Skip to main content
Log in

Effect of nanofluids on thin film evaporation in microchannels

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

A thin film evaporation model based on the augmented Young–Laplace equation and kinetic theories was developed to describe the nanofluid effects on the extended evaporating meniscus in a microchannel. The nanofluid effects include the structural disjoining pressure, a thin porous coating layer at the surface formed by the nanoparticle deposition and the thermophysical property variations compared with the base fluid. The results show that the nanofluid thermal conductivity enhancement mainly due to the Brownian motion tends to greatly increase the liquid film thickness and the thin film heat transfer. The structural disjoining pressure effect tends to enhance the nanofluid spreading capability and the thin film evaporation. The nanoparticle-deposited porous coating layer improves the surface wettability while significantly reducing the thin film evaporation with increasing layer thickness due to the thermal resistance across this layer. The nanofluid thermal conductivity enhancement together with the structural disjoining pressure effect can not counteract the thermal resistance effects of the porous coating layer when the coating layer thickness is sufficiently large.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

A :

Dispersion constant in Eq. 31, J

A 0, A 1, A 2 :

Constant

d :

diameter, m

D fr :

Fractal dimension

H :

Channel height, m

h fg :

Latent heat of vaporization, J kg−1

k :

Thermal conductivity, W m−1 K−1

k B :

Boltzmann’s constant, 1.38 × 10−23 J K−1

K :

Curvature, m−1

K p :

Permeability, m2

l*:

Nanolayer thickness, m

l :

Phonon mean free path, m

L :

Thin film length, m

\( \dot{m} \) :

Mass flow rate per unit width, kg s−1 m−1

\( \dot{m}^{\prime \prime } \) :

Evaporative mass flux, kg s−1 m−2

P :

Pressure, Pa

Pr :

Prandtl number

\( q_{x}^{\prime \prime } \) :

Local evaporative heat flux, W m−2

Q x :

Total heat transfer rate, W m−1

R k :

Kapitza resistance, m2 K W−1

Re :

Reynolds number

T :

Temperature, K

u :

Velocity along the x-axis, m s−1

x, y :

x and y coordinates, m

β :

Ratio, β = 2l*/d p in Eq. 3

γ :

Ratio, γ = k wl/k p in Eq. 4

χ :

Ratio, χ = 2R k k l/d p in Eq. 5

δ :

Film thickness, m

δ 0 :

Adsorbed film thickness, m

δ w :

Nanoparticle-deposited porous coating layer thickness, m

Δ:

Difference

η :

Empirical constant in Eq. 10

θ :

Microscopic contact angle

λ :

Empirical constant in Eq. 10

μ :

Dynamic viscosity, N s m−2

Π :

Structural disjoining pressure, Pa

ρ :

Density, kg m−3

σ :

Surface tension, N m−1

τ :

Shear stress, N m−2

ϕ :

Volume fraction of nanoparticles

0:

Junction of non-evaporating and evaporating thin film regions

b:

Bulk

c:

Capillary

d:

Disjoining

eff:

Effective

fr:

Fractal

i, δ, lv:

Liquid–vapor interface

l:

Liquid

L:

Junction of intrinsic meniscus and evaporating thin film regions

max:

Maximum

p:

Particle

pe:

Equivalent particle

sat:

Saturation

v:

Vapor

w:

Wall (solid)

wl:

Solid–liquid interface region or the nanolayer

∞:

Bulk liquid meniscus

References

  • Bang IC, Chang SH (2005) Boiling heat transfer performance and phenomena of Al2O3–water nano-fluids from a plain surface in a pool. Int J Heat Mass Transf 48:2407–2419

    Article  CAS  Google Scholar 

  • Christopher DM, Zhang L (2010) Heat transfer in the microlayer under a bubble during nucleate boiling. Tsinghua Sci Technol 15(4):404–413

    Article  Google Scholar 

  • Das SK, Putra N, Thiesen P, Roetzel W (2003) Temperature dependence of thermal conductivity enhancement for nanofluids. ASME J Heat Transf 125:567–574

    Article  CAS  Google Scholar 

  • Do KH, Jang SP (2010) Effect of nanofluids on the thermal performance of a flat micro heat pipe with a rectangular grooved wick. Int J Heat Mass Transf 53:2183–2192

    Article  CAS  Google Scholar 

  • Eapen J, Rusconi R, Piazza R, Yip S (2010) The classical nature of thermal conduction in nanofluids. ASME J Heat Transf 132:102402

    Article  Google Scholar 

  • Fan J, Wang LQ (2011) Review of heat conduction in nanofluids. ASME J Heat Transf 133:040801

    Article  Google Scholar 

  • Hwang KS, Jang SP, Choi SUS (2009) Flow and convective heat transfer characteristics of water-based Al2O3 nanofluids in fully developed laminar flow regime. Int J Heat Mass Transf 52:193–199

    Article  CAS  Google Scholar 

  • Kim HD, Kim MH (2007) Effect of nanoparticle deposition on capillary wicking that influences the critical heat flux in nanofluids. Appl Phys Lett 91:014104

    Article  Google Scholar 

  • Koo J, Kleinstreuer C (2004) A new thermal conductivity model for nanofluids. J Nanopart Res 6:577–588

    Article  Google Scholar 

  • Lee S, Choi SUS, Li S, Eastman JA (1999) Measuring thermal conductivity of fluids containing oxide nanoparticles. ASME J Heat Transf 121(2):280–288

    Article  CAS  Google Scholar 

  • Leong KC, Yang C, Murshed SMS (2006) A model for the thermal conductivity of nanofluids—the effect of interfacial layer. J Nanopart Res 8:245–254

    Article  CAS  Google Scholar 

  • Ma HB, Cheng P, Borgmeyer B, Wang YX (2008) Fluid flow and heat transfer in the evaporating thin film region. Microfluid Nanofluid 4:237–243

    Article  Google Scholar 

  • Nikolov A, Kondiparty K, Wasan D (2010) Nanoparticle self-structuring in a nanofluid film spreading on a solid surface. Langmuir 26(11):7665–7670

    Article  CAS  Google Scholar 

  • Ozerinc S, Kakac S, Yazicioglu AG (2010) Enhanced thermal conductivity of nanofluids: a state-of-the-art review. Microfluid Nanofluid 8:145–170

    Article  Google Scholar 

  • Panchamgam SS, Plawsky JL, Wayner PC Jr (2006) Spreading characteristics and microscale evaporative heat transfer in an ultrathin film containing a binary mixture. ASME J Heat Transf 128:1266–1275

    Article  CAS  Google Scholar 

  • Panchamgam SS, Plawsky JL, Wayner PC Jr (2007) Experimental evaluation of Marangoni shear in the contact line region of an evaporating 99+% pure octane meniscus. ASME J Heat Transf 129:1476–1485

    Article  CAS  Google Scholar 

  • Park K, Noh KJ, Lee KS (2003) Transport phenomenon in the thin-film region of a micro-channel. Int J Heat Mass Transf 46:2381–2388

    Article  Google Scholar 

  • Plawsky JL, Ojha M, Chatterjee A, Wayner PC Jr (2009) Review of the effects of surface topography, surface chemistry, and fluid physics on evaporation at the contact line. Chem Eng Commun 196(5):658–696

    Article  CAS  Google Scholar 

  • Sefiane K (2006) On the role of structural disjoining pressure and contact line pinning in critical heat flux enhancement during boiling of nanofluids. Appl Phys Lett 89:044106

    Article  Google Scholar 

  • Shima PD, Philip J, Raj B (2009) Role of microconvection induced by Brownian motion of nanoparticles in the enhanced thermal conductivity of stable nanofluids. Appl Phys Lett 94:223101

    Article  Google Scholar 

  • Trokhymchuk A, Henderson D, Nikolov A, Wasan DT (2001) A simple calculation of structural and depletion forces for fluids/suspensions confined in a film. Langmuir 17:4940–4947

    Article  CAS  Google Scholar 

  • Wang XW, Xu XF, Choi SUS (1999) Thermal conductivity of nanoparticle–fluid mixture. J Thermophys Heat Transf 13(4):474–480

    Article  CAS  Google Scholar 

  • Wang BX, Zhou LP, Peng XF (2003) A fractal model for predicting the effective thermal conductivity of liquid with suspension of nanoparticles. Int J Heat Mass Transf 46:2665–2672

    Article  CAS  Google Scholar 

  • Wang H, Garimella SV, Murthy JY (2007) Characteristics of an evaporating thin film in a microchannel. Int J Heat Mass Transf 50:3933–3942

    Article  Google Scholar 

  • Wang H, Garimella SV, Murthy JY (2008) An analytical solution for the total heat transfer in the thin-film region of an evaporating meniscus. Int J Heat Mass Transf 51:6317–6322

    Article  Google Scholar 

  • Wang BX, Sheng WY, Peng XF (2009) A novel statistical clustering model for predicting thermal conductivity of nanofluid. Int J Thermophys 30:1992–1998

    Article  CAS  Google Scholar 

  • Warrier P, Yuan YH, Beck MP, Teja AS (2010) Heat transfer in nanoparticle suspensions: modeling the thermal conductivity of nanofluids. AICHE J 56(12):3243–3256

    Article  CAS  Google Scholar 

  • Wasan DT, Nikolov AD (2006) Spreading of nanofluids on solids. Nature 423:156–159

    Article  Google Scholar 

  • Wee SK, Kihm KD, Hallinan KP (2005) Effects of the liquid polarity and the wall slip on the heat and mass transport characteristics of the micro-scale evaporating transition film. Int J Heat Mass Transf 48:265–278

    Article  CAS  Google Scholar 

  • Wen DS (2008) On the role of structural disjoining pressure to boiling heat transfer of thermal nanofluids. J Nanopart Res 10:1129–1140

    Article  CAS  Google Scholar 

  • Wen DS, Lin GP, Vafai S, Zhang K (2009) Review of nanofluids for heat transfer applications. Particuology 7:141–150

    Article  CAS  Google Scholar 

  • Yu W, Choi SUS (2003) The role of interfacial layers in the enhanced thermal conductivity of nanofluids: a renovated Maxwell model. J Nanopart Res 5:167–171

    Article  CAS  Google Scholar 

  • Zhao JJ, Duan YY, Wang XD, Wang BX (2011a) Effects of superheat and temperature-dependent thermophysical properties on evaporating thin liquid films in microchannels. Int J Heat Mass Transf 54:1259–1267

    Article  Google Scholar 

  • Zhao JJ, Huang M, Min Q, Christopher DM, Duan YY (2011b) Near-wall liquid layering, velocity slip and solid-liquid interfacial thermal resistance for thin film evaporation in microchannels. Nanoscale Microscale Thermophys Eng 15(2):105–122

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The authors acknowledge financial support from the National Natural Science Foundation of China (Project Nos. 51076009 and 50636020).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yuan-Yuan Duan or Xiao-Dong Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, JJ., Duan, YY., Wang, XD. et al. Effect of nanofluids on thin film evaporation in microchannels. J Nanopart Res 13, 5033 (2011). https://doi.org/10.1007/s11051-011-0484-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-011-0484-y

Keywords

Navigation