-film-heater method. ASME J Heat Transf 131:074501

    Article  Google Scholar 

  • Swimm K, Reichenauer G, Vidi S, Ebert HP (2009) Gas pressure dependence of the heat transport in porous solids with pores smaller than 10 μm. Int J Thermophys 30:1329–1342

    Article  CAS  Google Scholar 

  • Wang J, Kuhn J, Lu X (1995) Monolithic silica aerogel insulation doped with TiO2 powder and ceramic fibers. J Non-Cryst Solids 186:296–300

    Article  CAS  Google Scholar 

  • Wang BX, Zhou LP, Peng XF (2003) A fractal model for predicting the effective thermal conductivity of liquid with suspension of nanoparticles. Int J Heat Mass Transf 46:2665–2672

    Article  CAS  Google Scholar 

  • Warrier P, Yuan YH, Beck MP, Teja AS (2010) Heat transfer in nanoparticle suspensions: modeling the thermal conductivity of nanofluids. AIChE J 56(12):3243–3256

    Article  CAS  Google Scholar 

  • Wei GS, Liu YS, Zhang XX, Yu F, Du XZ (2011) Thermal conductivities study on silica aerogel and its composite insulation materials. Int J Heat Mass Transf 54:2355–2366

    Article  CAS  Google Scholar 

  • Woignier T, Phalippou J, Prassas M (1990) Glasses from aerogels. J Mater Sci 25:3118–3126

    Article  CAS  Google Scholar 

  • Zeng SQ, Hunt A, Greif R (1995a) Transport properties of gas in silica aerogel. J Non-Cryst Solids 186:264–270

    Article  CAS  Google Scholar 

  • Zeng SQ, Hunt A, Greif R (1995b) Geometric structure and thermal conductivity of porous medium silica aerogel. ASME J Heat Transf 117(4):1055–1058

    Article  CAS  Google Scholar 

  • Zhao SY, Zhang BM, He XD (2009) Temperature and pressure dependent effective thermal conductivity of fibrous insulation. Int J Therm Sci 48:440–448

    Article  CAS  Google Scholar 

  • Zhao JJ, Duan YY, Wang XD, Wang BX (2011) Effect of nanofluids on thin film evaporation in microchannels. J Nanopart Res 13:5033–5047

    Article  CAS  Google Scholar 

  • Zhao JJ, Duan YY, Wang XD, Wang BX (2012a) An analytical model for combined radiative and conductive heat transfer in fiber-loaded silica aerogels. J Non-Cryst Solids 358:1303–1312

    Article  CAS  Google Scholar 

  • Zhao JJ, Duan YY, Wang XD, Wang BX (2012b) A 3-D numerical heat transfer model for silica aerogels based on the porous secondary nanoparticle aggregate structure. J Non-Cryst Solids 358:1287–1297

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge financial support from NSFC (No. 21176133) and SRFDP (No. 20100002110045).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yuan-Yuan Duan or Xiao-Dong Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, JJ., Duan, YY., Wang, XD. et al. Effects of solid–gas coupling and pore and particle microstructures on the effective gaseous thermal conductivity in aerogels. J Nanopart Res 14, 1024 (2012). https://doi.org/10.1007/s11051-012-1024-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-012-1024-0

Keywords

Navigation